ELECTROACTIVE POLYMERS AS ARTIFICIAL MUSCLES
REALITY, POTENTIAL AND CHALLENGES

Yoseph Bar-Cohen
JPL/Caltech, Pasadena, CA, 818-354-2610, yosi@jpl.nasa.gov
http://ndeaa.jpl.nasa.gov/

SPIE Course on EAPAD
March 14, 2002, San Diego, California
Outline

• Background and history

• Electroactive polymers as artificial muscles

• The EAP infrastructure

• EAP application considerations

• Concluding remarks
What is an Electroactive Polymer (EAP)

- Certain polymers respond to stimulation with a change that can be temporary or permanent. The source for stimulation may include heat, light, chemicals, pressure, magnetic and electric field as well as others.

- EAP materials are polymers that respond to electrical stimulation (field, current, etc.) with a change in property or characteristic.

- Changes can involve physical deformation, optical or magnetic property variation and others.

- The emphasis of this course is on EAP materials that react to electrical excitation with mechanical change.
Background

- Most conventional mechanisms are driven by actuators that require gears, bearings, and other complex components.

- Emulating biological muscles can enable various novel manipulation capabilities that are impossible today.

- Electroactive polymers (EAP) are emerging with capability that can mimic muscles to actuate biologically inspired mechanisms.

- EAP are resilient, fracture tolerant, noiseless actuators that can be made miniature, low mass, inexpensive and consume low power.

- EAP can potentially be used to construct 3-D systems, such as robotics, which are considered as science fiction in today’s engineering capability.
Historical prospective

- Roentgen [1880] is credited for the first experiment with EAP electro-activating rubber-band to move a cantilever with mass attached to the free-end

- Sacerdote [1899] formulated the strain response of polymers to electric field activation

- Eguchi [1925] discovery of electrets* marks the first developed EAP
 - Obtained when carnauba wax, rosin and beeswax are solidified by cooling while subjected to DC bias field.

- Another important milestone is Kawai [1969] observation of a substantial piezoelectric activity in PVF2.
 - PVF2 films were applied as sensors, miniature actuators and speakers.

- Since the early 70’s the list of new EAP materials has grown considerably, but the most progress was made after 1990.

* Electrets are dielectric materials that can store charges for long times and produce field variation in reaction to pressure.
Non-Electro Active Polymers (NEAP)

- Conductive and Photonic Polymers
- Smart Structures and Materials
- Deformable Polymers
 - Chemically Activated
 - Shape Memory Polymers
 - Inflatable Structures
 - Light Activated Polymers
 - Magnetically Activated Polymers
Non-Electro Active Polymers (NEAP)
Examples

McKibben Artificial Muscles
Air Pressure activation
(B. Hannaford, Washington)

Laser Illuminated Polymer Light activation
(H. Misawa, U. of Tikushima, Japan)

Shape Memory Polymers
Heat/pressure activation
(W. Sokolowski, JPL)
COMPARISON BETWEEN EAP AND WIDELY USED TRANSDUCING ACTUATORS

<table>
<thead>
<tr>
<th>Property</th>
<th>EAP</th>
<th>SMA</th>
<th>EAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuation strain</td>
<td>Over 300%</td>
<td><8% (short fatigue life)</td>
<td>Typically 0.1–0.3 %</td>
</tr>
<tr>
<td>Force (MPa)</td>
<td>0.1–25</td>
<td>200</td>
<td>30–40</td>
</tr>
<tr>
<td>Reaction speed</td>
<td>μsec to min</td>
<td>msec to min</td>
<td>μsec to sec</td>
</tr>
<tr>
<td>Density</td>
<td>1–2.5 g/cc</td>
<td>5–6 g/cc</td>
<td>6–8 g/cc</td>
</tr>
<tr>
<td>Drive voltage</td>
<td>Ionic EAP: 1–7 V</td>
<td>5-Volt</td>
<td>50–800 V</td>
</tr>
<tr>
<td></td>
<td>Electronic EAP: 10–150 V/μm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumed power *</td>
<td>m-Watts</td>
<td>Watts</td>
<td>Watts</td>
</tr>
<tr>
<td>Fracture behavior</td>
<td>Resilient, elastic</td>
<td>Resilient, elastic</td>
<td>Fragile</td>
</tr>
</tbody>
</table>

* Note: The power consumption was estimated for macro-devices that are driven by such actuators.
COMPARISON BETWEEN EAP AND WIDELY USED TRANSDUCING ACTUATORS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuation strain</td>
<td>100%</td>
<td>4%</td>
<td>1.7%</td>
<td>2%</td>
</tr>
<tr>
<td>Blocking force/area *</td>
<td>0.2 MPa</td>
<td>0.8 MPa</td>
<td>65 MPa</td>
<td>100 MPa</td>
</tr>
<tr>
<td>Reaction speed</td>
<td>msec</td>
<td>μsec</td>
<td>μsec</td>
<td>μsec</td>
</tr>
<tr>
<td>Density</td>
<td>1.5 g/cc</td>
<td>3 g/cc</td>
<td>7.5 g/cc</td>
<td>9.2 g/cc</td>
</tr>
<tr>
<td>Drive field</td>
<td>144 V/μm</td>
<td>150 V/μm</td>
<td>12 V/μm</td>
<td>2500 Oe</td>
</tr>
<tr>
<td>Fracture toughness</td>
<td>Large</td>
<td>Large</td>
<td>Low</td>
<td>Large</td>
</tr>
</tbody>
</table>

* Note: This is the force that is required to block the actuator and it is normalized by its surface area. Values were calculated assuming the elastic properties were independent of applied field and are therefore approximated.
BIOLOGICALLY INSPIRED ROBOTICS
Potential use for in-situ scalable autonomous robots in colonized multi-tasking exploration

Models for EAP actuated flexible robots

Multiple locomotion capabilities
Flying, walking, swimming & diving
Hopping, flying, crawling & digging

Soft landing

Coordinated robotics
Neural networks & expert systems

Yoseph Bar-Cohen, JPL, yosi@jpl.nasa.gov
ELEMENTS OF AN EAP ACTUATED ROBOTS

Communication

Intelligent control
- Navigation
- Collision avoidance
- Autonomous performance

EAP Actuator

Power

Propulsion/Mobility/Locomotion Functions
- Swimming and/or diving
- Walking
- Hopping and/or flying
- Microswitching and positioning

Sensing
- EAP actuation sensors
- Imaging
- Other sensors as needed

Y. Bar-Cohen, JPL, yosi@jpl.nasa.gov
EAP infrastructure

EAP material pool
- Ionic Gel
- IPMC
- Conductive polymers
- Nanotubes
- Dielectric EAP
- Ferroelectric
- Graft elastomer

EAP mechanism understanding and enhancement
- Nonlinear electromechanical modeling
- Material properties characterization
 - Computational chemistry
 - New material synthesis

EAP processing
- Material fabrication techniques
- Shaping (fibers, films, etc.)
- Microlayering (ISAM & inkjet printing)
- Support processes and integration (electroding, protective coating, bonding, etc.)
- Miniaturization techniques

Tools/support elements
- Sensors
- Actuators
- MEMS

Devices/Applications
- Miniature Robotics
 - Insect-like robots
 - End effectors
 - Manipulators
 - Miniature locomotives
- General applications and devices
 - Medical devices
 - Shape control
 - Muscle-like actuators
 - Active weaving and haptics

Y. Bar-Cohen, JPL, yosi@jpl.nasa.gov
Electroactive Polymers (EAP)

ELECTRONIC EAP
- Dielectric EAP
- Electrostrictive Graft Elastomers
- Electrostrictive Paper
- Electro-Viscoelastic Elastomers
- Ferroelectric Polymers
- Liquid Crystal Elastomers (LCE)

IONIC EAP
- Carbon Nanotubes (CNT)
- Conductive Polymers (CP)
- ElectroRheological Fluids (ERF)
- Ionic Polymer Gels (IPG)
- Ionic Polymer Metallic Composite (IPMC)
Current EAP

Advantages and disadvantages

<table>
<thead>
<tr>
<th>EAP type</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| Electronic EAP | • Can operate in room conditions for a long time
• Rapid response (msec levels)
• Can hold strain under dc activation
• Induces relatively large actuation forces | • Requires high voltages (~150 MV/m). Recent development allowed for (~20 MV/m)
• Requires compromise between strain and stress
• Glass transition temperature is inadequate for low-temperature actuation tasks and, in the case of Ferroelectric EAP, high temperature applications are limited by the Curie temperature
• Mostly, producing a monopolar actuation independent of the voltage polarity due to associated electrostriction effect. |
| Ionic EAP | • Produces large bending displacements
• Requires low voltage
• Natural bi-directional actuation that depends on the voltage polarity. | • Except for CPs and NTs, ionic EAPs do not hold strain under dc voltage
• Slow response (fraction of a second)
• Bending EAPs induce a relatively low actuation force
• Except for CPs, it is difficult to produce a consistent material (particularly IPMC)
• In aqueous systems the material sustains electrolysis at >1.23 V requiring
• To operate in air requires attention to the electrolyte.
• Low electromechanical coupling efficiency. |
Electronic EAP
ELECTRIC FIELD OR COULOMB FORCES DRIVEN ACTUATORS

Paper EAP
[J. Kim, Inha University, Korea]

Ferroelectric
[Q. Zhang, Penn State U.]

Dielectric EAP
[R. Kornbluh, et al., SRI International]

Liquid crystals
(Piezoelectric and thermo-mechanic)
[B. R. Ratna, NRL]

Graft Elastomer
[J. Su, NASA LaRC]
Electronic EAP

<table>
<thead>
<tr>
<th>Actuator type</th>
<th>Principle</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Reported Types</th>
</tr>
</thead>
</table>
| **Ferroelectric Polymers** | Polymers that exhibit noncentrosymmetric sustained shape change in response to electric field. Some of these polymers have spontaneous electric polarization making them ferroelectric. Recent introduction of electron radiation in P(VDF-TrFE) terpolymer with defects in their crystalline structure dramatically increased the induced strain. | • Induce relatively large strain (~5%).
• Offer high mechanical energy density resulting from the relatively high elastic modulus
• Permit ac switching with little generated heat
• Rapid response (msec levels) | • Require high voltage (~150 MV/m). Recent development allows an order of magnitude less voltage.
• Difficult to mass produce
• Making thin multilayers is still a challenge and sensitive to defects.
• High temperature applications are limited by the Curie temperature | • Electron-radiated P(VDF-TrFE)
• P(VDF-TrFE) Terpolymers
• P(VDF-TrFE-CTFE) - CTFE disrupts the order in place of the irradiation. |
| **Dielectric EAP or ESSP** | Coulomb forces between the electrodes squeeze the material, causing it to expand in the plane of the electrodes. When the stiffness is low a thin film can be shown to stretch 200-380%. | • Large displacements reaching levels of 200–380% strain area
• Rapid response (msec levels)
• Inexpensive to produce | • Require high voltage (~150 MV/m)
• Obtaining large displacements compromises the actuation force
• Require prestrain | • Silicone
• Polyurethane
• Polyacrylate |
| **Electrostrictive Graft Elastomers** | Electric field causes molecular alignment of the pendant group made of graft crystalline elastomers that are attached to the backbone. | • Strain levels of 5%
• Relatively large force
• Cheaper to produce
• Rapid response (msec levels) | • Require high voltage (~150 MV/m) |
| **Liquid Crystal Elastomers [Lehman et al., 2001]** | • Exhibit spontaneous ferroelectricity
• Contracts when heated offering no-electroactive excitation
• When heated it induces large stress and strain (~ 200kPa and 45%, respectively)
• Requires much lower field than ferroelectrics & Dielectric EAP (1.5 MV/m, 4% strain).
• Fast response (<133 Hz). | • Low electro-strictive response
• Slow response
• Hysteresis | | • Polyacrylate
• Polysiloxane |
Ionic EAP

Turning chemistry to actuation

IPMC
[JPL using ONRI, Japan & UNM materials]

Ionic Gel
[T. Hirai, Shinshu University, Japan]

ElectroRheological Fluids (ERF)
[ER Fluids Developments Ltd]

Carbon-Nanotubes
[R. Baughman et al, Honeywell, et al]
Ionic EAP

<table>
<thead>
<tr>
<th>Actuator type</th>
<th>Principle</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Reported types</th>
</tr>
</thead>
</table>
| Ionic Gels (IGL) | Application of voltage causes movement of hydrogen ions in or out of the gel. The effect is a simulation of the chemical analogue of reaction with acid and alkaline. | • Potentially capable of matching the force and energy density of biological muscles
• Require low voltage | Operate very slowly—it would require very thin layers and new type of electrodes to become practical | • Examples include: PAMPS, Poly(vinyl alcohol) gel with dimethyl sulfoxide, and
• Polyacrylonitrile (PAN) with conductive fibers |
| Ionomeric Polymer-Metal Composites (IPMC) | The base polymer provides channels for mobility of positive ions in a fixed network of negative ions on interconnected clusters. Electrostatic forces and mobile cation are responsible for the bending. | • Require low voltage (1–5 V)
• Provide significant bending | • Low frequency response (in the range of 1 Hz)
• Extremely sensitive to dehydration
• dc causes permanent deformation
• Subject to hydrolysis above 1.23V
• Displacement drift under dc voltage. | Base polymer:
• Nafion® (perfluorosulfonate made by DuPont)
• Flemion® (perfluorocaboxylate, made by Asahi Glass, Japan)
Cations:
• tetrabutylammonium, Li+, and Na+
• Metal: Pt and Gold |
| Conductive Polymers (CP) | Materials that swell in response to an applied voltage as a result of oxidation or reduction, depending on the polarity causing insertion or de-insertion of (possibly solvated) ions. | • Require relatively low voltage
• Induce relatively large force
• Extensive body of knowledge
• Biologically compatible | • Exhibit slow deterioration under cyclic actuation
• Suffer fatigue after repeated activation.
• Slow response (<40 Hz) | Polypyrole, Polyethylene dioxythiophene, Poly(p-phenylene vinylene), Polyacrylonitrile, and Polythiophenes. |
| Carbon Nanotubes (CNT) | The carbon-carbon bond of nanotubes (NT) suspended in an electrolyte changes length as a result of charge injection that affects the ionic charge balance between the NT and the electrolyte. | • Potentially provide superior work/cycle and mechanical stresses
• Carbon offers high thermal stability at high temperatures <1000°C | • Expensive
• Difficult to mass produce | Single- and multi-walled carbon nanotubes |
| Electrorheological fluids (ERF) | ERFs experience dramatic viscosity change when subjected to electric field causing induced dipole moment in the suspended particles to form chains along the field lines | • Viscosity control for virtual valves
• Enable haptic mechanisms with high spatial resolution | • Requires high voltage | Polymer particles in fluorosilicone base oil |

Y. Bar-Cohen, JPL, yosi@jpl.nasa.gov
Application of EAP to potential planetary tasks

Lesson Learned
Bending and Longitudinal Actuation

Ionomeric Polymer Metal Composite (IPMC) can bend by over 90° under 1-4V.

Dielectric EAP film extending over 12%. Recent Studies at SRI International led to ~380% extension.

Y. Bar-Cohen, JPL, yosi@jpl.nasa.gov
Considered planetary applications

Dust wiper
Bending EAP is used as a surface wiper

Sample handling robotics
Extending EAP lowers a robotic arm, while bending EAP fingers operate as a gripper
EAP Dust Wiper
for the MUSES-CN Nanorover

MUSES-CN mission was a joint NASA and NASDA (National Space Development Agency of Japan) mission scheduled for launch in January 2002, from Kagoshima, Japan, to explore the surface of a small near-Earth asteroid.

- An IPMC actuated wiper was selected as a baseline for the dust removal from the visual/IR window.
- The technical challenges were beyond the technology readiness requirements.
- Due to budget constraints, this mission was cancelled in Nov. 2000.

Y. Bar-Cohen, JPL, yosi@jpl.nasa.gov
Surface wiper activated by EAP

Actuated by 1-3 volts

Biased with 1-2KV for dust repulsion

Graphite/Epoxy wiper blade* with fiberglass brush coated with gold

* Made by Energy Science Laboratories, Inc., San Diego, California

Y. Bar-Cohen, JPL, yosi@jpl.nasa.gov
Challenges and solutions to the application of IPMC as bending actuators

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Potential Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorinate base - difficult to bond</td>
<td>Etching the surface makes it amenable to bonding.</td>
</tr>
<tr>
<td>Extremely sensitive to dehydration</td>
<td>Apply protective coating over the etched IPMC.</td>
</tr>
<tr>
<td>Off-axis bending actuation</td>
<td>Constrain the free end and use a high ratio of length/width.</td>
</tr>
<tr>
<td>Remove submicron dust</td>
<td>Use effective wiper-blade design and high bias voltage.</td>
</tr>
<tr>
<td>Reverse bending drift under dc voltage</td>
<td>Limit the operation to cyclic activation to minimize this effect. Also, use large cation based IPMC.</td>
</tr>
<tr>
<td>Protective coating is permeable</td>
<td>Develop alternative coating, possibly using multiple layers</td>
</tr>
<tr>
<td>Electrolysis occurs at >1.23 V</td>
<td>Use efficient IPMC that requires low actuation voltage or use solvent base that exhibits electrolysis at a higher voltage.</td>
</tr>
<tr>
<td>Residual deformation particularly after intermittent activation</td>
<td>It occurs mostly after dc activation and it remains a challenge.</td>
</tr>
<tr>
<td>Difficulties to assure material reproducibility</td>
<td>Still a challenge. May be overcome using mass production and protective coating.</td>
</tr>
<tr>
<td>Degradation with time due to loss of ions to the host liquid if it is immersed</td>
<td>Requires electrolyte with enriched cation content of the same species as in the host liquid.</td>
</tr>
</tbody>
</table>

Y. Bar-Cohen, JPL, yosi@jpl.nasa.gov

YB-24
LONGITUDINAL EAP ACTUATOR

Under electro-activation, a soft polymer film with electrodes on both surfaces expands laterally.

EAP film subjected to 25 V/μm induced over 12% extension

Y. Bar-Cohen, JPL, yosi@jpl.nasa.gov
Elements of the EAP Infrastructure
Computational chemistry may lead to material design tools using comprehensive modeling to methodically synthesize effective new EAPs.
Modeling EAP addressing their nonlinear behavior

Objective: Maximize the stretch in a selected direction among various possible configurations of conductors C and domains shape Ω.

Constraints: Some overall geometry of conductors is prescribed (C_0), conductors are elastic and the stretch is calculated from a coupled electro-mechanical problem in finite (nonlinear) deformation theory.

Numerical solution
1. Solve coupled electro-mechanical problem
2. Calculate configurational forces on conductors
3. Change conductor configuration
4. Iterate

Y. Bar-Cohen, JPL, yosi@jpl.nasa.gov

YB-28
EAP processing

Processing, shaping, electroding and bundling
Muscle configurations

Melt Spinning process
Fiber fabrication

Ionic Self-Assembled mono-layering

Ink-printing
Rapid Prototyping using Ink-Jet
Stereo-lithography and Printing

Y. Bar-Cohen, JPL, yosi@jpl.nasa.gov
Composite EAP

Composite elastomer with polarized filler

- Cu wire
- Polyaniline fiber
- Solid polymer electrolyte [EC/PC/PAN/Cu(ClO4)2]

Aligned Polar Filler Material
Silicone Elastomer Matrix
EAP Material Characterization

- Different methods of characterization are needed for the various types of EAP.
- Efforts are underway to develop a database that allows comparing with properties of other actuators.

Y. Bar-Cohen, JPL, yosi@jpl.nasa.gov
Test Metric for EAP Properties

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Properties</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical</td>
<td>Tensile strength [Pa]</td>
<td>Mechanical strength of the actuator material</td>
</tr>
<tr>
<td></td>
<td>Stiffness [Pa]</td>
<td>Required to calculate blocking stress, mechanical energy density, and mechanical loss factor/bandwidth</td>
</tr>
<tr>
<td></td>
<td>Coefficient of thermal expansion [ppm/C]</td>
<td>Affects the thermal compatibility and residual stress</td>
</tr>
<tr>
<td>Electrical</td>
<td>Dielectric breakdown strength [V]</td>
<td>Necessary to determine limits of safe operation</td>
</tr>
<tr>
<td></td>
<td>Impedance spectra [ohms and phase angle]</td>
<td>Provides both resistance and capacitance data. Used to calculate the electrical energy density; electrical relaxation/dissipation and equivalent circuit.</td>
</tr>
<tr>
<td></td>
<td>Nonlinear current [A]</td>
<td>Used in the calculation of electrical energy density; quantify nonlinear responses/driving limitations</td>
</tr>
<tr>
<td>Microstructure</td>
<td>Thickness (electrode and EAP), internal structure, uniformity and anisotropy as well as identify defects</td>
<td>These are features that will require establishment of standards to assure the quality of the material</td>
</tr>
<tr>
<td>Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electro-active Properties</td>
<td>Electrically induced strain [%] or displacement [cm]</td>
<td>Used in calculation of “blocking stress” and mechanical energy density</td>
</tr>
<tr>
<td></td>
<td>Stress Electrically induced force [g], or charge (C)</td>
<td>Electrically induced force/torque or stress- induced current density</td>
</tr>
<tr>
<td></td>
<td>Stiffness Stress/strain curve</td>
<td>Voltage controlled stiffness</td>
</tr>
<tr>
<td>Environmental Behavior</td>
<td>Operation at various temperatures, humidity and pressure conditions</td>
<td>Determine material limitations at various conditions</td>
</tr>
</tbody>
</table>

Y. Bar-Cohen, JPL, yosi@jpl.nasa.gov
Significant EAP properties

- Stress (MPa)
- Strain (%)
- Drive voltage (V)
- Bandwidth (Hz) or response rate (sec)
- Power density (W/cm³)
- Efficiency (%)
- Lifetime (cycles)
- Density (g/cm³)
- Operating environment (Temperature, pressure, humidity, etc.)
Potential EAP applications

- EAPs offers unique characteristics to produce highly maneuverable, noiseless, agile biologically-inspired mechanisms.

- EAP can be used to produce actuators that require simple drive signals but their nonlinear behavior needs to be taken into account.

- Developing and applying EAP materials and mechanisms involves interdisciplinary expertise in chemistry, materials science, electronics, mechanisms, computer science and others.

- Robustness and the limited actuation force are constraining the technology
Applications
Underway or under consideration

• **Mechanisms**
 - Lenses with controlled configuration
 - Mechanical Lock
 - Noise reduction
 - Flight control surfaces/Jet flow control
 - Anti G-Suit

• **Robotics, Toys and Animatronics**
 - Biologically-inspired Robots
 - Toys and Animatronics

• **Human-Machine Interfaces**
 - Haptic interfaces
 - Tactile interfaces
 - Orientation indicator
 - Smart flight/diving Suits
 - Artificial Nose
 - Braille display (for Blind Persons)

• **Planetary Applications**
 - Sensor cleaner/wiper
 - Shape control of gossamer structures

• **Medical Applications**
 - EAP for Biological Muscle Augmentation or Replacement
 - Miniature in-Vivo EAP Robots for Diagnostics and Microsurgery
 - Catheter Steering Mechanism
 - Tissues Growth Engineering
 - Interfacing Neuron to Electronic Devices Using EAP
 - Active Bandage

• **Liquid and Gases Flow Control**

• **Controlled Weaving**
 - Garment and Clothing

• **MEMS**

• **EM Polymer Sensors & Transducers**

Y. Bar-Cohen, JPL, yosi@jpl.nasa.gov
Human-Machine Interfaces

- Interfacing human and machine to complement or substitute our senses would enable important medical applications.

- Researchers at Duke U. connected electrodes to a brain of a money and were able to control a robotic arm. This breakthrough opens the possibility that the human brain would be able to operate prosthetics that are driven by EAP.

- Feedback is required to “feel” the environment around the artificial limbs. Currently, researchers are developing tactile sensors, haptic devices, and other interfaces.
Medical Applications

- EAP for Biological Muscle Augmentation or Replacement
- Miniature in-Vivo EAP Robots for Diagnostics and Microsurgery
- Catheter Steering Mechanism
- Tissues Growth Engineering
- Interfacing Neuron to Electronic Devices Using EAP
- Active Bandage

Catheter Guide Using IPMC
[K. Oguro, ONRI, Japan]

Platform for EAP
[G. Whiteley, Sheffield Hallam U., UK]

Y. Bar-Cohen, JPL, yosi@jpl.nasa.gov
Planetary applications

Inflatable and rigidized Synthetic Aperture Radar at JPL.

Space Shuttle view of the L’Garde’s Inflatable Antenna Experiment (IAE)
Robotics, Toys and Animatronics

Biologically inspired robotics and rapid inexpensive mechanisms are highly attractive and offer novel possibilities that might be considered otherwise science fiction.

Android making facial expressions (G. Pioggia et al. U. of Pisa, Italy)

Hexapod robot powered by dielectric EAP (R. Kornbluh, et al., SRI International)

Desired capability:

Sony’s SDR3

Y. Bar-Cohen, JPL, yosi@jpl.nasa.gov
MEMICA
(MEchanical MIrroring using Controlled stiffness and Actuators)

Electro-Rheological Fluid at reference (left) and activated states (right). [Smart Technology Ltd, UK]

Y. Bar-Cohen, JPL, yosi@jpl.nasa.gov
Platforms for EAP Implementation

Android making facial expressions
[Made by D. Hanson, U. of Texas, Dallas]

Robotic hand platform for EAP
[Made by G. Whiteley, Sheffield Hallam U., UK]
A challenge to EAP
Emulating sea creatures
Micro-Electro-Mechanical Systems (MEMS)

• Making miniature devices

• Allow mass fabrication with repeatable performance

• Enable compact integration of comprehensive functionality combining "smart" sensors and actuators into a smart system.
Concerns and requirements

• No established database or standard test procedures

• Applications are needed where the specifications are within the EAP capability range

• Robustness – there are lifetime and reliability issues

• Scalability – it is not obvious how to make very large or very small EAP

• Competitiveness – there is a need for niche applications
SPIE Conference - EAPAD
To accelerate the development of EAP actuators an SPIE International Conference and a committee were initiated in 1998 to serve as a forum for collaboration among the developers and users of the technology.

Y. Bar-Cohen, JPL, yosi@jpl.nasa.gov
Related books

Electroactive Polymer (EAP) Actuators as Artificial Muscles
Reality, Potential, and Challenges

Yoseph Bar-Cohen, Editor

1st Edition (2001)

Electroactive Polymer (EAP) Actuators as Artificial Muscles
Reality, Potential, and Challenges
SECOND EDITION

Yoseph Bar-Cohen, Editor

Biologically Inspired Intelligent Robots

Yoseph Bar-Cohen, Cynthia Brumfield

Y. Bar-Cohen, JPL, yosi@jpl.nasa.gov
Other References

Proceedings
SPIE - Y. Bar-Cohen (Editor)

MRS

Websites

WW-EAP Newsletter

Y. Bar-Cohen, JPL, yosi@jpl.nasa.gov
WW-EAP Homepages

- EAP Recipes: EAP preparation processes

- EAP in Action: Short videos showing various EAP materials and mechanisms being activated

- EAP Database: A table of EAP properties with a disclaimer

- EAP Companies: A list of EAP manufacturers
 http://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/EAP-material-n-products.htm
SUMMARY

• Electroactive Polymers have emerged as actuators for generating large displacements

• These materials offer the closest resemblance of biological muscles potentially enabling unique capabilities

• A series of new materials were developed and the infrastructure is being established to overcome the limitations of the current materials
Bibliography

Books

Proceedings

Websites

• WW-EAP Webhub: http://ndeaajpl.nasa.gov/nasa-nde/lommas/eap/EAP-web.htm
Book about EAP

Topic 1: Introduction
- Chapter 1.0 - History, Current Status and Infrastructure – Y. Bar-Cohen, JPL

Topic 2: Natural Muscles
- Chapter 2.0 - Natural Muscles as a Biological system – G. Pollack, et al., U. of Washington
- Chapter 3.0 - Natural Muscles as an Electromechanical System – R. J. Full and K. Meijer, U. of California, Berkeley

Topic 3: EAP Materials
- SubTopic 3.1 Electric EAP
 - Chapter 4.0 - Electric Field Activated EAP – Q. Zhang, Penn State U. and J. Scheinbeim, Rutgers U.
- SubTopic 3.2 Ionic EAP
 - Chapter 5.0 - Electroactive Polymer Gels – P. Calvert, UA
 - Chapter 6.0 - Ionic Polymer-Metal Composite (IPMC) – S. Nemat-Nasser, and C. Thomas UCSD
 - Chapter 7.0 - Conductive Polymers (CP) – J. Santiñana, and V. Olazabal, JPL
 - Chapter 8.0 - Carbon Nanotube Actuators – G. Spinks, G. Wallace and U. of Wollongong, Australia, R. Baughman, Honeywell and L. Dai, CSIRO
- SubTopic 3.3 Molecular EAP
 - Chapter 9.0 - Micro, Nano and molecular scale EAP – M. Marsella, UCR

Topic 4: Modeling Electroactive Polymers
- Chapter 10.0 - Computational Chemistry – K. E. Wise, NRC, NASA LaRC
- Chapter 11.0 - Modeling and Analysis of the Chemistry and Electromechanics – T. Wallmersperger, B. Kroepelin - University of Stuttgart, Germany, and R. W. Guelch, University of Tuebingen
- Chapter 12.0 - Electro-mechanical models for optimal design and effective behavior – K. Bhattacharya, J. Li and X. Yu, Caltech
- Chapter 13.0 - Modeling IPMC for design of actuation mechanisms – S. Tadokoro, T. Takamori, Kobe U., and K. Oguro, ONRI, Japan

Y. Bar-Cohen, JPL, yosi@jpl.nasa.gov
Topic 5: Processing and Fabrication of EAP
- Chapter 14.0 - Processing and Support Techniques -- Y. Bar-Cohen, V. Olazabal, JPL, J. Sansiñena, JPL, and J. Hinkley, NASA LaRC

Topic 6: Testing and Characterization
- Chapter 15.0 - Methods and Testing and Characterization – S. Sherrit, X. Bao, and Y. Bar-Cohen, JPL

Topic 7: EAP Actuators, Devices and Mechanisms
- Chapter 16.0 - Application of Dielectric Elastomer EAP Actuators – R. Kornbluh et al, SRI International
- Chapter 17.0 - Biologically-inspired Robots – B. Kennedy, JPL, C. Melhuish, and A. Adamatzky, University of the West of England
- Chapter 18.0 - Applications of EAP to Entertainment Industry – D. Hanson, University of Texas at Dallas, and Human Emulation Robotics, LLC
- Chapter 19.0 - Haptic Interfacing via ERF – D. Mavroidis, Rutgers U., Y. Bar-Cohen, JPL, and M. Bouzit, Rutgers U.
- Chapter 20.0 - Shape Control of Precision Gossamer Apertures – C. H.M. Jenkins, SDSMT

Topic 8: Lesson Learned, Applications and Outlook
- Chapter 21.0 - EAP Applications, Potentials and Challenges – Y. Bar-Cohen, JPL
The grand challenge for EAP as ARTIFICIAL MUSCLES