
The HiVy Tool Set

Paula J. Pingree* Erich Mikk+

Abstract
Our aim is to validate mission-specific components of spacecraft flight
software designs that are specified using state-charts and translated
automatically to the final flight code for the mission. We established an
automatic translation tool set from state-charts to SPIN for the validation of
such mission-specific components. To guarantee compliance with auto-
generated flight code, our translation tool set preserves the StateFlow@
semantics. We are now able to specify and validate portions of mission-critical
software design and implementation using the exhaustive exploration
techniques of model checking.

Keywords: state-charts, model checking, translation, Stateflow, SPIN

1 Introduction
The HiVy tool set enables model checking for state-charts ([SFUG]). This is
achieved by translating state-chart specifications into Promela, the input language of
the SPIN model checker ([Ho197]). The HiVy tool set transforms output of the
commercial tool Stateflow@ provided by The Mathworks. HiVy can also be used
independently from Stateflow. An abstract syntax of hierarchical sequential automata
(HSA) is provided as an intermediate format for the tool set [Mik02]. The HiVy tool
set programs include Sfparse, sphsa, hsa2pr and the HSA merge facility.

Rationale
The authors of Stateflow adopted the graphical notation of state-charts as proposed by
D. Harel [Har87] but designed a different semantics to this notation. The Statemate
by ILogix tool supports the original semantics developed by D. Harel and there are
some advances that extend Statemate specified designs to model checking facilities
[MikkOO, MLSH991. The following list illustrates the differences in semantic design
between Stateflow and Statemate state-charts, which make clear that Statemate-based
tools cannot be used for Stateflow state-chart verification.

* Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91 109 [Paula.J.Pingree@jpl.nasa.gov]
Erlangen, Germany [Erich.Mikk@epost.de]

In Stateflow semantics there is at most one event active at a time. In Statemate
semantics any finite number of events are allowed.

Emitting an event in Stateflow semantics means to pass control to the receiver
chart of the event just in the moment of emitting the event. In Statemate
semantics events are collected until the end of the step and then broadcast to the
chart.

In Stateflow semantics the execution order of transition segments (that constitute
transitions) is determined by their graphical placement: outgoing transition
segments ofone state are considered for execution in clockwise order. Hence, in
Stateflow semantics it is not possible to select one enabled transition non-
deterministically, as it is allowed in Statemate.

In Stateflow the execution order within an AND-state is determined by the
graphical placement of the AND-composed charts. In Statemate all AND-states
are executed simultaneously.

In Stateflow semantics the effect of changing variables takes place immediately.
In Statemate semantics a variable change takes effect only at the end of the step.

We propose a new format called hierarchical sequential automata (HSA) that
accurately reflects the semantics of Stateflow for implementation within the HiVy
Tool Set. The translation idea is to associate to each state-chart a hierarchical
sequential automaton that is semantically equivalent to the source state-chart. A
hierarchical sequential automaton consists of a finite set of cooperating sequential
automata that can be implemented as parallel processes in Promela. There will be one
Promela process for each OR-state (which corresponds to one automaton in HSA)
such that the process implements its OR-state. Statechart states, events and variables
are encoded as Promela variables and Promela processes change the values of these
variables in order to simulate state changes, event generation and variable changes
according to the semantics of Stateflow. The observable behavior is defined with
respect to the variables representing Statecharts states, events and variables. These
ideas are very close to those for translating Statemate statecharts to Promela as
presented in [MLSH99].

2 Overview of the Tool Set

Constructing a State-chart
First a state-chart model of the system to be verified must be constructed. Access to
the Stateflow application and general familiarity with the tool is needed. This section
defines the syntactic and semantic constraints under which the HiVy tool set operates.

Syntactic restrictions. In order to use the HiVy tool set the state-chart model must be
designed in a sub-set of the Stateflow language. This sub-set does not support the
following:

Event generation
Note: Stateflow transition labels have the form:

Event[Condition J{condition~action~/transition~action
Events may be a part of the Stateflow state-chart. However, the event
generation itself must be done by including an environment file with the
HiVy translated model where events of the model are non-
deterministically set using hand-coded Promela.

Inner transitions with the same source and destination
Transition actions on transition segments that end on a junction
History junctions

Scoping rules. Stateflow scoping rules dictate where the types of non-graphical
objects can exist in the hierarchy. Stateflow allows for local state and event names,
however HiVy does not support this feature. Instead, all state and event names are
assumed to be global. In order to comply with this assumption, all state and event
names must be defined in the top-level state-chart of the model.

Support for embedded state-charts. Stateflow allows the use of embedded state-
charts called sub-charts. Sub-charts enable you to reduce a complex chart to a set of
simpler, hierarchically organized diagrams. In order to use this feature safely with
HiVy, the name of the reference must coincide with the top-most state name of the
referenced sub-chart.

Adapting the state-chart model for verification. Leveraging on the SPIN verification
system, HiVy supports verification of closed systems only, i.e. the specification to be
verified must contain a model of the environment as well.

Preparing Input for Translation
This section describes how to extract state-charts from Stateflow, parse extracted
models and merge sub-charted state-charts with their parent charts.

Model Files. State-chart design representations are captured in Stateflow model files.

Parsing. Two programs of the HiVy tool set: Sparse and sflhsa are used to prepare
the model file for translation. If parsing is successful, a file is produced that contains
an ASCII representation of the abstract syntax tree in HSA-format ([Mik02]).

Translation
Once the components of the system are parsed in HSA, HiVy generates Promela input
for the SPIN model checker. Hierarchical automaton are given by a set of events
events, a set of states states, a root state root, a set of Boolean variables bvurs, a set of
integer variables ivars, a set of states denoting the initial configuration iconf, a
hierarchy function hi, a typing function ty, a transition map trmap and a mapping
from OR-states to their initial states initmap [Mikk02].

Merging Statecharts
If the model consists of several files, then they may be merged into one HSA file
before translating into Promela for SPIN using the HiVy program hsacomplete.

The HSA to Promela Translation: hsa2pr
The program hsa2pr is used to generate Promela code from the .hsa file. The
following files are generated by hsa2pr:

stmodel.pr: the Promela model of the original state-chart.
propositions: contains names and definitions of propositions. One
proposition is generated for each state and each event.
prop-list: contains just the names of propositions (not their definitions).
These proposition names are suitable for automatic generation of LTL
properties during verification.

The auto-translated file stmodel.pr contains an include statement for a file named
never. This file contains the SPIN “never claim” to be verified. The never claim is not
generated by hsa2pr and must be created before applying SPIN to the model.

3 In Conclusion
The full capability of the SPIN model checker may be used to verify models generated
by HiVy translation because they yield Promela code. The validity and usability of
HiVy generated models for SPIN model checking has been prototyped on spacecraft
Fault Protection designs ([BarPin03], [PMHSD02]).

References
[Barpin031 K. Barltrop, P. Pingree, Model Checking Investigations for Fault Protection

System Validation. 2003 International Conference on Space Mission
Challenges for Information Technology, June 2003

P. Pingree, E. Mikk, G. Holzmann, M. Smith, D. Dams, Validation of Mission
Critical Software Design And Implementation Using Model Checking. The
21st Digital Avionics Systems Conference, October 2002.

E. Mikk. HSA-Format,private communication 2002.

E. Mikk, Semantics and Verification of Statecharts. PhD Thesis. Technical
Report of Christian-Albrechts-University in Kiel, October 2000

E. Mikk, Y. Lakhnech, M. Siege1 and G. Holzmann, Implementing Statecharts
in PROMELNSPIN. In Proceedings of the 2nd IEEE Workshop on Industrial-
Strength Formal SpeciJication Techniques. pages 90-1 01. IEEE Computer
Society 1999.

G.J. Holzmann. The Model Checker Spin. IEEE Trans. on Software
Engineering, 23(5):279-295, May 1997. Special issue on Formal Methods in
Software Practice.

D. Hare], Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming, ASSP-34(2):362, 1986.

The Mathworks Stateflow Users Guide, httn://www.mathworks.com

[PMHSDOZ]

[MikkOS]

[MikkOO]

[MLSH99]

[Ho197]

[Har87]

[SFUG]

http://httn://www.mathworks.com

