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MODELING OF PROOF MASS SELF-GRAVITY FIELD FOR THE 
LASER INTERFEROMETRY SPACE ANTENNA (LISA)' 

Marco B. Quadrelli* 

This paper describes the development of the self-gravity 
modeling tool used to predict and control the motion of one of 
the proof masses of the orbiting LISA gravitational wave 
detector. LISA is a space-borne gravitational wave detector, 
which is formed by three spac'ecraft orbiting the Sun and 
forming the vertices of an equilateral triangle with a side of 5 
million km in length. Requirements on the forces and 
moments, and the force gradients and moment gradients, 
applied to the proof mass exist. This paper computes these 
quantities analytically, so that gravitational balancing 
considerations can now be done effectively. 

Introduction 
This paper describes the development of the self-gravity tool used to predict and control the 

motion of one of the proof masses of the orbiting LISA gravitational wave detector. LISA is a space-bome 
gravitational wave detector, which is formed by three spacecraft orbiting the Sun and forming the vertices 
of an equilateral triangle with a side of 5 million km in length. Inside each spacecraft, shown in Figure 1, an 
optical bench monitors the motion of two separated proof masses, which reflect the laser light from the 
adjacent spacecraft along the edges of the equilateral triangle, and senses the gravitational wave signal with 
unprecedented sensitivity. 

A modeling challenge described in the paper is how to consider the distributed force and torque 
between all the participating extended bodies. Gravitational forces and moments on each extended body are 
computed exactly from the closed form expression of the gravitational potential of a parallelepiped. This 
approach is currently being incorporated into a general finite element-based self-gravity computational tool 
at JPL for the LISA spacecraft. Requirements on the forces and moments, and the force gradients and 
moment gradients, applied to the proof mass exist, therefore these quantities must be computed 
independently. 
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The performance of the Self-Gravity Tool (SGT) has implications out flowing into the ACS, and into the 
Disturbance Rejection System. For example, we need to be able to address gravity trimming scenarios 
arising when the telescope articulation is moving, or issues like mass depletion fiom several sources, 
including thermal disturbances. Figure 1 shows the essential functionality needed by a general multibody 
self-gravity analysis tool: 

capability to handle multiple moving bodies of arbitrary geometry, attitude, and location 
capability to handle gravitational interaction in close proximity between extended bodies 
capability to reconstruct the gravitational interaction fiom sub-bodies up to the entire system 
capability to dynamically vary the topology of the system by moving, adding, and removing 
bodies. 

- 
- 
- 
- 

The computational self-gravity tool described in this paper supports a multibody grid of extended bodies 
possibly of non-homogeneous densities (example body-grids are point masses and generic parallelepipeds 
located at arbitrary locations and attitudes around the LISA proof mass). Bodies can be fixed, moving 
around the proof mass, or deformed under thermoelastic loads. The self-gravity potential calculation is 
exact (i.e. no order expansions of the potential are involved) up to the gradients of forces and moments. 

At JPL, we have developed several codes and interfaces to those codes. The intent was to provide a variety 
of tools using different methods to approach the same problem. That way, independent validation analyses 
can be done. So far we have developed: 

1) SGT Tool 1: A self-gravity modeling tool using only second order expansions of the force and 
gradients, for initial self-gravity estimation [ 11 and for preliminary dynamic simulation. 

2) SGT Tool 2: A self-gravity modeling tool using only a mesh of points, and a summation over all 

3) SGT Tool 3: A self-gravity modeling tool using an exact representation of the gravitational 
potential around the proof mass, and either a summation over known nodal locations or a higher- 
order Gauss-Legendre integration over all elements surrounding the proof mass that are part of a 
finite element mesh [2]. 

points [ 11. 

In the following, we will summarize the approach of each method. 

Steps for a General Calculation of the Interacting Fields between Extended Bodies 

Figure 2 depicts the geometry of the problem, and the potential of the gravitational interaction 
between an extended three-dimensional parallelepiped and a point mass source, located at x. Here, the 
proof mass, or a sub-element of it shaped as a parallelepiped, interacts gravitationally with the point source 
mass M. Any arbitrary mass distribution surrounding the proof mass can be thus computed by combining 
the effects of each point mass individually. Denote the distance between these two mass elements by r, so 
that r represents the distance between the origins of the two extended bodies “proof mass” and “source 
body M ’  (Figure 2). The gravitational potential due to the interaction is 

V=V( r)=GMml r1-I 

Let us vary the kinematics of the parallelepiped B, keeping the source M fixed, and assuming only small 
rotations: 
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where we use the (.) x 1 operator for the skew-symmetric operator applied to a vector, and 6" ( 0 )  for the 
variation of a vector taken in the intrinsic (body-fixed) frame. 
The virtual variation of the potential becomes: 

dV sv = --Sor dr + (r x z]-im 
Consequently, the forces and moments, and the forces and moment gradients originate from the variation of 
the potential as follows: 

dV F = -  
dr 

dV M = r x -  
dr 

dM -=EE,-FxU a( r r )  

-- - (r €3 F) - (F e r) U -E, dM 

where the symbol €3 represents outer product, and with the following definitions: 

r x  - .Tr  =E,d"r (E 1 

(4) 
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rx  -. rxd0) = E , B  [E( ] (9) 

The last step is to sum over all points x of any extended body around the proof mass 
parallelepiped. This can be done either by summing over a (very) large number of points, or by integrating 
over finite elements of irregular shapes at the Gauss-Legendre nodes. The equations above represent a 
coordinate-free representation of the field action and its spatial gradients between interacting mass points. 

Figure 3 shows the computed bounds below which one can consider an adjacent extended body as 
a point mass with respect to the proof mass. Figure 4 shows the initial mesh used for predicting the 
gravitational interaction between two extended cubes. The methods used for modeling the gravitational 
field and its gradients are: 1) by summing the gravitational forces and gradients after discretization of the 
source mass into a large number of mass points, (Figure 5), and 2) by summing the gravitational forces and 
gradients after discretization of the source mass into a much smaller number of Gauss-Legendre points 
(Figure 6) .  The conclusion is that very few, optimally located Gauss-Legendre points (4 points along each 
side of the cube, in the example of Figure 3) achieve the same result (accuracy of force prediction within 
0.5% of exact value) than more that 5000 points into which the source cube is discretized. This result is 
extremely convenient for analyses using a dynamic gravitational field, and gravitational balancing 
considerations can now be done effectively. A second paper applies some of these models to the 
gravitational dynamic control of the displacement of the proof mass. 

Ei 

Figure 1. Multibody gravitational modeling elements. 

SGT TOOL 1: Potential, Forces, and Gradients with 2"d Order Method 

Given a dynamically deformed set of nodes [xyz] (caused by thermal deformation or dynamical 
vibration), the finite element mass matrix [MI, and the array of nodal degrees of freedom and connectivity, 
this tool provides the matrix 
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M=[m -E J '1 
and the location of the center of mass using the rigid body modes, for each extended body. Here, m and J 
are the mass and moment of inertia matrices of the (possibly deformed) extended body about its own center 
of mass, and c is the vector of the first moment of inertia. The tilde operator above a symbol denotes the 
skew-symmetric matrix associated with that symbol. The computational approach is as follows: 

Once the location of the center of mass, nodal distribution, and mass properties of each 
(deformed) extended body are known, 
Establish the visibility map for the set of bodies (should be full, maybe sparse if the analyst is 
interested in proximity effects only). May not need all bodies. 
Compute resultant gravity force for each extended body. 
Compute center of gravity of each extended body. 
Compute resultant gravity torque about center of mass of each body. 

1) 

2) 

3) 
4) 
5 )  

To map the interaction between multiple extended bodies, we have introduced the concept of the visibility 
map [3]. See Figure 2. Vm is the VISIBILITY MAP. In components, it is given by {aij) from body (or 
mesh) ai to body (or mesh) aj. It allows the analyst to include or neglect mass distribution. 

, 2 3 4  

0 1 6 1 '  

Vm=f 6 6  O 0 6 3  1 1 2  

1 1 6 0 4  

with O G < 1  

Figure 2. Visibility map. 

2 
For the two cube problem, the inertia dyadic for cubes of side s is given by I = (misi /6)(b,b,+ b,b,+ b,b,) 
and J = (mjsj2/6)( b,b,+ b,b,+ b,b,). The gravitational force on body i from body j ,  to 2nd order can be 
derived as [ 11: 

Fij = -(Gmimj/R$(a,+fi+g j )  

where 

fi=(l/mi R%){(3/2)[trace(I)-5 a, I a,] a,+3 I a,} 

gj=(l/mj Ri){(3/2)[trace(J)-5 a, J a,] a,+3 J a,} 

(12) 

(13) 

and similarly for body j. We now introduce the rotation tensor C for body i, with components Cmn=im bn. 
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Simplifying, after having introduced the components of a, in the inertial frame in terms of the two angles 0 
and 4. Therefore, body j acts on body i, as a point mass within an accuracy of E, when Sj<[E Rij4/(6Gmipl 
cos 0 cos 4 )]1/5(for the force along x, for instance). We have taken ~=lO-15. Figure 3 shows the 

,,’”‘ 
Size of control 

, 
Slope=5/4 /” 

/ J’ 

100 10‘ lo‘ 

Distance of control mass &.%.m. fromPM c.o.m. 

result. 

Figure 3. At what distance from the proof mass can a cube be approximated by a point. 

The gravitational force gradient on body i from body j, to 2nd order: 

dFi/dRij= -(Gmimj/Ri)( 1-3 a, 63 a,) +(3Gmi/2Ri)Hi+(3Gmj/2Ri)Hj 

where 

Hi = tr(I)[S(a, 63 a1)-1] - 21 + (a,*I*a,)[51-35 (a, 63 a,)] + 
10 al(al I) + 10(a, I) a, 

Hj = tr(J)[5(a1 63al)-l] - 21 + (a,*J*a,)[51-35 (a, 63 al)] + 
10 a,(a, J) + 10(a, J) a, 

The center of gravity computation proceeds as follows: 

1) find potential V and force F=&V on body B due to a unit mass at x, 

2) Define vector vx=x(l) b1+x(2) b2+x(3) b3 from center of mass of B to point mass, and calculate the 
location R= (Gmom/lFI)1/2 of the center of gravity along the con-joining line, 
3) the location of center of gravity in body frame of extended body B is at rcg= vx-Ru. 
Finally, we can compute the forces and moments gradients. We compute the gradients over the volume VO: 
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SGT TOOL 2: Potential, Forces, and Gradients with Mesh Method 

See Figure 4. A small mass element m of the proof mass, located at p in the proof mass body frame, 
interacts gravitationally with the source node M. The distance between these two mass elements is: d=R- 
Ro-p. Consequently, the gravitational potential is 

V=V( r)=GMml r1-l (19) 

M S/C center of mass 

S/C center of gravity 

Figure 4. Geometry used for SGT Tool 2. 

Denote the term in square brackets by [.I"". Now vary the kinematics of the proof mass B, keeping M fixed 
and assuming only small rotations: 
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Consequently, the forces and moments, and the forces and moment gradients originate from the variation of 
the potential as follows: 

d 
G ~ M [ o ] - ~ / ~  

F =  
IR-%I' 

8F aF -- 
a(%) --px- a (sop) 

8 



with tensor product (a - b) c = (c (8 b)a = (c 63 a) b and unit tensor U = GVeiej . As a result, we 

obtain a coordinate free representation of the forces, moments, force gradients and moment gradients. 

0 SIC center ofmass 

a SIC center of gravity X 

0.5 '1  1x3-cl 121'Vbb(61 i 

Potential V=Va+Vb 

Figure 5. Gravitational Potential of Parallelepiped at x [Z]. 

SGT TOOL 3: Potential, Forces, and Gradients with Exact Extended Body Method 

This method similar to the one described in [4]. See Figure 5, where the exact representation on the 
potential, taken from [4], is also shown. Here, the proof mass, or a sub-element of it shaped as a 
parallelepiped, interacts gravitationally with the source mass M as before. Denote the distance between 
these two mass elements by r, where now r represents the distance between the origins of the two extended 
bodies "proof mass" and "source body M". The gravitational potential is V=V(r)=GMinlrl-' . Again, let 
us vary the kinematics of B, keeping M fixed assuming only small rotations: 

Sr = -8"r + (r x 1) -88 
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Consequently, the forces and moments, and the forces and moment gradients originate from the variation of 
the potential as follows: 

with the following definitions: 

dV F = -  
dr 

dV M = r x -  
dr 

r w 

dM -=E, - F x U  
8 ( aor ) 

-- - (r 63 F) - (F . r) U - E, dM 

(de) 

(34) 

(35) 
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The last step is to sum over all points x of any extended body around the proof mass parallelepiped. This 
can be done efficiently either by summing over a (very) large number of points, or by integrating over finite 
elements of irregular shapes at the Gauss-Legendre nodes. Compute gravitational force and torque between 

specified body 0 (parallelepiped), located at r,,, and an extended body occupying volume 
[al,bl,%,b2,a3,b3], of density r, with center of mass located at rl. 
Integrate a 3-dimensional array (vector or matrix) of size mxn, using an (ng,,ng,,ng,)-th order Gauss- 
Legendre integration, in extended volume [(al,b,),(a,,b,),(a,,b,)].Irregular geometry can be handled 
integrating over simplex elements. 

2) 

Results of Numerical Benchmark Tests 

The last two programs (SGT2 and SGT3) have been exercised for some test cases, and the results of the 
two have been compared. See Figure 6 to Figure 22: Very good agreement between the results of the two 
codes is shown in these figures. More so, the agreement turned out to improve substantially for the JPL 
tools when the density of points was increased for the bodies around the primary (proof mass). This 
improvement came at the expense of a higher computation time. 

Figure 6, 7, and 8 shows the comparison between the two results for the cases of two point masses, one 
cube and a point, and a point and a cube. Figure 9 shows the mesh used for the problem with two cubes, 
and Figure 1 1 shows a comparison of the results. 

Figure 10 shows a comparison of the results obtained between the point mesh and the extended body mesh 
for the two cube problem, and these results agree with the trend shown in Figure 3 obtained, however, with 
only a 2nd order approximation). 

Figure 12 shows that a general summation can be used between Gauss points belonging to elements of 
separated meshes. The result of this high performance computation is shown in Figure 13 and 14, where the 
axial force (along X) is shown for the two cubes problem as a function of the discretization points (i.e., 
using SGT2), and using SGT3 (the exact computation), in Figure 14. 

Figure 15 and 16 show the results for the case of two long thin bodies placed horizontally, for which an 
analytical solution exists. Again, the accuracy improved as the mesh in the second body was refined, while 
the field for the proof mass (primary) was computed using the exact solution. Figure 17 and 18 show the 
results for the case of two long thin bodies with one placed vertically, for which an analytical solution also 
exists. Figure 19 shows the agreement of the mesh and exact tools for the case of an infinitely thin ring of 
radius equal to 1.6 meters, computing the field force when the source unit mass at the center moves 
laterally. 
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Y 
a,=O mm 
$=O mm 
b,=O mm 

x b,=O mm 
g=44 mm 
h=10 mm 
M,=M,=1.37 kg 

dFx (N/mx IO-'o) = 
dFy (N/mx I d " )  = 
dFz M / m x  lo'"$ = 

Point-to-Point Exact to Point 
599.768 599.863 
136.311 136 732 

Mx(Nmx IO'") = 
MY (Nm x IO-'') = 

/dx(m) 1 /dy(m) I /dr(m) /dx(m) I /dy(m) I /dz(m) 
25253.7 8837.4 0 25253.6 88278 0 
8837.4 -11622.6 0 8827.8 -11622.5 0 

0 0 -13631.1 0 0 -136944 
dMx ( N d m  x IO"') = 
dMy(Ndmx IO"') = 
dMr("/mxIO'") = 

0 0 0 0 0 42116 
0 0 0 0 0 26907 
0 0 0 -08433 0 1916 0 

dFx (N/radx IO'") = 
dFv (N/radx IO"') = 

0 0 136.31 0 I1 136.94 
0 0 -599.77 0 0 -602.55 

Figure 6. Results from benchmark comparison. 

d~ (N/radx 10."') = -13631 59977 0 -13S88 59967 0 
dMx (Nm/m/rad x IO'") = 0 0 0 -0 00211 00093 0 
dMy ("/rad x IO") = 0 0 0 002690 4 I183 0 
. dMZ ("/rad x lo'") = 0 0 0 0 0 001686 

Y 
t a,=40 mm 

h=O mm 
M,=M,=l.37 kg 

620.274 620 274 

0 

0 2048 

Figure 7. Results from benchmark comparison. 
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Y 

Fx ( N x  IO-'? = 

a,=O mm 
%=O mm 
b1=40 Illm 

x b,=40 mm 
g=24 mm 
h=O mm 

620.274 620.274 

F i  (Nx IO'"' = 
Mx (Nm x IO$ = 
My (Nm x IO'") = 
Mz(Nmx IO-'? = 

0 0 
0 0 
0 -0.137e-14 
0 0 137e-14 

I /dx(m) 1 /dy(m) I /dz(m) I /dx(m) I /dy(m) I /dz(m) 
I dFx (N/mx = I 26077.6 0 0 126077.58 0 0 

dFy (Nimx lo-::) = 
dFz (N/m x I O  
dMx(Nm/mx IO'? 1 
d ~ y  "/mx 10'7 = 
d M z ( ~ m / m  x 10") = 

0 -130388 0 0 -130387 0 
0 -130388 0 0 -130387 
0 0 0 0 0 
0 0 0 o 

o 0 0 0 -62027 0 
0 62027 

-0.28e-13 0.28e-13 
-620.27 47-13 - 18-13 

620 21 S7e-I3 0.28e-I3 

0 0 13e-14 -.13e-14 
0 0 13e-14 0 -.13e-14 

Figure 8. Results from benchmark comparison. 

Figure 9. Grid mesh for two cubes. Proof mass in on the left. 
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Figure 10. Comparison between point mesh and extended body mesh for two cube problem. 

Fx (N x Io'"') = 
Fy (N x IO"') = 

Y b, 

572.10 563 09 
119.17 11468 

a,=40 mm 
$ 4 0  mm 
b,=40 mm 

x b2=40mm 
g=4 mm 
h=10 mm 

Fz ( N x  IO'') = 
Mx(Nmx IO") = 
My(Nmx IO'") = 
MP (Nm x 10."') = 

0 0 
0 0 
0 0 

-0 2390 -0. I5 19 

Figure 11. Results from benchmark comparison. 
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I . Gausspoint \ I  
\ri // 

d 

Figure 12. Summation over Gauss points belonging to separate and independent finite elements. 

Figure 13. Axial points. 

-66 ""ll 

Figure 14. Axial force in two cube problem as a function of Gauss quadrature points. 
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Y 
a,=40 mm 
a2=0 mm 
b,=40 mm 

a2 X b2=0 mm 
2 g=4mm 

h=O mm 
M,=M,=1.37 kg 

F~ hx i d d )  = 
Fz (N x 10" 

My (" x IO-") = 
f i ( N m x l o " 4  = 

M x ( N m x  IO") 1 

Point-to-Point I Exact to Point 
1 Fx (Nx10'9 = I I370 37 I382 54 . ~ - .  

0 0 
0 0 
0 0 
0 0 
0 0 

dFy (N/m x 10-lo) = 
dFz (Nim x 10.' 

dMy(Nm/m x = 
dMx(Nm/mx 12') I 
dMz(Nm/m x 10.") = 

I /dx(m) I /dy(m) I /dz(m) I /dx(m) I /dy(m) I /dz(m) 
[dFx (N/mxIO-'") = I 169,331 0 0 I 173,502 0 0 

0 -84,665 0 0 -86,753 0 
0 
0 0 0 0 0 0 
0 0 1177.5 0 
0 -1177.5 0 0 -1213.4 0 

0 -84,665 0 0 -86,753 

0 1213.4 

Figure 15. Results from benchmark comparison. 

l i  
2 4 5 6 8 b !O 

wsr painla 

Figure 16. Axial force in two horizontal line problem as a function of Gauss quadrature points. 
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Y 
t a,=O mm 

M %=40 mm 
2 b,=40 mm 
x b2=Omm 

g=4 mm 
h=10 mm 
M1=M2=1 .37 kg 

590.28 592.29 

44159.5 -65359.3 44191.3 -65768.8 
-304362. 
-245 1.3 

0 0 0 

-1329.7 -2762.1 
dFz (Nhadx 10") = -2962.9 2736.6 3042.0 1329.4 
dMx ("/radx IO-'@)= -23.73 18.47 -24.51 18.74 0 
dMy ("/rad x IO-'? = 0 0 

Figure 17. Results from benchmark comparison. 

WM p l m s  

Figure 18. Axial force in two vertical lines problem as a function of Gauss quadrature points. 
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-0 01042499932617 0.3 

ooooo1ooooooooo 
0 00001918wooO0 

ooooo2ooowoooo 
0 0000300~000 

ooooo4oowooooo 
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,"1 

, 
0 0.3 

L. ., .I, . I* >. -11 ., - x 

Figure 19. Results of ring mesh calculation. 

Figure 20. LISA reduced order model. 

Figure 20 shows the LISA reduced order model.The model has N=10563 nodes for a total of 63378 degrees 
of freedom. The two proof masses (1.286 kg each, nodes 7 (PM # 1) and 5977 (PM # 2)) are located at 
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[0.07623500000000 0.29084000000000 -0.27270000000000] meters and [0.07625200000000 - 
0.29084000000000 -0.27270000000000] meters, respectively, in the spacecraft fiame. 
The proof masses are represented by point masses. Each proof mass node is connected with soft springs to 
a rigid element. The other end of the rigid element is attached to the side wall of the proof mass enclosure. 
The springs and rigid element are there to remove singularities fi-om the model. The size of each proof mass 
is [5Ox35x35] millimeters. 
Figure 21 and Figure 22 show the result of the computation. The total CPU time was 1.243 minutes 
(Matlab on PC). 

Total CPU time: 1.243 minutes (Matlab on PC) 
Vtotld= 
2 550716464570845e-008 Mtotld= 

Ffotld = 1 Oe-008 

I Oe-008 ' -022244510347548 

0.381 14392334656 

-0.39563914067420 

-0.073955402663 16 

-0.14221904273441 

-0.39378308224236 dMdttdld= 

dFdnotld = I.0e-006 

I.Oe-006 -0.08805634870666 0 04060304082802 -0.05236754012953 
0 01292705276509 -0.321 I5913703691 -0 00162177859618 -0.0033233l110956 0,08821721 I34597 0.0l360557004690 

-0 321 15913703691 0,15863546997319 -0.00913406050515 -0.02825961884188 0.10%84%211395 -0.00016086263930 

-0.00 I62 I778596 I 8 -0.009 I34060505 I5 -0. I7 I56252273828 dMdttotld = 

dFdrtotld = I.Oe-CiI7 

I .Oe-006 -0.04042l00661932 0.29153977480127 0.27681120057590 

0.08805634870666 -0.03666521000560 004841114872278 0.27731787052783 -0.01515833342834 0.08771720665070 

-0.0006145197l287 -0.0882l721134597 -0.01741700928036 0.28420674084222 0.06547269630315 0.17009499039515 

0.0322160l024862 -0 10167352288048 0.00016086263930 

Figure 21. Potential, forces, moments, and respective gradients on proof mass number 1 of the LISA 
reduced order model. 
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Vtot2d = 

2.55086333 1125295e-008 

Ftot2d = 

I oe-008 * 
039089082228319 

0 41684llO714230 

-039270588906495 

dFdnot2d = 

1 Oe-006 * 
001259834140468 032127792090711 -000518323135337 

032127792090711 0 15879867588417 -000702166013444 

-000518323135337 -000702166013444 -017139701728885 

dFdrtot2d = 

1 Oe-006 

-008912476298328 -004141878159030 -004379413867454 

-OtXX)P96323447lll 008701972972883 -001833704457636 

-003228398639428 -010164307297197 000210503325445 

Mtot2d = 

1.0e-008 

0.227861 11716294 

-0.07654283804837 

0. I4667781636580 

dMdtiotZd = 

1 Oe-006 

0 08912476298328 0 04534584048094 0 04796254974596 

-0 00296382141953 -0 08701972972883 0 01442813635353 

002811557532285 0 10555198119480 -000210503325445 

dMdnot2d = 

I Oe-007 * 
-001417353041090 -029098757101974 028331403616078 

-027631978938316 -001670236224839 -008615494986654 

029096831996562 -006336883815025 017011787552566 

Figure 22. Potential, forces, moments, and respective gradients on proof mass number 2 of the LISA 
reduced order model. 

Metrics for SGT error budget determination 

Once the uncertainties in mass, element displacement and element rotation are specified, the errors can be 
computed as follows: 

- Error due to local mass uncertainty: 

- Error due to total mass uncertainty: 
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- Error due to mass location: 

- Error due to mass attitude: 

- Error due to proof mass attitude and location: 

Survey of methods for accurate gravitational field determination 

A survey of available methods for gravitational computation has been carried out, and is summarized in the 
following. 

Figure 23.2D Delaunay (simplicial) meshing for two cubes. 

21 



. .  
I .  

.. . 

,. . 
.. . 
. .  
: .  

. .  

0.W 007 

Figure 24. Two cube problem with Delaunay (simplicial) meshing. 

Finite Element Method 

Using a finite element approach, simplicial meshes (Delaunay and Voronoi triangulations), such as those 
depicted in Figure 23 are good candidates, as they follow irregularities much better than regular meshing. 
Figure 24 shows the two cube problem analyzed in Figure 11 but composed of a Delaunay mesh instead. In 
the general case, since the proof mass is a regular parallelepiped, the irregularity of the mesh around the 
proof mass can be modeled by tetrahedral elements with variable order of interpolation. Then we can use 
the SGT3 method many times over all the elements. 

The solution method is based on solving the boundary value problem of Poisson’s equation inside and 
outside the proof mass. A large spherical domain is defined which encloses the entire spacecraft. The 
essential (Dirichlet) boundary conditions on the outer surface of this domain are given by specifying a zero 
potential. The natural (Neumann) boundary conditions on the directional derivative of the potential along 
the surface normal are also specified to be zero (or equal to the force exerted by distance sources like the 
Sun, assuming the entire spacecraft is a point mass and the center of mass is fixed in the body kame). 

The gravitational boundary value problem in the volume V of the domain is defined by: 

1) the kinematic equation g = vp in V 
1 

4xG 
2 )  the constitutive equation q = -g = kg in v 
3) the balance equation vq + p = 0 in V 

4) the potential boundary condition p = @ on S ,  

5 )  the force boundary condition q,, = q n = q on S, 
where g is the gradient of the potential cp, n is the outer normal to V, p is the local material density, and the 
caret denotes prescribed boundary conditions on the potential and the vector q on the surfaces S ,  and S, 
respectively. 

The variational statement of the boundary value problem can be written as 
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Introducing the shape functions N, the potential and the density can be interpolated as 

Substituting in the variational statement, we obtain 

kp=f7n 

k = [[VNI'kl,,nVN]dV 

trxz = I N T p  (x, y, z )  dV + fNT4dS 
V 

V scl 

(45) 

We can see that to get at least a constant force gradient estimation within an element, we need a auadratic 
shaDe function at least. Therefore, this method leads to higher order interpolating functions. The advantage, 
however, is that a coarser grid can be used far away from the proof mass, with a finer mesh in close 
proximity to the proof mass. 

Figure 25. Ten node tetrahedron. 

Figure 25 shows the nodal configuration of an isoparametric tetrahedral element. The interpolation scheme 
is as follows: 
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where @j,k and nj,k are the discretized potential and the discretized density at (i,j,k), respectively. This is a 
7-pOht template to discretize the Laplacian operator. This discretization results in a large system of linear 
equations relating the unknown grid point potentials to the known right-hand side density distribution. This 
system of equations can be solved efficiently using FFT. 

In the Fourier space, the Poisson’s equation is 

where k = (kx,ky,kz) is the wave number with k, = 2xVL, ky = 2nm/L, k, = 2xdL for component (l,m,n) and 
box size L, and G-bar(k) is the Green’s function which for the adopted discretization is equal to: 

-1 

G(k) = - 4 n G [ s i n 2 ( ~ ) + s i n 2 [ ~ ) + s i n 2 ( ~ ) ]  

The procedure is then: 

a) perform FFT to get the transformed potential and density fields, 
b) solve the system of equations jij ,,,, = G ( kl,,,k) 
c) do inverse FFT to recover the physical fields, 
d) compute forces at each grid node from A:,k  = - ( ~ ~ + ~ , ~ , k  - ~ ~ - , , ~ , k )  I 2  etc. 

- 
, 

A more efficient discretization is achieved using a space-centering approach. 

Fast Multipole Expansion 

To extend the models to include the capability for handling inhomogeneity and assist with gravitational 
balancing, another solution is the fast multipole expansion. Following previous work done in this area [SI, 
it seems that a fast multipole expansion is one of the best choices to avoid expensive and possibly 
inaccurate numerical integration over irregular domains. In addition, the fact that an exact representation 
exists for the potential of a mass distribution allows knowing ahead of time the truncation error of the 
series, so that different accuracy can be assigned to different domains of solution. The gravitational 
potential energy of a test mass, with density distribution of p(x’) at x’, in a gravitational potential due to a 
source mass with a density distribution p(x) at x is given by: 
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where the multipole moments 

and the multipole fields 

are integrated over the test mass and the source, respectively. Here, YI, are spherical harmonics. As an 
example, the 0-th order term is 

with 

and Yoo are spherical harmonic coefficients. 

Assuming ql,,, and a,,, are known at about a coordinate origin 0, they can be expressed about a generic 
point P(r: 8: 47 as: 

and 

X 
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where C( .) are Clebsch-Gordon coefficients. 
The gradients can be computed analytically by differentiating the potential with respect to the radius r ’ and 
the azimuth 8’ and elevation 4’. 

This paper has described the development of the self-gravity tool used to predict and control the motion of 
one of the proof masses of the orbiting LISA gravitational wave detector. Three computational models have 
been described. First, a model using summation over point masses. Second, a model using the exact 
solution obtained for a uniform parallelepiped and a point mass. Third, a more general finite element model 
capable of directly using NASTRAN mesh information for arbitrarily complex geometries. The capabilities 
of these computational engines have been demonstrated with some numerical examples, including a 
realistic mesh of the LISA spacecraft. 
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