Selecting and Using Software Measures

JPL SIM Workshop
January 29, 2004

Rose Pajerski
Topics

- Metrics Selection
- Metrics Analysis/Collection
- Example
Considerations in Selecting Metrics - 1

- Decide measurement goals up front
 - WHO are the stakeholders?
 - Internal and external to project
 - Different perspectives may yield different measures
 - Quality measures
 - To system engineer: hw/sw interface requirements problems found/fixed
 - To software engineer: design and coding errors found/fixed
 - To system tester: requirements specification detailed and testable
 - Progress measures
 - Schedule performance is primary driver
 - Effort/budget performance is primary driver
 - Impact of changes to requirements is seen as high risk

Center for Experimental Software Engineering, Maryland
Considerations in Selecting Metrics - 2

- Decide measurement goals up front
 - WHAT do they want to know?
 - Pose questions from different stakeholders’ perspectives
 - Pose questions based on knowledge needs, e.g.,
 - Baseline/characterize
 - Model
 - Predict
 - WHEN do they need to know?
 - Weekly, monthly progress reporting
 - Link to milestone events
Considerations in Selecting Metrics - 3

- Decide measurement goals up front
 - WHERE will data come from?
- Tie to existing processes and tools
 - Reviews
 - Action items
 - Requirements definition/DOORS
 - TBDs, changes, mapping to components
 - Software design/architecture
 - Complexity parameters
 - Requirements inspections/reading
 - Defect reports
Measurement Infrastructure
Goal/Question/Metric Approach

Mechanism for defining and interpreting operational, measurable goals

- Each metric supports multiple goals
- Questions focus metric selection and in-process analysis
Considerations in Analyzing Metrics - 1

- Start analysis and reporting from Day 1
 - Initial reports may be activity measures
 - Move into progress analysis
 - Activity measures against a plan
 - Coming up with the plan
 - Historical baseline
 - Manager expertise
 - Expected % change in requirements
 - Expected % growth in requirements
 - Build on actuals from Phase to Phase
 - Begin to build a model from actuals
Considerations in Analyzing Metrics - 2

- Start analysis and reporting from Day 1
 - Use whatever sources exist
 - RM counts, status
 - CM counts, status
 - Use tools (if available) to collect and analyze the data
 - Don’t wait for the perfect tool
 - Manual collection can be low cost, low impact
 - Plan to review metrics set from Phase to Phase
Example - 1

Goal: to evaluate the impact of design changes in a system against a given software architecture

- Evaluate the initial architecture to form the baseline (ideal design)
 - Characterize by types, number of interfaces
 - Identify design guidelines used to create initial architecture
- "Implement" design changes at high level
- Measure modified design to extract "actual" design and to compare against planned "ideal" design (look for discrepancies)
Example - 2

- Coupling guidelines
 - Coupling from component-based modules to library-based modules is desirable (more=better).
 - Coupling from library-based modules to other modules is undesirable.
 - Coupling among component-based modules is undesirable.
 - Coupling within a single component-based module is more desirable than coupling among component-based modules

- Measures
 - CBM – coupling between modules
 - CBMC – coupling between module classes
Example - 3

- Metrics guidelines
 - Values chosen arbitrarily
 - “CBM should be less than or equal to 2
 - The only exceptions will be component X”
 - “CBMC should be less than or equal to 10
 - The Y module will be the only exception to this rule”

- Results of case studies
 - Evaluation process is a way of monitoring and steering the actual implementation of the software architecture.
 - Metrics are useful for measuring coupling and cohesion for a high-level architectural design, but need to be tailored
 - It’s cost-efficient and quick
Selecting and Using Software Measures

JPL SIM Workshop
January 29, 2004

Rose Pajerski
Topics

- Metrics Selection
- Metrics Analysis/Collection
- Example
Considerations in Selecting Metrics - 1

- Decide measurement goals up front
 - WHO are the stakeholders?
 - Internal and external to project
 - Different perspectives may yield different measures
 - Quality measures
 - To system engineer: hw/sw interface requirements problems found/ fixed
 - To software engineer: design and coding errors found/ fixed
 - To system tester: requirements specification detailed and testable
 - Progress measures
 - Schedule performance is primary driver
 - Effort/budget performance is primary driver
 - Impact of changes to requirements is seen as high risk
Considerations in Selecting Metrics - 2

- Decide measurement goals up front
 - WHAT do they want to know?
 - Pose questions from different stakeholders’ perspectives
 - Pose questions based on knowledge needs, e.g.,
 - Baseline/characterize
 - Model
 - Predict
 - WHEN do they need to know?
 - Weekly, monthly progress reporting
 - Link to milestone events
Considerations in Selecting Metrics - 3

- Decide measurement goals up front
 - WHERE will data come from?
- Tie to existing processes and tools
 - Reviews
 - Action items
 - Requirements definition/DOORS
 - TBDs, changes, mapping to components
 - Software design/architecture
 - Complexity parameters
 - Requirements inspections/reading
 - Defect reports
Measurement Infrastructure
Goal/Question/Metric Approach

Mechanism for defining and interpreting operational, measurable goals

- Each metric supports multiple goals
- Questions focus metric selection and in-process analysis
Considerations in Analyzing Metrics - 1

- Start analysis and reporting from Day 1
 - Initial reports may be activity measures
 - Move into progress analysis
 - Activity measures against a plan
 - Coming up with the plan
 - Historical baseline
 - Manager expertise
 - Expected % change in requirements
 - Expected % growth in requirements
 - Build on actuals from Phase to Phase
 - Begin to build a model from actuals
Considerations in Analyzing Metrics - 2

- Start analysis and reporting from Day 1
 - Use whatever sources exist
 - RM counts, status
 - CM counts, status
 - Use tools (if available) to collect and analyze the data
 - Don’t wait for the perfect tool
 - Manual collection can be low cost, low impact
 - Plan to review metrics set from Phase to Phase
Example - 1

Goal: to evaluate the impact of design changes in a system against a given software architecture

• Evaluate the initial architecture to form the baseline (ideal design)
 – Characterize by types, number of interfaces
 – Identify design guidelines used to create initial architecture
• “Implement” design changes at high level
• Measure modified design to extract “actual” design and to compare against planned “ideal” design (look for discrepancies)
Example - 2

• Coupling guidelines
 – Coupling from component-based modules to library-based modules is desirable (more=better).
 – Coupling from library-based modules to other modules is undesirable.
 – Coupling among component-based modules is undesirable.
 – Coupling within a single component-based module is more desirable than coupling among component-based modules

• Measures
 – CBM – coupling between modules
 – CBMC – coupling between module classes
Example - 3

- **Metrics guidelines**
 - Values chosen arbitrarily
 - "CBM should be less than or equal to 2
 - The only exceptions will be component X"
 - "CBMC should be less than or equal to 10
 - The Y module will be the only exception to this rule"

- **Results of case studies**
 - Evaluation process is a way of monitoring and steering the actual implementation of the software architecture.
 - Metrics are useful for measuring coupling and cohesion for a high-level architectural design, but need to be tailored
 - It's cost-efficient and quick