
HYBRID DIAGNOSTIC SYSTEM: BEACON-BASED EXCEPTION ANALYSIS FOR
MULTIMISSIONS - LIVINGSTONE INTEGRATION

Han G. Park', Howard Cannon2, Anupa Bajwa2, Ryan Mackey', Mark James', William Maul3

'Jet Propulsion Laboratory
Pasadena, CA 9 1 109

2NASA Ames Research Center %ASA Glenn Research Center
Moffett Field, CA 94035 Cleveland, OH 44135

Abstract: This paper describes the initial integration of a hybrid reasoning system utilizing a
continuous domain feature-based detector, Beacon-based Exceptions Analysis for Multimissions
(BEAM), and a discrete domain model-based reasoner, Livingstone. BEAM was integrated into
Livingstone to provide independent source of evidence in addition to those of the Livingstone's
standard monitors. The additional evidence provided by BEAM improved the isolation capability
of Livingstone as well as the reliability of its diagnosis. The hybrid reasoner was validated on
realistic scenarios from the Propulsion IVHM Test Experiment (PITEX). The hybrid reasoner
demonstrated that it could resolve a previously unresolved diagnosis related to regulator and
sensor failures.

Key Words: BEAM; diagnostic; hybrid; Livingstone; model-based reasoner; PITEX

Introduction: There is an increasing need for an end-to-end hybrid diagnostic system, one that is
able to diagnosis in the continuous and discrete domains. The need arises from the desire to
diagnose ever-sophisticated mixed systems that are comprised of analog and discrete elements.
For example, a battery cooling system aboard the space station may be controlled by a set of
check valves that have two discrete states, open or closed. Meanwhile, the temperature of the
cooling fluid may have a continuous range that rises and falls with the incident sunlight and
current draw from the battery. Moreover, the entire cooling system may be coupled such that the
temperature of the cooling fluid affects the operation of the check valves, leading to a failure if
the temperature becomes too high or low.

Presently, the diagnosis of mixed systems comprised of discrete check valves and continuous
cooling fluid temperature usually requires two separate diagnostic tools. This is because two
different types of models are required for continuous and discrete domains. The check valves are
represented in the discrete domain, wherein the representation, i.e., the model, of the world is
through a set of discrete events, both in space and time. Similarly, the cooling fluid temperature
must be represented or modeled in the continuous domain. Classically, the check valves would
be modeled using a finite-domain concurrent-transition system model such as that used by
Livingstone [l], or a knowledge base as that used by a rule-based system such as Spacecraft
Health Inference Engine (SHINE) [2]. The temperature of the cooling fluid would be modeled
using a physics model such as Kalman-filters [3], or physics-statistical models such as those for
the gray-box detector under Beacon-based Exceptions Analysis for Multimissions (BEAM) [4].
Such division of tools has limited the scope and breath of diagnostics systems that require
diagnosis in both domains.

In recent years, there have been several efforts to extend the capabilities of continuous domain
diagnostic systems to discrete domain and visa versa. In the case of BEAM, the physics-

statistical models (gray-box, coherence detector) have been integrated with the knowledge base of
the SHINE expert system. This has given BEAM the ability to diagnose discrete systems along
with continuous systems and identify operating modes using SHINE. Analogously, Livingstone
has introduced the concept of monitors, i.e., translators. These take quantitative values, such as
temperature, and produce qualitative discrete descriptions, such as “high,” “medium,” “low”, that
Livingstone can process. This development has given Livingstone the ability to reason about
continuous systems in addition to those that are purely discrete. While the extensions of BEAM
and Livingstone have given both systems the ability to diagnose in continuous and discrete
domains, their abilities still remain somewhat limited. For example, BEAM’s diagnostic
reasoning capabilities are limited along with its mode identification. Livingstone’s monitors are
typically restricted to quasi-steady conditions, which can result in a delayed diagnostic response,
depending on the settling time of the physical device.

Not surprisingly, the solution to the limited capabilities of both BEAM and Livingstone is the
integration of the two tools. The two NASA-funded technologies, BEAM and Livingstone, are
complementary and have synergistic benefits. BEAM’s strengths are in the continuous domain,
easily able to deal with transients. Livingstone’s strengths are in the discrete domain, able to
reason at higher system level and identify mode of operation efficiently using propositional logic.
The integration of these two tools will produce an end-to-end system that would have powerful
capabilities in both continuous and discrete domains, and diagnose complex mixed systems.

This paper describes the first integration effort of the Jet Propulsion Laboratory’s (JPL) BEAM
and Ames Research Center’s (ARC) Livingstone technologies under NASA’s Strategic Launch
Initiative (SLI) program. BEAM was modified to provide an additional independent source of
evidence to Livingstone, in addition to those of the Livingstone’s standard monitors. The effort
was validated on the Propulsion IVHM Technology Experiment (PITEX) diagnosis system
developed jointly between Glenn Research Center (GRC) and ARC. The hybrid reasoning
system demonstrated its ability to resolve a previously ambiguous diagnosis result when only
Livingstone and its monitors were used.

In the following sections, the BEAM and its modules will be introduced. The physics-statistical
modules are capable of detecting anomalies in continuous measurements, either during transients
or steady-state. Then the Livingstone reasoner will be introduced. It has an advanced capability
to reason about and to diagnose a complex system using a finite-domain concurrent-transition
system model. The integration architecture will be presented as well as the PITEX scenario used
for validation. Finally, the results will be presented, in addition to future plans.

Note: Since a truly continuum representation model is impossible on a modern digital computer,
the continuous domain, in the diagnostic community, is defined as discrete representation that has
resolution to represent a continuous system “accurately” or quantitatively. A discrete domain
representation of the same system might be qualitative. For example, continuous domain
representations include temperature of a bearing or motor, pressure inside a fuel tank, density of a
fuel, etc. The discrete domain representations may express the same temperature qualitatively as
being “high,’’ “medium,” or “low”, or “aboveThreshold” and “belowThreshold.” The discrete
domain representation also includes switch settings such as ‘‘on’’ and “off’ which cannot be
readily expressed in continuous domain representation.

BEAM Overview: BEAM is a complete data analysis system for real-time or off-line fault
detection and characterization. The basic premise of BEAM is to characterize a system from all
available observations, and train such characterization with respect to normal phases of operation.
Through experience and other available resources (known architecture, models, simulation, etc.)

an allowed set of behavior is “learned” and deviations from this are noted and examined. A more
complete description of BEAM and its components can be found in [5].

BEAM consists of many modules; however, only the Dynamical Invariant Anomaly Detector
(DIAD) and the Symbolic Data Model (SDM) modules were employed in this initial integration
effort. The DIAD module received a single quantitative (continuous) measurement one sample at
a time and performed anomaly detection using a parametric model. The SDM received both
discrete and continuous data and constructed an internal state estimate of the system using a
SHINE knowledge-base. In this role, it detected discrete signal mismatches, e.g. explicit redline
faults, and identified operating mode for use by DIAD.

The DIAD was designed to identify and isolate anomalies in the behavior of individual sensor
measurement. The full mathematical details of the DIAD can be found in [4]. Traditional
methods detect abnormal behavior by analyzing the difference between the sensor data and the
predicted value. If the values of the sensor data are deemed either too high or low, the behavior is
abnormal. In the DIAD, the concept of dynamical invariants for detecting structural
abnormalities is introduced.

Dynamical invariants are governing parameters of the dynamics of the system, such as the
coefficients of the differential (or time-delay) equation in the case of time-series data. Instead of
detecting deviations in the sensor data, which can occur simply due to different initial conditions
or external forces, i.e. operational anomalies, we attempt to identi@ structural changes or
behavioral changes in the system dynamics. While an operational abnormality will not lead to a
change in the dynamical invariants, a true structural abnormality will lead to a change in the
dynamical invariants. In other words, the detector will be sensitive to problems internal to the
system and not external disturbances.

-__ r

’ Linear Model
I
I

Fig. 1 Data model for Dynamical Invariant Anomaly Detector.

The DIAD data model is shown in Fig. 1. First, the sensor data are stationarized using the
difference operator [6] . This step is important because the distribution cannot be obtained from a
stochastic process unless this process is stationary - in which case, the ensemble average can be
replaced by the time average. Thus the difference operator is used to remove components of the
dynamical process such as linear and polynomial trends. Then the relevant stationarized data is
passed to the autoregressive parameter estimator. The autoregressive process is given by:

x(t) = a,x(t - l)+a,x(t -2)+ ...+ a,(t-n)+z(t) , (1)

where ai are the parameters, i.e., dynamical invariants, and z(t) represents the contribution from
white noise. The dynamical invariants, ai, are computed using the Yule-Walker equations [6] .

Once the parameters are computed, they are compared to the ones stored in a model parameter
database. This contains a set of nominal time-delay equation coefficients appropriate for

particular operating mode. A statistical comparison is made between the stored and just-
computed coefficients, and if a discrepancy is detected, Le., a parameter value exceeds the
nominal confidence limit, the sensor data is identified as being anomalous.

Livingstone Overview: The task of diagnosis involves observing the input and output of a
physical system in order to monitor its state and to detect and identify faults. Model-based
diagnosis is the task of identifying faults in a physical system given a model of that system. The
model is used to test assumptions about the state of the system. The assumption is “tried out” in
the model - that is, the observations from the system are compared with values expected by the
model. When they match, the assumptions are accepted as accurate representations of the
system’s state.

In model-based diagnosis, there is often a distinction between the actual model and the diagnostic
engine - the part of the program that carries out the reasoning or inferencing. Livingstone [7] is
an inference engine that uses a model of a system, controller commands, and sensor observations
to track the system’s state, and detect and diagnose faults.

A Livingstone model consists of a number of components, each having a set of nominal modes
(e.g. “on” and “off), and a set of fault modes (e.g. “stuck on”, “stuck off’). Each mode contains
a set of propositional clauses about the sensor observations that should be true when the mode
reflects the state of the system. For instance to model a valve, the “off’ mode might indicate that
the flow is zero, and the “on” mode indicate that flow in equals flow out. Similarly “stuck off’
would indicate zero flow, and “stuck on” would indicate flow in equals flow out. An “unknown
fault” mode that contains no propositions is also generally modeled to handle unforeseen cases.

Each of the failure modes is assigned a rank that represents an order of magnitude probability for
that particular fault occurring. A lower rank indicates a higher probability of failure. In the case
of multiple faults, the ranks can simply be added to determine the overall likelihood. As will be
described later, these ranks are used to help guide Livingstone’s search.

Transitions between modes are also modeled. Transition between nominal modes are assumed to
be a result of a controller command, and therefore modeled explicitly. Transitions to fault modes
are assumed to be able to occur at anytime, and from any nominal mode, and therefore are not
modeled.

In order to track the system state, Livingstone listens to the controller commands to transition
each of the components in the model to the corresponding nominal mode. It is then determined
whether or not the sensor observations are consistent with these clauses. If not, Livingstone
utilizes an efficient search algorithm to find sets of component fault modes that are consistent
with the observations. Each set of modes that is consistent is referred to as a “candidate”. The
search algorithm guarantees that the lowest ranked candidates (most probable) are returned first.

Livingstone is the inference engine, and it takes additional supporting software to interface
Livingstone to an application, such as a diagnosis application. As previously described,
Livingstone models a system within the discrete domain. Therefore continuous sensor readings,
as well as time, must be discretized. As previously stated, monitors are used to discretize the
sensor readings using trending and thresholding techniques. Monitor development is a non-trivial
task, particularly when faced with noisy sensor readings.

For discretizing time, a separate piece of software known as the “Real-Time Interface” (RTI) is
used. This interface divides time into a series of steps that are initiated either by a command, or

by a spurious observation. After each time step, the RTI sends the commands and corresponding
monitor observations to Livingstone, and then requests a diagnosis. When a system transitions
from one nominal state to another due to a command, it generally takes some time for that
transition to occur. During this time, the monitors are likely to report values that are inconsistent
with the final nominal state. If the diagnosis is requested too soon, a misdiagnosis could occur.
Therefore, the RTI waits for a period of time before requesting the diagnosis in order to allow the
monitor readings to settle. This “latency” period is generally the source of any significant
diagnostic delay.

PITEX Scenario Description: The BEAM - Livingstone integration leverages the PITEX
demonstration [SI. PITEX consists of a Livingstone model of the X-34 Main Propulsion System
(MPS), associated Livingstone monitors, set of simulations to drive the Livingstone diagnostic
engine and its real-time monitors. In addition to the nominal, the simulations include 23 likely
failure scenarios (FS). The X-34 MPS model [9] is shown in Fig. 2. While the combination of
Livingstone and its standard monitors can detect and diagnose virtually all of the failure scenarios
correctly, there is an issue with resolving ambiguities for scenarios where multiple fault
candidates are discovered. There is one particular scenario, namely FS #8, in which Livingstone
can not distinguish between a single sensor fault and a flow regulator failure. FS #8 involves a
double failure in the regulators RGOl and RG11 (Fig. 2). If one or both of the regulators is
functioning properly, the pressure downstream of the regulators should be 350 +/- 0.5 PSI. In this
scenario both regulators fail and the downstream pressure jumps to roughly 400 PSI, which is
measured as a high reading in the single supply line pressure sensor, MPRE 103P.

Livingstone correctly diagnoses that the double regulator failure is a possible candidate.
However, Livingstone also implicates MPRElO3P, and indicates this is the more probable
candidate. This is due to a lack of a redundant sensor at the same physical location as the
MPRElO3P sensor and the relatively low probability of both regulators failing simultaneously
compared to the relatively higher probability of a single (sensor) failure. Thus Livingstone
currently prioritizes the potential faults incorrectly and must either obtain addition information to
disambiguate the fault candidates or rely on higher order logic to select the appropriate fault.

Fig
for 1 ivingstone as a “virtual sensor”.

An additional fault scenario, FS #8A, was developed for this research to further expound on the
need for Livingstone to disambiguate the fault candidates. In FS #8A, there is a failure of the
MPRE103P sensor, expressed as a gradual drift in the sensor reading. Livingstone reports the
same diagnostic solution as FS #8, albeit at the later time due to the magnitude of the drift,
because the implemented monitors are sensitive only to the magnitude and not drift of the sensor
readings.

To aid Livingstone in producing the correct diagnosis in both scenarios, BEAM acts as an
additional source of evidence to Livingstone such that it is able to disambiguate between a sensor
failure and a double regulator failure. This is accomplished by introducing BEAM as a virtual
sensor into the Livingstone model (Fig. 2).

BEAM can distinguish between a sensor failure and a regulator failure by examining the
magnitude and dynamics of sensor MPRE103P. In order for BEAM to identify these faults, two
assumptions are made. First, we assume the sensor has only one in-range failure mode, namely a
gradual drift or slope. Second, we assume the regulator has one failure mode, resulting in a
pressure jump but with no associated dynamics or nonlinearity in the pressure. The sensor
readings of these failure modes as well as the nominal mode are plotted in Fig. 3.

im ‘I
0

Fig. 3 Pressure trace of MPRE103P sensor for Nominal, FS #8, and FS #8A scenarios.

Under these assumptions, BEAM’S DIAD module can be trained to recognize nominal sensor
dynamics for MPRE103P. If the dynamics are not nominal, e.g. a drift occurs, BEAM will
associate the anomaly to a sensor failure. Correspondingly, the SDM can be programmed to
recognize a nominal pressure range if one or both of the two regulators, RGOl and RGl 1, is
functioning properly. If the pressure range is too high, BEAM will associate the anomaly to a
double regulator failure. Armed with the additional source of evidence from BEAM, Livingstone
has all of the information to disambiguate between a sensor and double regulator failures in FS #8
and #8A.

Details of the BEAM Component Model: This early integration effort involved information
flow in one direction only - from BEAM to Livingstone. We had to design a way for Livingstone
to accept the BEAM output. The BEAM output is distinguished from standard monitor outputs
because BEAM is providing a diagnosis, whereas standard monitors provide a sensor value such
as pressure is “aboveThreshold”. The issue was how to make Livingstone accept a diagnosis
provided by an external source, when it itself is trying to do a diagnosis. And what if the
diagnosis that BEAM provides, conflicts with the other evidence that is provided to Livingstone?

The solution implemented was that we model BEAM as a sensor, and that sensor could be
aZZowed to fail. Therefore, if BEAM results conflicted with the other evidence available,
Livingstone could resolve the discrepancy by allowing BEAM to fail.

Output
0
1

So BEAM was added as a “virtual” sensor to the MPS model, and could input its diagnosis. As
previously described, BEAM provided information about the dynamics and operational range of
the readings, which based on our assumptions, lead to a BEAM diagnosis of either a regulator
failure, a sensor failure, or both. At times, when BEAM may not be able to draw a conclusion, it
could express uncertainty. These possibilities were encoded into a set of outputs that BEAM
provides to Livingstone, via the RTI, as shown in Table 1.

Dynamics Operational Range Translation
Unknown Unknown Unknown

Good Good Nominal
2
3
4

Bad Good Sensor Failure
Good Bad Double Regulator Failure
Bad Bad Sensor + Double Regulator Failure

Table 1 Allowable BEAM messages to RTI.

Fig. 4 BEAM component model.

Figure 4 shows the BEAM component that was modeled in Livingstone. The model of this
BEAM component has three modes (nominal, beamFailed, unknownFault) and four terminals
(actuator 1 Status, actuator2Status, sensorstatus, beamvalue). The beamvalue is the input from
BEAM as described above, the actuatorstatus terminals are connected to the two regulators, and
the sensorStatus terminal is connected to the pressure sensor.

The nominal mode contains constraints, shown in Fig. 5 , that must be true as long as BEAM is
providing the correct diagnosis. If the beamvalue is reported as nominal, then it must be true that
the actuatorl Status, actuator2Status, and the sensorstatus must all be nominal. If the beamvalue
indicates sensorFailed only, then both actuatorl Status and actuator2Status must be nominal. On
the other hand if beamvalue indicates actuatorFailed only, then the sensor must be nominal, and
at least one of the actuators must be failed. Finally, if the beamvalue indicates bothFailed, then
the sensor and a regulator must be failed. For the beamFailed mode and the unknownFault mode,
these constraints are no longer enforced.

The regulator components and the sensor components in the Livingstone model also have
nominal and off nominal modes, and in each of these modes, the relevant constraints are enforced
based on readings from the standard monitors. This allows Livingstone to continue to use the

standard monitors for diagnosis, as before. But in addition, constraints are added that enforce the
status from BEAM to correspond to the predicted modes for those components. For instance, for
the regulator connected to the actuator1 Status terminal, the nominal mode specifies the allowable
range for the pressure readings. In addition, it contains an assertion that the regulator status is
nominal. Correspondingly, in the failure modes, the assertion is that the regulator status is failed.

When BEAM reports a value such as actuatorFaiied, then the nominal mode of the BEAM sensor
component predicts that one of the two regulators is faulty. The pressure range reported by the
standard monitors might either support or contradict this depending on their output. If the
pressure range indicates that a regulator is out of range, then the mode for that component would
be faulty, and the corresponding actuator status terminal would be set to failed. This supports the
constraints in BEAM's nominal mode. On the other hand, if the monitors indicate that both
regulators are in range, then both actuator status terminals are set to nominal, and this would
contradict the clause in BEAM's nominal mode. Therefore BEAM must be failed. This illustrates
how Livingstone uses this model to combine BEAM's diagnosis with evidence from the standard
monitors. How this helps disambiguate the correct fault candidate is discussed in the Results
section.

If (bsnVa lus = ssnrorFarlcd1
nsnror5tatus = farlsd L IactuatorlStatur = n m i n d L actuator2Statur = nmrnal) ;

if (bemValum = actuatorFailsd)
//rcnrorStatu= = n m i n a l (I (actuatorlStatus = Felled L actuatmPStatus = fallad

SanrorStatu. = nominal s (actuotorlStatur = failed I astuator2Status = failed);

IF (bcmValus = bothfailsd)
NrcnswStatus = fallsd L (actuatorlstatur = failsd actuator25tmtur = Failed)
SentorStatus = failed b (a ~ t ~ a t ~ r l 5 t 0 t u 1 = failed I actuator2Statur = farled);

Fig. 5 BEAM component model -- nominal mode.

Hybrid Diagnostic System: The data flow diagram for the hybrid diagnostic system that used
BEAM as a "smart" monitor for Livingstone is shown in Fig. 6. BEAM read the simulation data,
processed the data to form observations, and the output was stored in a BEAM results file. This
results file was then read in during a real time simulation of the rest of the diagnostic system on
flight-like hardware. A monitor stub synchronized the events recorded by BEAM with the output
of the Livingstone standard monitors according to time tags. This information was fed to the
RTI, which buffered and fed the information to Livingstone, and requested diagnoses at the
appropriate times. This approach to integration was selected due to limitations on time and
funding.

Stand a r d
Monitors

Monitor Stub
(Interface) I

I 1 I Timer Request

Real Time
Interface (RTI)

I .
Output File Livingstone Results Output

0-2) System (ROS)

Fig. 6 Data flow diagram for the hybrid diagnostic system.

Results: The Livingstone results of the two PITEX failure scenarios, FS #8 and FS #SA, with the
BEAM integration are shown in Figs. 7 and 8, respectively. In both scenarios, Livingstone had
an ambiguity between a double regulator failure and a pressure sensor failure. With the
additional evidence provided by BEAM that the pressure is high and there is no sensor drift,
Livingstone correctly diagnosed that the failure is in the double regulators (RGO1, RGl 1) for FS
#8 (Fig. 7). Without BEAM, Livingstone had diagnosed a sensor failure (MPRE103P) since the
probability of a sensor failure was much higher than both regulators failing. With BEAM
asserting a regulator failure, the combined probability of a sensor failure and a BEAM failure is
lower than the double regulator failure probability, and the correct diagnosis is made. Likewise,
in FS#8A, Livingstone correctly diagnosed that the most likely failure is the pressure sensor
(MPRE103P) and BEAM provided additional evidence that the sensor has failed as evidenced by
the sensor drift (Fig. 8). The results show that the two tools can diagnose cases where just a
single tool cannot. While BEAM could localize and identify the fault, it did not have the
reasoning capability to diagnose the entire system. Analogously, Livingstone had an overall view
of the system and localized the fault to either the sensor or the regulators, but could not
disambiguate because it lacked the details of the sensor measurements. The combined results
validate the synergistic benefits of integrating a continuous domain feature-based detector and
discrete domain model-based reasoner.

Fig. 7 FS #8 results (double regulator failure). Note the isolation of the two regulators

Fig. 8 FS #8A results (pressure sensor failure). Note the isolation of the pressure sensor.

Conclusion: The feasibility of integrating BEAM, a continuous domain featured-based detector,
and Livingstone, a discrete domain model-based reasoner, to create a hybrid diagnostic system
was demonstrated. The hybrid diagnostic system was validated on realistic scenarios from the
PITEX simulation of the X-34 main propulsion feed system. In the scenarios, Livingstone had an
ambiguity between a double regulator failure and a pressure sensor failure. By integrating
BEAM into Livingstone as a virtual sensor to provide independent source of evidence, the hybrid
system was able to correctly diagnose the proper failure without any ambiguity. The results of
the hybrid reasoner demonstrated the synergistic benefits of integrating BEAM and Livingstone
by illustrating a case where in the hybrid system could come up with a correct diagnosis where as
the individual tools could not.

Future: There are many areas of improvement in integrating the two tools, BEAM and
Livingstone. The initial integration leveraged the PITEX system architecture due to time
constraints. In a truly integrated system, there would be feedback between BEAM and
Livingstone. One concept is to replace standard commanded mode determination in BEAM,
currently handled by SHINE, with the mode identification by Livingstone. In exchange,
Livingstone can identify autonomous mode changes by monitoring the output by BEAM. This
feedback would again synergistically strengthen the current weaknesses by the individual tools.
A second integration approach might consider having a higher-level i easoner that arbitrates
(sometimes conflicting) assertions from BEAM and Livingstone - this is a research area in
“candidate fusion.”

Acknowledgements: The authors would like to acknowledge the PITEX/NITEX team members
at the Ames Research Center, Glenn Research Center, and Kennedy Space Center. Their
contributions made this research possible. We would also like to acknowledge the support and
guidance from both the Space Launch Initiative (SLI) IVHM Project Office at NASA Ames
Research Center, as well as SLI IVHM management team from the Northrop Grumman
Corporation. The research by the Jet Propulsion Laboratory, California Institute of Technology,
was carried out under a contract with the National Aeronautics and Space Administration. This
research was sponsored by the National Aeronautics and Space Administration.

References
[I] Williams, B. C., Nayak, P., “A Model-based Approach to Reactive Self-Configuring Systems,”
Proceedings of AAAI-96, 1996.
[2] James, M., Atkinson, D., “Software for Development of Expert Systems,” NASA Tech Briefs, Vol. 14,
No. 6, June 1990.
[3] Chen J., Patton, R. J., Robust Model-based Fault Diagnosis for Dynamic Systems, Boston,
Massachusetts, Kluwer Academic Publishers, 1999.
[4] Park, H. G., Zak, “Grey-box Approach for Fault Detection of Dynamical Systems,” ASME Journal of
Dyn. Sys. Meas. h Control, Vol. 125, pp. 451454,2003.
[5] Park, H. G., Mackey, R., James, M., Zak, M., Baroth, E., “BEAM: Technology for Autonomous
Vehicle Health Monitoring,” CS/APS/PSHS/MSS JANNAF Meeting, Destin, Florida, April 2002.
[6] Box, G. E. P., Jenkins, G. M., Reinsel, G. C., Time Series Analysis, Upper Saddle River, New Jersey,
Prentice Hall, 1994.
[7] Kurien, .I., and Nayak, P., “Back to the Future for Consistency-based Trajectory Tracking,” Proceedings
of 7th National Conference on Artificial Intelligence, 2000.
[SI Meyer, C., Cannon, H., Balaban, E., Fulton, C., Maul, B., Chicatelli, A., Bajwa, A., Wong, E.,
“Propulsion IVHM Technology Experiment Overview,” IEEE Aerospace Conference, March 2003.
[9] Bajwa, A., Sweet, A., “The Livingstone Model of a Main Propulsion System,” IEEE Aerospace
Conference, March 2003.

