NASA Taxonomy 2.0
Project Overview

Jayne Dutra, Jet Propulsion Laboratory,
California Institute of Technology, NASA
KM Gov Semantics and Taxonomies SIG
March 8, 2004
Purpose of the NASA Taxonomy

Create

- Content
- Assets

Classify

- Logical & Intuitive Filters
- Taxonomy

Discover

FIRSTGov

- Site Maps
- Search Engine
- NASA Portals
- Content Integration Networks

Finding the right information at the right time to solve the problem at hand

California Institute of Technology
NASA/ Taxonomy Strategies
Project Benefits:
Enable Knowledge Discovery

- Make it easy for various audiences to find relevant information from NASA programs quickly
 - Provide easy access for NASA resources found on the Web
 - Share knowledge by enabling users to easily find links to databases and tools
 - Provide search results targeted to user interests
 - Enable the ability to move content through the enterprise to where it is needed most

- Comply with E-Government Act of 2002
- Be a leading participant in federal XML projects
Project Benefits:
NASA Taxonomy Best Practices

- Design process that:
 - Incorporates existing federal and industry terminology standards like NASA AFS, NASA CMS, FEA BRM, NAICS, and IEEE LOM
 - Provides a product for the NASA XML namespace registry
 - Complies with metadata standards like Z39.19, ISO 2709, and Dublin Core

- Practices increase interoperability and extensibility
What is the NASA Taxonomy?

- The classification scheme is meant to encompass all of NASA web content (NASA web space) including internal as well as external material. It is a means for tagging content so it can be used and reused in different contexts.

How to Use the NASA Taxonomy

- This is a generic taxonomy from which specializations can be derived for specific purposes.
 - Not all facets need to be used in each instance
 - A facet is repeatable
 - The taxonomy is modular and dynamic
Project Progress: NASA Taxonomy 2.0 Revision Completed

Follow-on Work
➢ Integrate with applications

Phase 4
➢ Dublin Core mapping
➢ XML schema development

Phase 3
➢ Test & validate Taxonomy

Phase 2
➢ Build community of practice
➢ Agree on comprehensive branches & taxonomy detail

Project 1

Project 2

California Institute of Technology
NASA/ Taxonomy Strategies
Objectives of Phases 1-2

- Understand current strategies and practices for creating, collecting, and organizing information across NASA
- Observe how information is used and organized, the audiences for this information, and the information needs of these audiences
- Elicit goals, hopes, and concerns for an information architecture solution
- Start building a community of interest
- Mainly concentrated on content for outreach (NASA portal)
Key Findings

- Most (70%) NASA content already has some tagging or is categorized.
- Most (70%) owners add tag content with metadata.
- Almost half (45%) use a standard metadata schema, but many different standards are used.
- Most (60%) use a controlled vocabulary, but lots of different controlled vocabularies are used.

Different NASA constituencies care deeply about what schemas are specified, and what vocabularies are used because ...
Audience Uses Vary Widely

- Better understand the program in total, and obtain scheduling information, project status and best practices.
- Access procurement rules and examples, and procurement action synopses.

- Engineering specifications.
- Scholarly research, competitive intelligence, and general aerospace research.

- Develop educational products, support current products, learn, etc.
- Topic research and fact finding, topic background research, and downloading curriculum support materials.
- In the classroom as stand alone items, hands-on learning opportunities, class projects, to expand on a student's learning potential.
- Find NASA contact information on services, information about student opportunities, information about career opportunities, and latest educational news.
Test and Validation Phase

- Qualitative validation
 - Confirm stakeholders and communities
 - Focus on Projects, Engineering & Science

- Quantitative validation
 - Select and build test collection
 - Stratify automated categorizer – Ames support

- Extend taxonomy value space as needed

- Review results with stakeholders and report to CIO Council
Engaged Cross-Section of NASA Community

78 interviews across the Agency

... by location

California Institute of Technology
NASA/ Taxonomy Strategies
Focused on Projects, Engineering & Science

... by primary audience served.

52%—Projects, Engineering & Science

California Institute of Technology
NASA/ Taxonomy Strategies
Extend Taxonomy
Value Space as Needed

NASA Taxonomy Facets (Top Level)

- Access Requirements (new)
- Audiences
- Business Purpose (formerly Functions)
- Competencies (formerly Disciplines)
- Content Types (formerly Information)
- Industries
- Instruments (new)
- Locations
- Missions and Projects
- Organizations
- Subject Categories (new)
- Dates (formerly Chronology)
- Collections

Taxonomy Depth and Breadth

<table>
<thead>
<tr>
<th>Facets</th>
<th># Terms</th>
<th># Levels Deep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Requirements</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Audiences</td>
<td>62</td>
<td>6</td>
</tr>
<tr>
<td>Business Purpose</td>
<td>96</td>
<td>4</td>
</tr>
<tr>
<td>Competencies</td>
<td>169</td>
<td>4</td>
</tr>
<tr>
<td>Content Types</td>
<td>96</td>
<td>4</td>
</tr>
<tr>
<td>Industries</td>
<td>22</td>
<td>3</td>
</tr>
<tr>
<td>Instruments</td>
<td>56</td>
<td>3</td>
</tr>
<tr>
<td>Locations</td>
<td>106</td>
<td>8</td>
</tr>
<tr>
<td>Missions/Projects</td>
<td>648</td>
<td>6</td>
</tr>
<tr>
<td>Organizations</td>
<td>323</td>
<td>6</td>
</tr>
<tr>
<td>Subject Categories</td>
<td>78</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>1661</td>
<td></td>
</tr>
</tbody>
</table>

California Institute of Technology
NASA/ Taxonomy Strategies
• **Content Types**
 - Announcements
 - Press Kits
 - Press Releases
 - Articles, Notes, and Papers
 - Calendars and Schedules
 - Agendas
 - Case Studies
 - Catalogs and Databases
 - Correspondence
 - e-Mails
 - Memos
 - Databases
 - Bibliographic Databases
 - Image Databases
 - Designs and Specifications
 - Configuration Controls
 - Notebooks
 - Quality Control
 - Requirements
 - Drawings
 - Educational Materials
 - Activity Guides
 - Educational Toys
 - Educator's Guides

Configuration Controls

Broader Terms:
- Designs and Specifications

Scope Note:
Records of changes to documentation or hardware, including engineering change requests and waivers.

Term Number:
52
NASA Taxonomy Web Site Features

- Query link into FirstGov
- Quick access to Google
- A-Z index of facet branch
- Easy navigation to top level facet and term index

California Institute of Technology
NASA/ Taxonomy Strategies
<table>
<thead>
<tr>
<th>Collection</th>
<th>Source URL</th>
<th>No of Docs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lessons Learned Database</td>
<td>http://llis.nasa.gov</td>
<td>1,370</td>
</tr>
<tr>
<td>SIRTF (Space Infrared Telescope Facility)</td>
<td>http://sirtifweb.jpl.nasa.gov</td>
<td>4,054</td>
</tr>
</tbody>
</table>
...that provides common access framework across test collections
Search on “rover” Returns 595 Matches ...Organized by Taxonomy

by Organization
- NASA Affiliated Institutions 6
- NASA Centers 304
- NASA Contractors 18
- NASA Enterprises 3
- NASA Headquarters 7
- Other NASA Partners 14

by Subject
- Aeronautics 13
- Astronautics 109
- Engineering 106
- Geosciences 26
- Life Sciences 31
- Mathematical and Computer Sciences 65
- Space Sciences 208

by Missions and Projects
- Data 1
- Earth Sciences 3
- Human Exploration and Development... 130
- Planetary Missions 125
- Space Sciences 7

by Date
- 1989 37
- 1991 40
- 1992 44
- 1993 44
- 1999 61
- 2000 60
- 2001 40
- 29 more

by Competencies
- Business 4
- Engineering 4
- Mission 3
- Scientific 3

by Information Type
- Reviews and Lessons Learned 5
- Status Reports 1
- Technical Reports 3

by Collection
- LessonsLearned 4
- NTRS 591

California Institute of Technology
NASA/ Taxonomy Strategies
Taxonomy Enables Discovery of Unknown but Related Content

5 items matching
Text contains rover

Information Type:
Reviews and Lessons Learned

by Organization
- NASA Centers 5
- NASA Enterprises 3

by Subject
- Aeronautics 4
- Astronautics 4
- Chemistry and Materials 1
- Engineering 1
- Mathematical and Computer Sciences 1

by Date
- 1997 1
- 2002 1
- 2003 3

by Competencies
- Business 4
- Engineering 4
- Mission 3
- Scientific 3

by Collection
- Lessons Learned 4
- NTRS 1

California Institute of Technology
NASA/ Taxonomy Strategies
Search & Browse Demo Site

Logon: NASA
Password: facets

Hosted by Seamark www.seamark.com with Siderean software
Taxonomy Phase 4

Dublin Core Mapping and XML Schema Development

- Complete Dublin Core mapping
- Create any necessary NASA specific tags
- Develop XML schema from metadata
- Review results with stakeholders and report to CIO Council
- Register schemas in NASA XML Registry
- Educate and train publishing communities
<table>
<thead>
<tr>
<th>Dublin Core Elements</th>
<th>Definition</th>
<th>NASA Taxonomy Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creator</td>
<td>Content maker.</td>
<td>dc:creator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dc:creator.employee</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dc:creator.organization</td>
</tr>
<tr>
<td>Subject</td>
<td>Content topic.</td>
<td>dc:subject.organization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dc:subject.missionsProjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dc:subject.disciplines</td>
</tr>
<tr>
<td>Publisher</td>
<td>Publisher of this</td>
<td>dc:creator</td>
</tr>
<tr>
<td></td>
<td>manifestation.</td>
<td>dc:creator.employee</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dc:creator.organization</td>
</tr>
<tr>
<td>Contributor</td>
<td>Content contributor.</td>
<td>dc:creator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dc:creator.employee</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dc:creator.organization</td>
</tr>
<tr>
<td></td>
<td>Genre.</td>
<td>dc:creator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dc:creator.employee</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dc:creator.organization</td>
</tr>
<tr>
<td>Coverage</td>
<td>Space, period, date,</td>
<td>dc:coverage.locations</td>
</tr>
<tr>
<td></td>
<td>jurisdiction, etc.</td>
<td>dc:coverage.chronology</td>
</tr>
<tr>
<td>Audience</td>
<td>Content audience.</td>
<td>dc:coverage.locations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dc:coverage.chronology</td>
</tr>
<tr>
<td>Non DC</td>
<td>NASA missions and projects.</td>
<td>nasa:missionsProjects</td>
</tr>
<tr>
<td></td>
<td>Business functions.</td>
<td>nasa:functions</td>
</tr>
<tr>
<td>Non DC</td>
<td>Technical specialties.</td>
<td>nasa:disciplines</td>
</tr>
<tr>
<td></td>
<td>Standard industry categories.</td>
<td>naics:industries</td>
</tr>
</tbody>
</table>
Project Outcomes: NASA Taxonomy Benefits

... at the NASA Level

- Metadata specification for all NASA content publishers
- XML schema registered in accordance with agreed standards (to enable appropriate use and reuse)
- Enhancement of Agency Web publishing processes
- Integration with NASA public portal content management system for:
 - Reduced publishing cycles
 - Better quality of Web materials – coordinated themes
- Integration with NASA Search Engine, Web Site Registration System
- Application in many technical areas, including engineering and science disciplines (STEP and science data dictionaries)
Project Outcomes: NASA Taxonomy Benefits

... at the Federal Level

- NASA taxonomy development in accordance with e-Gov Act of 2002
- Integration with FEA at the BRM & DRM level
- Increased interoperability with other federal agencies through common data models and standards
- Better interoperability with industry partners for increased speed of mission development
- Enhanced results in First Gov search engine
- Readiness to actively participate in e-Gov initiatives
Taxonomy Follow-on Work

- Taxonomy stewardship
 - Maintenance, education and training
 - Facilitate standard adoption process
- Apply in public and internal portals
 - DM, PM, CM, and DAM tagging
 - Search integration
 - Verity K2
 - Faceted search and navigation
 - content integration networks for real time delivery
- Implement in website registration system
- Participate in NASA Enterprise Architecture Group standards development
 - Web Services infrastructure: Agency UDDI, RSS specifications, directory capability
Next Steps

- CIO presentation
- Define review and approval process
- Facilitate review and approval process
- Deliver metadata specification
- Formalize taxonomy as XML schema
- Delegate taxonomy ownership
 - Within Code V
- Plan follow-on work – phased implementation
White Papers and Supporting Documentation

- NASA Taxonomy Ver. 2.0, Presentation, Dutra 3/8/04 (*this presentation*)

*California Institute of Technology
NASA/ Taxonomy Strategies*
Wrap Up and Discussion

Thanks for your time!

Jayne.E.Dutra@jpl.nasa.gov

California Institute of Technology
NASA/ Taxonomy Strategies
Taxonomy Tagging

Examples
2001 Mars Odyssey Data Archives

http://wufs.wustl.edu/missions/odyssey/#Odyssey%20Data%20Sets

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content Types</td>
<td>Data Files; Web Sites</td>
</tr>
<tr>
<td>Audiences</td>
<td>Researchers; Scientists</td>
</tr>
<tr>
<td>Organizations</td>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>Missions and Projects</td>
<td>Mars Odyssey</td>
</tr>
<tr>
<td>Industries</td>
<td>N/A</td>
</tr>
<tr>
<td>Locations</td>
<td>Mars</td>
</tr>
<tr>
<td>Business Purpose</td>
<td>Scientific and Technical Information</td>
</tr>
<tr>
<td>Competencies</td>
<td>Planetary and Lunar Science</td>
</tr>
<tr>
<td>Dates</td>
<td>2002-present</td>
</tr>
</tbody>
</table>

California Institute of Technology
NASA/ Taxonomy Strategies
Clementine – DSPSE

http://www.cmf.nrl.navy.mil/clementine/

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content Types</td>
<td>Web Sites; Data Files; Images</td>
</tr>
<tr>
<td>Audiences</td>
<td>Researchers; Scientists; Educators; Students</td>
</tr>
<tr>
<td>Organizations</td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td>Missions and Projects</td>
<td>Clementine</td>
</tr>
<tr>
<td>Industries</td>
<td>N/A</td>
</tr>
<tr>
<td>Locations</td>
<td>The Moon</td>
</tr>
<tr>
<td>Business Purpose</td>
<td>Scientific and Technical Information</td>
</tr>
<tr>
<td>Competencies</td>
<td>Planetary and Lunar Science</td>
</tr>
<tr>
<td>Dates</td>
<td>1994</td>
</tr>
</tbody>
</table>

California Institute of Technology
NASA/ Taxonomy Strategies
Jupiter's Ring System

http://ringmaster.arc.nasa.gov/jupiter/jupiter.html#index

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content Types</td>
<td>Web Sites; Animations; Images; Reference Sources</td>
</tr>
<tr>
<td>Audiences</td>
<td>Educators; Students</td>
</tr>
<tr>
<td>Organizations</td>
<td>Ames Research Center</td>
</tr>
<tr>
<td>Missions and Projects</td>
<td>Voyager; Galileo; Cassini; Hubble Space Telescope</td>
</tr>
<tr>
<td>Industries</td>
<td>N/A</td>
</tr>
<tr>
<td>Locations</td>
<td>Jupiter</td>
</tr>
<tr>
<td>Business Purpose</td>
<td>Scientific and Technical Information</td>
</tr>
<tr>
<td>Competencies</td>
<td>Planetary and Lunar Science</td>
</tr>
<tr>
<td>Dates</td>
<td>1979-1999</td>
</tr>
</tbody>
</table>

California Institute of Technology
NASA/ Taxonomy Strategies