
Engineering Complex Embedded Systems with State Analysis
and the Mission Data System

Michel Ingham, Robert Rasmussen, Matthew Bennett, and Alex Moncada
NASA Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 9 1 109

Email: Jirstname. lastname@jpl.nasa.gov

Following failures of recent space missions, such as the Mars Polar Lander and Mars
Climate Orbiter [l], it has become clear that spacecraft system complexity has reached a
threshold of viability where customary methods of control are no longer affordable or
sufficiently reliable. At the heart of this problem are the conventional approaches to
systems and software engineering. Divide-and-conquer strategies based on subsystem-
level functional decomposition fail to scale in the tangled web of interactions typically
encountered in complex spacecraft designs, where subsystems are inevitably very tightly
coupled through their need to share limited resources [2]. Furthermore, there is a
fundamental gap between the requirements on software specified by systems engineers
and the implementation of these requirements by software engineers. Software engineers
must perform the translation of requirements into software code, hoping to accurately
capture the systems engineer’s understanding of the system behavior, which is not always
specified explicitly. This gap opens up the possibility for misinterpretation by the
software engineer of the systems engineer’s intent, potentially leading to software errors.

NASA’s Mars Science Laboratory mission, to be launched in 2009, is addressing the
complexity problem by adopting the Mission Data System (MDS) as its embedded
software architecture, and State Analysis as its systems engineering paradigm. The
overarching goal of MDS is to provide a multi-mission information and control
architecture for robotic exploration spacecraft that is used in all aspects of a mission,
from development and testing to flight and ground operations. MDS acknowledges and
leverages the intimate coupling between software and systems engineering, by elevating
the notion of state variables to an architectural level where interactions can be addressed
overtly [3]. It emphasizes the separation of application-specific knowledge, in the form of
models of the system under control, from reusable general-purpose code, in the form of
architectural components such as estimators, controllers and schedulers (Figure 1).
Instead of issuing low-level open-loop commands, MDS has a Mission Planning and
Execution component which schedules and issues goals that indicate intent in the form of
constraints on the values of a state variable, over a time interval. Such goal-directed
control provides intrinsic robustness to off-nominal behavior, by allowing the controllers
to decide how best to achieve the goals.

The MDS framework is based on a systems engineering approach called State Analysis,
which provides a process for capturing system and s o h a r e requirements in the form of
models. These include the State Eflects Model (physical model of how state variables
evolve over time, under the effects of other state variables), Command Models (how state

mailto:lastname@jpl.nasa.gov

variables are affected by commands), and Measurement Models (how measurements are
affected by state variables). The relationships between state variables, commands and
measurements are graphically captured in the form of a State Effects Diagram (Figure 2).
The State Effects Model compiles information traditionally documented in a variety of
systems engineering artifacts, such as the Hardware Functional Requirements, the Failure
Modes and Effects Analysis, and the Hardware-Software Interface Control Document. In
addition to being used in the design of estimator and controller algorithms, the State
Effects Model is used to specify how goals elaborate into subgoals on related states.
These goal elaborations form the building blocks for the goal-based “sequences” that are
executed onboard the spacecraft, called goal networks (Figure 3) .

State Analysis and MDS are currently being used to design and implement a robust
control architecture for MSL, and have already been deployed and demonstrated on the
Rocky7 and Rocky8 rover testbeds at JPL. This paper describes how requirements for
complex aerospace systems can be developed using State Analysis and implemented in
the MDS framework, using examples representative of the types of models and
algorithms that are being developed for MSL.

References:

[l] Young, T., et al., Report of the Mars Program Independent Assessment Team,
Technical report, NASA, March 2000.

[2] Dvorak, D., “Challenging encapsulation in the design of high-risk control systems”,
Proceedings of the 17th ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’O2), 2002.

[3] Dvorak, D., Rasmussen, R., Reeves, G., and Sacks, A., “Software architecture themes
in JPL’s Mission Data System”, Proceedings of the AIAA Guidance, Navigation, and
Control Conference, paper number AIM-99-4553, 1999.

Figure 1. The MDS State-based Sohare Architecture

Figure 2. Excerpt from an example State Effects Diagram

Figure 3. An MDS Goal Network

