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Abstract 

The strong focus of recent High End Computing efforts 
on performance has resulted in a low-level parallel pro- 
gramming paradigm characterized by explicit control over 
message-passing in the framework of a fragmented pro- 
gramming model. In such a model, object code performance 
is achieved at the expense of productivity, conciseness, and 
clarity. 

This paper describes the design of Chapel, the Cas- 
cade High Productivity Language, which is being devel- 
oped in the DARPA-funded HPCS project Cascade led by 
Cray Inc. Chapel pushes the state-of-the-art in languages 
for HEC system programming by focusing on productiv- 
ity, in particular by combining the goal of highest possi- 
ble object code pegormance with that of programmabil- 
ity offered by a high-level user intet$ace. The design of 
Chapel is guided by four key areas of language technology: 
multithreading, locality-awareness, object-orientation, and 
generic programming. The Cascade architecture, which is 
being developed in parallel with the language, provides key 
architectural support for its eficient implementation. 

1. Introduction 

The almost exclusive focus of current High End Com- 
puting (HEC) systems on performance has led to a dom- 
inating programming paradigm characterized by a local- 
ized view of the computation combined with explicit con- 
trol over message passing, as exemplified by a combination 
of Fortran or C/C++ with MPI. Such a fragmentedmemory 
model provides the programmer with full control over data 
distribution and communication, at the expense of produc- 
tivity, conciseness, and clarity. Thus, quite in contrast to the 
successful emergence of high-level sequential languages in 
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the 1950s, parallel programming for HEC systems is con- 
ducted today using an assembly language-like paradigm, a 
consequence of the difficulty of obtaining performance in 
any other way. 

Numerous projects over the past decade have tried to 
improve this situation by proposing higher-level languages 
that provide a global view of the computation and enhance 
programmer productivity, such as High Performance For- 
tran (HPF) and its variants. However, these languages were 
not accepted by a broad user community, mainly for the fact 
that the generated object code could not compete with the 
performance of “hand-coded’’ programs using MPI or other 
message passing libraries. A major reason for this short- 
coming is the inadequate support for scalable and efficient 
parallel processing in many conventional architectures com- 
bined with a lack of language expressivity and weaknesses 
in compilers and runtime systems. 

In this paper we discuss the design of a new lan- 
guage called Chapel-the Cascade High Productivity 
Language-in the context of an architecture develop- 
ment targeting a Petaflops computing system. Cascade is 
a project in the DARPA-funded High Productivity Com- 
puting Systems (HPCS) program led by Cray Inc., with 
the California Institute of Technology, NASA’s Jet Propul- 
sion Laboratory (JPL), and Stanford and Notre Dame 
Universities as partners. 

Chapel pushes the state-of-the-art in programming 
for HEC systems by focusing on productivity. In par- 
ticular Chapel combines the goal of highest possible 
object code performance with that of programmabil- 
ity by supporting a high level interface resulting in 
shorter time-to-solution and reduced application develop- 
ment cost. The design of Chapel is guided by four key 
areas of programming language technology: multithread- 
ing, locality-awareness, object-orientation, and generic 
programming. 

1) Multithreadedparallelprogramming in the style of Mul- 
tilisp, Split-C, or Cilk, supports fine-grain parallelism and 
resource virtualization so that each software component can 
express the concurrency that is natural to it. This facilitates 
latency tolerance, allows for automatic management of pro- 
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cessors, and provides a clean interface for crafting compos- 
able software components. 
2) Locality-aware programming in the style of HPF and 
ZPL provides distribution of shared data structures with- 
out requiring a fragmentation of control structure. The pro- 
grammer reasons about load-balance and locality by speci- 
fying the placement of data objects and threads. 

3) Object-oriented programming helps in managing com- 
plexity by separating common function from specific im- 
plementation to facilitate reuse. 

4) Generic programming and type-inference simplify the 
type systems presented to users. High-performance com- 
puting requires type systems to provide data structure de- 
tails that allow for efficient implementation. Generic pro- 
gramming avoids the need for explicit specification of such 
details when they can be inferred from the source or from 
specialization of program templates. 

This paper is structured as follows. Section 2 will discuss 
languages for scientific parallel programming developed 
during the past decade. The main contribution of the pa- 
per is a description of the major design elements of Chapel 
in Section 3. This will be followed by an overview of the 
Cascade system architecture in Section 4. The paper con- 
cludes with a discussion of open issues and an outlook to 
hture work in Section 5. 

2. Languages for Scientific Parallel Program- 
ming 

With the emergence of distributed-memory machines in 
the 1980s the issue of a suitable programming paradigm for 
these architectures, in particular for controlling the trade- 
off between locality and parallelism, became important. The 
earliest (and still dominant) approach is represented by the 
fragmented programming model data structures and pro- 
gram state are partitioned into segments explicitly associ- 
ated with regions ofphysical memory that are local to a pro- 
cessor (or a small SMP); control structures have to be par- 
titioned correspondingly. Accessing non-local state is ex- 
pensive. The overall responsibility for the management of 
data, work, and communication is with the programmer. 
The most popular versions of this explicitly parallel ap- 
proach today use a combination of C, C++, or Fortran with 
MPI. 

It soon became clear that a higher-level approach to par- 
allel programming was desirable and feasible, based on 
data-parallel languages and the Single-Program-Multiple- 
Data (SPMD) paradigm, with a single conceptual thread of 
control coupled with user-specified annotations for data dis- 
tribution, alignment, and datdthread affinity. For such lan- 
guages, many low-level details can be left to the compiler 
and runtime system. High Performance Fortran (HPF) be- 

came the trademark for a class of languages and related 
compilation and runtime system efforts that span more than 
a decade. Some of the key developments leading to HPF in- 
clude the Kali language and compiler [13], the SUPERB 
restructuring system [23], and the Fortran D [9] and Vi- 
enna Fortran [5, 241 languages, both of which proposed 
high-level language extensions for parallel programming in 
Fortran77. HPF-I [lo], completed in 1993, was welcomed 
by many in the user community but was soon recognized 
as being too constrained in its data distribution features, 
resulting in performance drawbacks for important classes 
of applications. HPF-2 [ 1 11, the current defacto standard, 
and HPF+ [4] both extended the power of the distribution 
mechanism to accommodate dynamic and irregular appli- 
cations [14]; HPF+ took the additional step of providing 
high-level access to low-level mechanisms such as the man- 
agement of communication schedules and “halos” in order 
to allow user control of communication. The importance of 
these additional features is highlighted by the success of 
JA-HPF, the Japanese version of HPF derived from HPF+, 
which recently achieved a performance of 12.5 Teraflops for 
a plasma code on the Earth Simulator [ 181. 

As HPF decreased in popularity, a number of languages 
rose in its place, commonly referred to as partitionedglobal 
address space languages. The best-known examples are 
Co-Array Fortran [16], Unified Parallel C [8], and Tita- 
nium [22]. While their details vary greatly, these languages 
are similar due to their support for regular data distributions 
which are operated on in an SPMD style. They have the ad- 
vantage of being easier to compile than HPF, but achieve 
this by shifting some of that burden back to programmers 
by requiring them to return to the fragmented program- 
ming model, writing per-processor code, and coordinating 
communication and synchronization explicitly (albeit us- 
ing concepts that are significantly more abstract than MPI). 
These languages therefore offer an interesting midpoint be- 
tween MPI and HPF in the tradeoff between programmabil- 
ity and performance. 

OpenMP [6]  is one of the few current parallel program- 
ming techniques that supports a non-fragmented, global 
view of programming. It is also comparably easy to apply 
to existing code since users can incrementally add annota- 
tions to code over time. OpenMP’s primary disadvantage is 
that it assumes a uniform shared memory in its execution 
model and therefore typically cannot scale to large numbers 
of conventional processors. Due to these limitations, a hy- 
brid MPI/OpenMP usage model has become common for 
clusters of SMPs in which MPI is used for the coarse par- 
titioning between the nodes, and OpenMP is used to ex- 
press the lighter-weight parallelization and synchronization 
on each node. 

ZPL is another parallel language that supports a global 
view of parallel programming. It supports parallel compu- 



tation via user-defined index sets called regions [ 2 ,  31. Re- 
gions may be multidimensional, strided, andor sparse, and 
are used both to declare distributed arrays and to operate 
on them in parallel. ZPL‘s region semantics are constrained 
so that all communication within a ZPL program is appar- 
ent in the syntax in the form of high-level array operators 
such as translations, reductions, and permutations. 

3. The Cascade High Productivity Language 
Design 

The history of programming languages has been a bal- 
ance of abstraction to increase reuse and hence productiv- 
ity with concreteness motivated by performance require- 
ments. Chapel strives both to improve the performance of 
programs and to permit more abstraction to be used in the 
specification of those programs. This motivates the structure 
of this section, in which we first discuss Concrete Chapel, 
which allows an explicit high-level specification of locality 
and parallelism, while Abstract Chapel provides features for 
generic programming, supported by mechanisms for type 
and data structure inference, specialization, and prototyp- 
ing tools. 

3.1. Concrete Chapel 

Concrete Chapel is a strongly typed object-oriented lan- 
guage with support for index domains, Fortran-like arrays, 
general data structures, data parallel operations, and explicit 
control of locality without resorting to a fragmented pro- 
gramming model. 

The language is based on HPF’s global view model 
which is very strong in dealing with common idioms for sci- 
entific computing at a high level of abstraction but avoids 
HPF’s weaknesses of reliance on arrays as the only data 
structure and on “flat” parallelism. By adding general multi- 

. threaded programming and arbitrary data structures with 
object-level affinity Chapel greatly enhances its applicabil- 
ity to symbolic computing. Chapel’s domains are gener- 
alizations of ZPL‘s regions, supporting nested parallelism, 
opaque index sets for building graphs, and a relaxed seman- 
tic model that emphasizes productivity over the identifica- 
tion of communication. 

Chapel extends traditional sequential control constructs 
with the addition of explicitly parallel loops and a cobegin 
statement. The first of these specifies a space of iterations 
which may be executed concurrently. The second identifies 
a group of statements that are executed concurrently. These 
constructs may be nested and the amount of concurrency 
the programmer may express with them is unbounded. 

The approach in Chapel differs in spirit from that of 
OpenMP. OpenMP creates heavyweight threads and has 
“work sharing” as a metaphor for managing parallelism. 

Chapel has no real notion of thread, just subcomputations 
that may be executed concurrently. By removing the con- 
cept of thread from the programming model, we eliminate 
a resource management concern. More importantly, thread 
management is no longer an aspect of the interface between 
code modules. Each module is free to express the concur- 
rency natural to it. 

Rather than binding work to threads, Chapel builds on a 
concept of locale to which both data and computation may 
have affinity. A locale corresponds to a portion of a comput- 
ing system comprising both storage and processing. There is 
a presumption that co-locating a computation and the data 
it accesses in one locale will reduce latency and provide 
greater bandwidth to the data. However, unlike distributed 
memory models such as MPI, all data is accessible from any 
locale. Co-location is only a performance issue. 

Chapel supports an “on” specification in HPF-2 style that 
directs execution of a subcomputation or allocation of a data 
object to a specific locale. This provides a low-level tool to 
manage locality by allowing a computation to be performed 
near the bulk of the data it accesses. The next two sections 
describe higher-level tools. 

3.1.1. Domains A Chapel domain is a named index set 
that can be combined with distributions, linked to data struc- 
tures, and provides a basis for the formulation of iterative 
processes. Domains are first-class objects that can occur as 
elements of data structures and can be passed to or returned 
by fbnctions. 

An important subclass are Cartesian product domains 
whose index sets are Cartesian products of integer intervals, 
such as D = {(i,j) I 11 5 i 5 u1,12 5 j 5 u2). Such 
domains support regular array data structures as in Fortran 
and form a basis for much of the data distribution machin- 
ery. Cartesian product domains support the ability to per- 
form algebraic operations on indices, to express neighbor- 
hoods or subdomain boundaries in terms of simple index 
ranges and to reason about individual dimensions when dis- 
tributing a multidimensional domain or specifying a nested 
iteration scheme. Cartesian product domains can be dynam- 
ically reshaped and redistributed; such operations affect all 
data structures linked to the domain at the given point of 
program execution. 

Under appropriate constraints Cartesian product do- 
mains can deal with certain types of irregular applica- 
tions (e.g., the multiblock problem discussed below) but 
in general a more flexible mechanism is needed for effi- 
ciently processing highly dynamic data structures such as 
graphs. For this purpose, Chapel introduces opaque do- 
mains, whose indices are system-generated objects, similar 
to pointers. For such domains, the Chapel runtime sys- 
tem provides an infrastructure for automatic partitioning 
and distribution. 
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Figure 1. Sparse matrix distribution. 

3.1.2. Data Distributions Programs in Concrete Chapel 
can organize their memory as a set of named virtual lo- 
cales. A data distribution can then be introduced as a map- 
ping from the index set of a domain to such a locale do- 
main, where the set of all indices associated with one partic- 
ular locale is called a distribution segment. Chapel defines 
new classes of intrinsic distributions, proposes user-defined 
extensions of the distribution mechanism, and provides spe- 
cial support for the distribution of opaque domains. 

Chapel Distributions In addition to the data distribu- 
tions of the HPF-2 Approved Extensions [l l] ,  which 
include general block and indirect, Chapel also sup- 
ports user-defined distribution specifications. A new feature 
is the general tiling distribution, which generalizes the gen- 
eral block distribution by allowing the partitioning of 
a multi-dimensional index set into arbitrary rectangu- 
lar subdomains, called tiles. A simple example for a 
general tiling distribution is the value-dependent distri- 
bution of a sparse domain, as illustrated in the example 
below. 
Example: Sparse Matrix Distribution 
Consider a Cartesian product domain for a sparse matrix 
with index set I = (1 : 10,l  : 8), where only non-zero 
elements are explicitly specified (Fig. 1). The locale do- 
main is given by Eoc(1 : 4). The figure illustrates a gen- 
eral tiling distribution constructed to balance the number of 
non-zeroes in each distribution segment. The resulting sub- 
domains are [l : 7 , l  : 51, [8 : 10, l  : 41, [l : 7,6 : 81, and 

0 
Example: Multiblock Code 
Multiblock codes model geometrically complex ob- 
jects such as aircraft by a set of interacting structured grids 
that are connected in an irregular manner. All grids can be 
processed independently in parallel, with updates of bound- 
aries carried out periodically. The number of grids, their 
sizes and their interaction patterns are generally deter- 
mined at runtime; different grids may have widely different 
sizes and shapes. 

[8 : 10,5 : 81. 

var MB : domain = [ 1 ..n-grids]; 
class Grid { 

var D : domain(]) distribute(b1ock); 
var low, high : integer 
var data : array D of float; 
function do-distribute { 

distribute(D) on(Locales(1ow. .high)) 
allocate(data); 

1 
function solve; 

I 
var grids : array MB of Grid; 
for i in MB { 

var s : domain(1) = readshape(); 
grids(i) = Grid(D=s); 

I 
setup(grids); 
partition(grids); 
forall g in grids 

- - determine low, high 

g.do-distribute(); 

while (...) { -- not terminated 
prc-process(grids), -- update boundaries ... 
forall g in grids on(Locales(g.low)) 

g.solve() 

function Gridsolve { 
forall i in D 

solve(i) ... 

I 

- - implicitly on some locale 
I 

Figure 2. Parallel processing of a distributed 
multiblock grid collection. 

Fig. 2 illustrates a simplified Chapel approach to a paral- 
lel solution of the multiblock problem. We distribute com- 
ponent grids to contiguous disjoint subsets of locales based 
on their size. This ensures that grids can be processed con- 
currently and that each individual solver can be processed 
efficiently in parallel. The multiblock grid collection is rep- 
resented by a one-dimensional array, grids, with rigid ele- 
ments of type Grid for the individual component grids. 

After determining the shape of all component grids, the 
grid collection is prepared for processing by a call to the 
hnction setup. This defines the boundary of each grid and 
initializes its data. The subsequently calledpartition routine 
determines the parameters, lo and hi, for the distribution of 
all component grids. The while-loop is inherently sequen- 
tial. After pre-processing the grid collection, the forall-loop 
activates the solver for each component grid in parallel. The 
on- clause establishes affinity: each solver is executed on the 
locale subset of its associated grid. The individual solvers 
are parallel programs in their own right, which exploit the 
processing capabilities in their respective locale sets. 0 



class Trcc { -- k-ary trees 
var k : integer; 
var D : domain(opaque) distribute(); 
var CD : domain(1) = l..k; 
type Node; 
var nodes : array D of Node; 
var children : array D of array CD of index(D); 
class Node { 

-- childdomain 

var id : index(D); 
function add..child(i: index(CD), c: Node) { 

children(id,i) = cid;  
1 

} 

function child(i: index(CD)) : Node { 
return nodes(children(id,i)) 

1 
function ncwnode : Node { 

var n : index(D) = D.new(); 
nodes@) = Node(id=n); 
return nodes(n); 

1 
1 
var trec : Tree(k=num-children); 
var root : Trec.Node = trec.newnode(); 

distribut6tree.D) on(Loca1es); 

var data : array trce.D of datatypc; 

Figure 3. Using opaque domains to imple- 
ment a IC-ary tree. 

Opaque Domains Opaque domains support the allocation 
and distribution of dynamic and irregular data structures. 
Their elements-paque indices-are system generated ob- 
jects, which identify instances of data associated with the 
domain and store information about the locale assignment 
and possibly the relative “weight” of the data element in the 
overall structure. This provides the system with sufficient 
information for automatically distributing (and possibly re- 
distributing) such a domain. 

Figure 3 shows a simple use of an opaque domain to 
manage the nodes of a k-ary tree. The multiblock exam- 
ple discussed above could also be formulated using opaque 
domains, based on a dynamic allocation of individual grids 
and automatic support for partitioning (rather than the ex- 
plicit control expressed by the functionpartition). 

3.2. Abstract Chapel 

The definition of “abstract” that applies here is disasso- 
ciated from any speciJic instance. In particular we want to 
enable and encourage programs to be written with explicit 
algorithms but with abstract data structures. 

function search(v) { 
dfnumber(v) = count; 
lowlink(v) = count; 
count += 1; 
stack.push(v); 
on-stack(v) = true; 
for w in neighbors(v) 

if (not is-old(w)) { 
scarch(w); 
lowlink(v) = min(lowlink(v), lowlink(w)); 

lowlink(v) = min(lowlink(v), dfnumber(w)); 
} else if (dfnumber(w) < dfnumber(v) and on-stack(v)) 

1 
if (lowlink(v) == dhumber(v)) { 

var r = new-component(); 
var x; 
do { 

x = stack.pop(); 
on-stack(x) = false; 
add_nodc(r,x); 

} while (dfnumber(x) > dfnumber(v)); 
1 

Figure 4. A search function for finding 
strongly connected components. 

1 

Chapel will focus on providing support for abstracting 
three fundamental aspects of data structures: component 
types, iteration, and mapping from sets to variables. For 
example, consider Tarjan’s algorithm for finding strongly 
connected components shown in Figure 4. The context for 
this algorithm is that the value of v identifies a node in 
some graph and neighbors defines an edge relation for that 
graph. There are a number of maps from the graph nodes 
to various variables that hold state for the algorithm. These 
are dfnumber, Iowlink, is-old, and onstack. Within the lan- 
guage, the array.. .of type constructor is used to identify 
maps. There is also a loop that iterates over a set of nodes 
identified as neighbors of v. In addition, two unbound func- 
tions, new-component and addnode, abstract the actions 
we should take when a new strongly connected component 
is identified and a new element is added to a component. 
Finally, the algorithm uses the unbound objects count and 
stack which carry state between activations of the function. 

The above algorithm is quite abstract. To make it con- 
crete we would need to provide implementations for the var- 
ious maps, the iterator, and bindings for the unbound oper- 
ations. The object-oriented paradigm provides a framework 
for some of these issues. In particular, we can encapsulate 
this function in a class that binds free symbols. However, 
existing strongly-typed object-oriented languages give poor 
support for adapting the mapping and iteration functions 



to client contexts. Furthermore, while here it is enough to 
specify that the set of nodes forms a graph and has a neigh- 
bor relation, any further definition of the graph would limit 
the applicability of this function and curtail its potential for 
reuse. Chapel extends the common object-oriented features 
in three ways to encourage abstraction: 

1) Abstraction oftypes Similar to the concept of templates 
in C++ and generic packages in Ada, we permit types to 
be omitted from program fragments. Types will be inferred 
from usage and different contexts may require separate in- 
stantiations of various functions and classes each tailored to 
callsite specifics. In the example above, variables v, w, and 
r might be simple integers, pointers to objects, or elements 
in some domain. Each is a valid choice depending on con- 
text. We permit type variables to be declared which can be 
used to express constraints amongst complex types [7]. 

2) Abstraction of iteration Iteration over sets of objects and 
values is another fundamental operation but most languages 
provide little in the way of abstraction for this operation. We 
borrow from CLU [ 121 the concept of an iterator which re- 
turns a sequence of values or object references. These itera- 
tors are named, have parameters and can be bound to objects 
like other functions. The primary difference is that they re- 
turn a sequence of values rather than a single value. In this 
example, the iterator neighbors insulates this code from the 
details of the graph abstraction. Iterators are integrated with 
the concurrency mechanisms as well. 

3) Abstraction of maps We use the term map to refer to a 
function from some domain to a collection of variables. It 
generalizes the concept of “array” which is based on Carte- 
sian product domains. The domain of a map may be an in- 
teger tuple, an opaque domain, the values of some type (im- 
plemented with a hash table), or the values retumed by some 
iterator. A goal of Chapel is to provide default implementa- 
tions for various sorts of maps to facilitate rapid prototyping 
yet also to provide an interface that allows construction of 
context-efficient implementations without disturbing the al- 
gorithm. 

Another productivity goal of Chapel is to expand from 
type inference to data structure inference. This means we 
would like to have the programmer identify a general cate- 
gory for an object and have the system select a reasonable 
implementation based on use. For example, the user iden- 
tifies dfnumber as a map, simply as an array indexed by a 
type, and the system selects a suitable implementation de- 
pending on its knowledge of the domain. Similarly, we have 
a category seq that consists of objects that have iterators. 
There will be a library of seq implementations, generic with 
respect to element type, but with different sets of methods 
such as push and pop. The system will automatically select 
an instantiation based on usage but the programmer is free 
to override this decision or to directly implement the ab- 

class StrongComponents { 
type nodetype; 
iterator ncighbors(node :nodetype) :nodetype { 

return node.neighbors; 

type nodeset : seq of nodetype; 
var components : seq of nodeset; 
function new-component : nodeset { 

1 

var x = nodeset(); 
components .inscrt(x); 
return x; 

-- create new nodeset 

1 

1 

function addaode(r :nodeset, n :nodetype) { 
r.insert(n), 

var dfnumber, lowlink : array nodetype of integer; 
var on-stack : array nodetype of boolean; 
function is-old(n :nodetype) : boolean { 

return lowlink(n) < 0; 
1 
var count : integer; 
var stack : seq of nodetype; 
function fi n d  components(nodes) : seq of nodeset { 

forall n in nodes { 
on-stack(n) = false; 
lowlink(n) = - 1; 

1 
stack.init(); 
count = 0; 
for n in nodes 

if (not is-old(n)) 
search(n); 

return components; 
1 
function search(n :nodetype) { ... } 

Figure 5. An abstract class for finding 
strongly connected components in a directed 
graph. 

1 

stractions based on application specific knowledge that ad- 
mits a more efficient solution. 

We illustrate these concepts in a possible encapsulation 
of the search function shown in Figure 5. This class is 
generic with respect to the type parameter nodetype which 
must be specified when an instance of this class is instan- 
tiated. The type of the formal parameter nodes to method 
jindxomponents is also left generic. It could be an array 
or other domain or an object with a default iterator. The 
local type variable nodeset constrains the return type of 
new-component to match the first parameter of addnode. 

Default implementations for the various sets and arrays 
bound to this class will be provided. The default implemen- 
tation for stack includes thepush andpop methods. A client 



class MyStrongComponents with Strongcomponents { 
where class nodetype { var dhumbcr, lowlink : integer; 

var on-stack : boolean; 
var stackmext : nodetype; } 

function dhumber(n : nodetype) { return mdfnumber; } 
function lowlink(n : nodetype) { return n.lowlink; } 
function on-stack(n : nodetype) { return n.onstack; } 
var stack : class { 

var top : node; 
function push(n : nodetype) { 

nstacknext =top; 
top = n; 

1 
function pop :nodetype { 

var x = top; 
top = x.stack-next; 
return x; 

1 
function init { top = nil; } 

1 

Figure 6. A specialization where auxiliary 
fields on graph nodes are used instead of 
side data structures. 

1 

is free to specialize this class definition by providing alter- 
nate implementations of any or all of these definitions. The 
category of a symbol is allowed to change as well so that ar- 
ray dfnumber could be altered to be a function returning a 
variable. 

An example of such a client is shown in Figure 6 where 
the system implementations of various arrays are replaced 
with direct access to variables on graph nodes. We add a 
type constraint on nodetype that identifies these fields and 
provide a new definition of stack. 

The primary implementation challenge is to manage the 
cost of recompilation and optimize the selection of imple- 
mentations to avoid unnecessary overheads. Unlike other 
high-level languages, however, runtime performance is not 
completely at the mercy of a smart compiler: where opti- 
mization fails, the language allows programmers to provide 
concrete, hand-crafted implementations of data structures 
that will be competitive with today’s solutions. These im- 
plementations can be provided without disturbing the ba- 
sic algorithms. In particular, they could be target-dependent, 
providing a level of portability for the bulk of an application 
not currently available. 

While the research focus of the concrete language is 
to explore locality-aware multithreading as a programming 
model, for the generic aspects we are interested in achiev- 
ing much of the ease of use and expressiveness of dynami- 
cally typed languages but with the performance advantages 

of compile-time type checking. We are also hoping to bridge 
high-level languages like SETL [ 191 and more production- 
oriented languages by specializing reusable algorithms built 
on abstract data structures. A synergy between these goals 
is provided by the common notion of a domain as a mecha- 
nism both to define maps and iteration and to distribute data 
for locality. 

3.3. Implementation Strategy 

The initial implementation of Chapel will take a 
source-to-source compilation approach in order to pro- 
vide a portable implementation that avoids as many archi- 
tectural assumptions as possible. This implementation will 
most likely generate C code with calls to a portable com- 
munication interface such as MPI or ARMCI [15] ,  
in order to maximize the number of parallel architec- 
tures on which it can be run. This compiler will be made 
open source early in its development cycle in order to en- 
courage evaluation of the language, experimentation with 
its features, and rapid feedback from potential user commu- 
nities. As the implementation matures, we hope to engage 
the broader community to help with its optimization, up- 
keep, and evolution. 

One of the primary challenges with this initial imple- 
mentation will be to achieve performance levels that make 
Chapel attractive not only for its productivity features, but 
also for performance-orientedruns. This will be a stiff chal- 
lenge given the lack of support for latency tolerance and 
multithreading on current architectures, but our hope is that 
Chapel’s language-level support for abstractions such as do- 
mains and locale views will give the implementation the op- 
portunity to cache pieces of performance-crucial informa- 
tion with the runtime objects representing these concepts. 

Meanwhile, as the Cascade architecture moves toward 
production, a second implementation effort will take place 
to generate code that takes maximal advantage of its unique 
features. This implementation will target either the ma- 
chine’s assembly language, or the front-end of Cascade’s 
conventional C and Fortran compilers. 

Chapel’s abstract features will be implemented via a 
global type inference engine that strives to determine vari- 
able types and values within a user’s program. The com- 
piler will then specialize routines to generate optimized 
code based on the results of that analysis. This implementa- 
tion effort is already underway and is based on compilation 
techniques developed in the context of the Concert Com- 
piler [ 171. 

4. Architecture Implications 

Key concepts of high-productivity programming on 
which the design of Chapel is founded include multi- 



threaded fine-grain parallelism and locality-aware pro- 
gramming. These are areas where the lack of adequate ar- 
chitectural support in conventional architectures has 
led to severe performance problems. Here we will dis- 
cuss how the Cascade architecture addresses these is- 
sues. 

1) Implementation of fine-grain parallelism with an un- 
bounded number of threads implies a runtime system ca- 
pable of virtualizing processors. This requires multiplexing 
threads onto available processors, hardware support for syn- 
chronization, and mechanisms to reduce the overheads of 
thread scheduling. 

Modem processor architecture has focused almost ex- 
clusively on the performance of single threads of control. 
Large register sets, data caches, memory disambiguation 
and branch prediction are all focused on a single thread, 
resulting in a large execution state and expensive context 
switches. Such processors are most effective when execut- 
ing programs with a high ratio of number of operations to 
memory bandwidth requirements. Cascade provides such 
“heavyweight” processors but also includes a second class 
of “lightweight” processors. 

Lightweight processors are optimized for programs rich 
in short threads and synchronization, or which are data in- 
tensive. These processors are implemented in the memory 
subsystem and while they are not very powerful individu- 
ally, there are many of them. Lightweight processors use a 
form of hardware multithreading to tolerate latency for re- 
mote accesses and synchronization. 

2 )  Chapel supports the distribution of data structures to ex- 
ploit spatial locality. At the same time, high bandwidth is 
needed for data structures for which there is no natural dis- 
tribution. This is particularly important for expanding par- 
allel programming to areas beyond simulation of physical 
systems where decompositions are often implied by system 
structure. 

The Cascade architecture is a shared address space sys- 
tem that supports multiple views of physical memory. 
In one view, which supports non-uniform spatial local- 
ity, the system consists of an arrangement of locales, each 
of which contains a heavyweight processor and a collec- 
tion of lightweight processors in the memory. Neighbor- 
hoods in the virtual address space are preserved by the 
hardware mapping to physical addresses. 

To support data structures that are shared but have no 
natural algorithm-induced distribution, Cascade supports a 
uniform-access view of memory. In this view, small consec- 
utive blocks of memory are distributed by applying a hash- 
ing function to the virtual addresses. This technique was 
used in the IBM RP3 and the Cray MTA to ensure high 
bandwidth to data aggregates from a set of processors re- 
gardless of access pattern. For example, a 3-D data set can 

be partitioned into parallel I-D “pencils” and be accessed 
concurrently in any dimension with no loss of bandwidth. 

These two models allow spatial locality to either be ig- 
nored or exploited. It can be ignored at small scales that 
have adequate bandwidth or that have no viable decompo- 
sition. It can be exploited at large scale where a reasonable 
distribution for the data can be achieved. 

3) The final aspect of Chapel is the the need for remote 
thread creation or, equivalently, message-driven computa- 
tion to allow threads to execute in the locale of the data they 
are accessing. This concept has many antecedents includ- 
ing Actor programming [ 11, the Chare Kernel [20], and Ac- 
tive Messages [2 11. 

All processors in the Cascade system are able to execute 
a spawn primitive that will create a new thread running in a 
lightweight processor anywhere in the system. This mech- 
anism directly supports the programming idiom of creating 
a new thread running on a particular locale to exploit spa- 
tial locality or reduce the latency of transactions against re- 
mote data. 

This basic model is then extended with a software layer 
so that suitable threads can be executed by an adjacent 
heavyweight processor to exploit temporal locality. Heavy- 
weight processors service a local work-queue of threads 
ready to run. Prior to insertion on this queue, remote data 
can be prefetched and synchronization resolved to minimize 
the impact of these issues on heavyweight processors that 
are not optimized for them. 

These are areas where the Cascade architecture will pro- 
vide non-commodity support for the Chapel programming 
model. They are not the only issues needed for a success- 
ful Petaflops-scale system nor are they the only ways to ex- 
ploit Cascade’s architecture but these are key areas where 
current systems are insufficient. 

5. Summary 

This paper described the design of Chapel, the Cascade 
High Productivity Language. Chapel pushes the state-of- 
the-art in languages for high-end computing by combining 
the goal of highest possible object code performance with 
a high-level user interface for programmability. While the 
concrete language allows explicit control of parallelism and 
locality without the need to resort to a fragmented mem- 
ory model, the abstract language frees the user from many 
details of type and data structure specification. Chapel can 
be implemented on any parallel system, however the full 
range of the language will require architectural support for 
achieving its performance goals beyond that offered in con- 
ventional machines. Such support can be realistically ex- 
pected from many future Petaflops-scale architectures, and 
it will be provided specifically by the Cascade architecture 



in the areas of fine-grain multithreading, locality-aware pro- 
gramming, and message-driven computation. 

Higher-level programming models like that provided by 
Chapel are one of several innovations that may be needed 
to more effectively program highly parallel systems. Others 
include new approaches to compiler, runtime system, and 
tool design, as well as enhanced automatic support for al- 
gorithm development, fault tolerance, and correctness and 
performance debugging. The conventional separation be- 
tween compiler, runtime system, and tools is breaking down 
as a result of emerging concepts such as feedback-oriented 
and just-in-time compilation, dynamic instrumentation, and 
AI-based approaches to hotspot detection and performance 
tuning. Autonomous agents may monitor the execution of 
a parallel program at runtime, providing feedback about 
memory leaks, excessive thread generation, ineffective ac- 
cess patterns to distributed data structures, or potential par- 
allel hazards. Likewise, a software infrastructure may trans- 
parently deal with such situations, triggering recompilation 
of critical program loops, redistributing data structures, or 
preventing deadlocks by imposing constraints on resource 
accesses. 
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