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Abstruct- The Leader/Follower (WF) architecture is currently 
being considered as a method for controlling formations consist- 
ing of spacecraft, robots, UAVs and other autonomous vehicles. 
Although ad-hoc stability results exist for the L/F architecture 
(e.g., stability has been guaranteed under a variety of specific 
linear and nonlinear control laws), a general stability criterion, 
independent of any particular implementation, has not been 
previously stated in the open literature. In this paper, a definition 
of LIF, encompassing previous definitions is given, and a general 
stability condition for LIF is presented based on hierarchical 
system theory. The stability condition is applicable to systems 
with nonlinear, closed-loop dynamics under various structural 
constraints. Further, the stability condition shows that by using 
the WF architecture it is (at least theoretically) possible to 
reduce formation control design to the more tractable problem 
of individual vehicle control design. 

I .  INTRODUCTION 
In space applications, NASA and ESA are considering 

formations of spacecraft for detecting extra-Solar, Earth-sized 
planets [ 141, [7] and imaging the event horizon of a black hole 
[8]. In the atmosphere, formations of UAVs are being studied 
for reconnaissance, as well as search and rescue missions 
[ 11, [3 11. Further, multiple underwater vehicles are also being 
studied for similar tasks, such as searching for mines [ 111. 

We define formation flying as a set of more than one vehicle 
in which any of the vehicle dynamic states are coupled through 
a common control law [22].2 Formation guidance and control 
poses numerous challenges such as avoiding collisions and 
balancing resources [ 101. Various formation control architec- 
tures have been developed to address these challenges [15], 
P11. 

For spacecraft formations, the LeadedFollower (LE) archi- 
tecture is the most studied control architecture [21].3 As the 
name suggests, in L/F some vehicles (called followers) track 
trajectories with respect to other vehicles (called leaders). An 
important aspect of L/F is that the control action of each leader 
must be independent of the motion of each associated follower. 
In most of the applications considered to date, L/F control 
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*This coupling can be in translational and/or rotational degrees of freedom 
and in position and/or velocity. For example, a formation may consist of ten 
spacecraft with synchronized angular velocities. 

3Note that LeaddFollower has also been referred to as ChieflDeputy 
[23], MastdSlave [13] and, the traditional terminology from two-spacecraft 
rendezvous, Target/Chase. 
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designs have focused on (1) a single leader vehicle and a single 
follower vehicle or (2) a “chain” of vehicles each following 
the preceding vehicle (e.g. [231, [12], 161, [301). 

In the literature, studies of the L/F architecture (as opposed 
to L/F controller design) have been based on directed graphs 
[27], [4], [5], [17]. However, these formal definitions are not 
completely general in the sense that they either (1) limit the 
scope of the L/F architecture to specific control designs, or (2) 
make specific assumptions regarding inter-vehicle dependen- 
cies to simplify subsequent analyses. The authors have defined 
L/F in a previous paper [21] using the control dependency 
directed graph. Although, the control dependency directed 
graph is similar to directed graphs defined in [4], [5], [18] and 
[16], it is less restrictive and does not depend on a particular 
control strategy. 

In this paper, we first provide a brief review of directed 
graphs and hierarchical systems. Next, we present a graph- 
theoretic definition of formation flying consistent with the 
definition given above. Moreover, we also present a general, 
graph-theoretic definition of the LeadedFollower architecture 
that encompasses previous definitions given in the literature. 

We then demonstrate that, under reasonable structural as- 
sumptions on vehicle dynamics, our definition-of L/F leads to 
closed-loop error dynamics of an L/F formation that & the 8 bc& 
form of a hierarchical system. The major contribution of this 
paper is the application of concepts from hierarchical system 
theory [25] to the problem of L/F stability. Specifically, we 
obtain a general stability result for the L/F architecture under 
mild assumptions: our stability result states that if the origin 
of the tracking error dynamics for each individual vehicle is 
asymptotically stable, then the origin of the tracking error 
dynamics for the entire formation is also be asymptotically sta- 
ble. In short, the formation is stable if all the individual vehicle 
controllers are stabilizing, regardless of the particular control 
law or vehicle dynamics. As a result, the Leader/Follower 
architecture can reduce formation control design to the control 
design of a single vehicle. 

11. MATHEMATICAL BACKGROUND 
In this section, we discuss some important assumptions 

on formation dynamics, as well as the relevant mathematical 
background from the theories of directed graphs and hierar- 
chical systems that is needed in the sequel. 
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Consider a collection of N vehicles with states zi. con- 
trol inputs ui, desired reference states (i.e.. trajectories) di ,  
tracking errors ei 4 di - zi, and disturbances wi, where 
i = 1,. . . , N .  For vehicle i, the dynamics may be nonlinear 
and time-varying, and further, di  and ui may depend on the 
states of any other vehicles. However, we assume that the 
dynamics, control laws, and reference trajectories are such that 
the error dynamics can be put in the following form: 

(1) 

where hi is continuously differentiable, and hi@, 0, . . . , 0) = 
0, where 0 is the zero vector of appropriate dimension. 

A. Directed Graphs 

In this section, we first review the definition of a directed 
graph (or digraph). In addition, four concepts from digraph 
theory will be used in this paper: vertex degrees, cycles, weak 
connectedness, and the adjacency matrix. We briefly discuss 
each concept, and then present two theorems that are used in 
the sequel. This section summarizes material found in [3]. 

A directed graph G consists of a set of vertices V and a 
set of directed edges E.  The vertices are represented by vi, 
i = 1,. . . , L,  where L denotes the number of vertices. The 
directed edges, herein referred to as edges, are specified as 
ordered pairs (vi,vj). The edge (vi, wj) E E means that an 
arrow is drawn from vi to vj. An edge (vi, vi) is referred 
to as a selfloop. One interpretation for an edge (vi, wj) is 
that vertex i (representing vehicle i) is maintaining a desired 
position with respect to vertex j (representing vehicle j). 

The in-degree of a vertex is the number of edges directed 
into the vertex. That is, the in-degree of vi equals the number 
of edges of the form (.,vi). Similarly, the out-degree of a 
vertex is the number of edges directed out of the vertex (i.e., 
the number of edges of the form (vi, a)).  

To define a cycle, the concept of a walk is needed. A walk 
is a sequence of vertices such that each sequential pair forms 
an edge, and no edge is repeated (i.e., each sequential pair of 
vertices appears only once in a given ~ r d e r ) . ~  The length of the 
walk is the number of vertices in it. For example, if (vi ,vj)  
and (wj, vk) are edges, then vivjvk is a walk of length three. A 
cycle is a walk of at least length three with no repeated vertices 
except that the first vertex must equal the last (e.g. vivjvi is 
a cycle, but vivi is not).5 A digraph without a cycle is called 
acyclic. 

A semiwalk is a sequence of vertices such that each sequen- 
tial pair forms an edge without regard to direction (e.g. w i w j  

is a walk if either (vi, vj) or (wj, vi) is an edge). Note that 
an “undirected edge” may still only be traversed once in a 
semiwalk. A digraph is called weakly connected if there is a 
semiwalk between any two vertices.6 

4Since we are not considering digraphs with parallel edges, we have 
simplified the representation of a walk. Generally, the edges must be indexed, 
and a walk indicated by an alternating sequence of vertices and edges, with 
no edge appearing twice. 

%2ycles are sometimes defined to include self-loops. The exclusion of self- 
loops is necessary for our formation definitions. 

6Weak connectedness is usually defined in terms of “undirected paths.” 

i.i = hi(t, e l , .  . . , e N )  

For digraphs without parallel edges: an L x L adjacency 
matrix A = [Q] can be defined as follows: 

1 if (vi,vj) E E a , .  - 
23 - { 0 otherwise 

With these definitions, the next two theorems from are used 
in the sequel. 

Theorem I :  Every acyclic digraph has at least one vertex 
with zero in-degree and at least one vertex with zero out- 
degree. 

0 
Theorem 2: A digraph is acyclic if and only if its vertices 

can be ordered such that its adjacency matrix is upper (or 
lower) triangular. 

Proofi See [3], page 230. 

Pro08 See [3], page 231. 

B. Hierarchical Systems 

Hierarchical systems are also used in the stability analysis of 
the LeaderFollower architecture. We first define hierarchical 
systems and then present a related stability theorem. The 
section summarizes material from [25] and [26]. 

A hierarchical system consisting of M subsystems can be 
written in the following form: 

x i  = f i ( t , 2 1  , . . . ,Xi) (2) 

where i = 1,. . . , M ,  zi is the state of the ith subsystem, and 
fi describes the dynamics of the ith subsystem. Note that fi 
can be nonlinear and time-varying. 

= [ zT . . . z: IT. The 
ith isolated subsystem is given by 

Let ni be the dimension of zi and 

x i  = fi(t, 0 ,  . . . , 0 ,  zz) . (3) 

Finally, let B, C Rp be a ball about the origin of radius T ,  

where p is the appropriate dimension (e.g., Zi E B,, implies 

With these definitions, the next theorem is used subse- 

Theorem 3: For the hierarchical system given in (2), as- 

p = 721 + . * ’ + ni). 

quently. 

sume: 
(1) fi is continuously differentiable, 
(2) fi(t, 0, .  . . ,0 )  = 0 for all t 2 0, and 
(3) there exist T > 0 and X < 00 for i = 1,. . . , M such that 

Then z = 0 is a uniformly asymptotically stable equilibrium 
of the hierarchical system (2) if and only if zi = 0 is a 
uniformly asymptotically stable equilibrium of the isolated 
system (3) for i = 1,. . . , M .  
However, Theorem 1.2.1 of [9] states that every semiwalk from vi to U k  also 
contains an undirected path from wi to V k .  

’Parallel edges are edges that start and end at the same vertex. However, 
they do not apply to our analysis, and so we do not consider digraphs with 
parallel edges in this paper. 
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Remark: From [25], if condition (3) from Theorem 3 ap- 
plies when B, = I R p ,  then z = 0 is the globally exponentially 
stable equilibrium of the hierarchical system if and only if 
xi = 0 is the globally exponentially stable equilibrium of 
each isolated system. 

111. LEADER/FOLLOWER FORMATION FLYING 
CONTROL ARCHITECTURE 

A.  Formation Flying Control 

Before addressing the Leader/Follower architecture, we re- 
state our definition of formation flying more compactly using 
the control dependency directed graph (or simply dependency 
digraph), which was introduced by the authors in [21]. 

The vertices of the dependency digraph represent the ve- 
hicles in the formation. A directed edge (vi, vj) is added to 
the digraph if the control action of vehicle j is a function 
of (i.e., depends on) any portion of the state of vehicle 
This dependency can arise in three ways: (1) the control law 
used to generate uj depends explicitly on the state zi, (2) the 
reference trajectory d j  is a function of zi, or (3) the control 
law used to generate uj depends on the feedback control 
action of vehicle i, which in turn depends on ~ i . ~  Note that 
every vertex will have a self-loop since each vehicle's control 
action will depend on its own state. The self-loops are omitted 
from the dependency digraph since they are redundant. Also 
note that the state zi can include translational and rotational 
degrees of freedom of the vehicle. Finally, a digraph similar 
to the dependency digraph is defined in [25]. However, that 
digraph also allows state dependencies due to estimation, and it 
does not assume each subsystem given by zi is independently 
actuated. 

A corresponding closed-loop error dependency digraph can 
be defined based on the inter-vehicle dependencies in (1). An 
edge (vi, vj) is added if hj (.) depends on ei. 

Using the control dependency digraph, formation flying may 
then be defined as follows. This is definition is identical to the 
one given in the Introduction. 

Definition 1: A collection of N vehicles is formationflying 
if the corresponding control dependency directed graph is 
weakly connected. 

B. Leader/Follower Architecture 

Using the control dependency digraph introduced in the 
previous section, the LeadedFollower formation flying control 
architecture is simply defined. 

Definition 2: A collection of vehicles formation flying is 
using a LeaderIFollower architecture if the corresponding error 
dependency graph is acyclic. 

'This formulation of an edge may seem anti-intuitive since an arrow from 
vi to uj implies uj depends on oi. However, this convention is chosen to 
match the convention used in the definitions of trees and arboresences in 
directed graph theory. 

91n the literature, this third type of dependency has only been used in 
conjunction with one of the first two. Also, this dependency is highlighted in 
[161. Finally, the third type can lead to algebraic loops if the control problem 
is not well posed. 

In this definition, no distinction is made based on the control 
synthesis technique. Typically, an L/F controller is designed 
by interconnecting controllers designed for individual vehicles. 
However, an L/F controller may also result from a constrained 
multiple-input, multiple-output synthesis technique. Also, [4] 
and [16] use variations on acyclic digraphs to define more 
restricted forms of L/F. Definition 2 includes the definitions 
of L/F in these references. 

For an edge (vi,wj) in the control dependency digraph, 
vehicle j is called a follower, and vehicle i is called a leader. 
In any L/F algorithm, there is at least one vehicle that does 
not follow another by Theorem 1 (i.e., at least one vertex will 
have zero in-degree). This vehicle is referred to as a formation 
leader. Note that a vehicle can have multiple leaders, but care 
must be taken in this case to ensure that the control problem 
is well posed. lo Multiple formation leaders are also possible 
WI. 

Iv. GENERAL STABILITY CONDITION FOR 
THE LEADER/FOLLOWER ARCHITECTURE 

The asymptotic stability of an equilibrium of a system 
implies that all the states of the system are stable and approach 
the equilibrium. However, often only the relative states of a 
formation are directly meaningful. For example, a deep space 
multiple spacecraft interferometer may require centimeter level 
relative spacecraft positioning, but the inertial position of the 
entire formation may drift arbitrarily. Hence, in the following 
stability theorem for formations, the error dynamics of the 
formation leaders may be ignored. However, if this is done, 
the error states of the formation leaders must be treated as 
exogenous inputs that only depend on time (ie., the formation 
leader error states are effectively a "disturbance"). 

Let e = [ e r ,  The main result of this paper is the 
following theorem. 

Theorem 4: For a formation using a Leader/Follower con- 
trol architecture with error dynamics given by (l) ,  if there exist 
T > 0 and X < 00 such that 

and the origin of isolated error dynamics ii = 
hi(t,Ol,. . . , Oi-1, ei, O i + l ,  . . . , O N )  is asymptotically stable, 
then origin of the formation error dynamics is asymptotically 
stable. 

Pmofi By definition, the LeaderFollower closed-loop error 
dependency digraph is acyclic. By Theorem 2, the vehicles 
(vertices) can be renumbered so that the adjacency matrix of 
the closed-loop error dependency digraph is upper triangular. 
This in turn implies that the error dynamics can be repre- 
sented as a hierarchical system. Finally, since the requisite 

'OThe L/F algorithm discussed in [12] considers a chain of vehicles 
maintaining constant offsets. Except for the fleet leader, each vehicle uses 
the velocity of the vehicle immediately in front of it, and the acceleration 
and velocity of the single formation leader. In this case, each vehicle has two 
leaders. 

3 



assumptions are met, Theorem 3 guarantees the asymptotically 

Theorem 4 can be used to show the stability of the 
LeaderFollower control designs in [28] and [16], though it 
does not apply during the leader switching of [16]. This 
switching results in a reference trajectory that is not con- 
tinuously differentiable. Theorem 4 also extends the stability 
results of [27] to include other than “tree” digraphs. This 
theorem also provides a theoretical framework for extending 
the stability of a specific control design between a single leader 
and a single follower spacecraft, such as in [2], [19] or [29], 
to an entire LeaderFollower formation. 

V. CONCLUSIONS 
By introducing the control dependency directed graph, both 

formation flying itself and the LeaderFollower formation 
control architecture were defined in a straightforward manner. 
The key aspect of a formation is that vehicle states are coupled 
through control laws. This coupling is such that for any vehicle 
either its control actions are dependent upon the state of 
another formation member, or a change in its state affects the 
control actions of another formation member. 

The key aspect of the LeaderFollower control architecture 
is that the control dependency digraph is acyclic. As a result, 
an LF formation is a hierarchical system: the control actions 
of leaders are independent of the followers. Further, the 
general stability theorem presented in this paper theoretically 
justifies the extension of single leaderhingle follower control 
laws to an entire formation. That is, L F  formation control 
design can be reduced to the design of a controller for a single 
follower, which is then copied as many times as necessary. 

We have only used Theorem 2 to show that, through a 
renumbering of subsystem indices, an acyclic system is a 
hierarchical system. Specific algorithms for renumbering can 
be found in [25] and [24]. Also note that there are other forms 
of LeaderFollower-based stability such as string and mesh 
stability [20]. These types of stability apply further constraints 
(e.g. tracking errors do not grow as a disturbance propagates 
through a hierarchy). 

The full version of this paper will include specific con- 
straints on the structure of the vehicle dynamics, control laws 
and state reference trajectories so that the error dynamics have 
the form given in (1). 
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