
Software Safety Analysis Activities During Software Development Phases of The
Microwave Limb Sounder (MLS)

Hui-Yin Shaw
California Institute of Technology, JPL

Pasadena, CA 91 109, USA

Joseph S. Sherif
California Institute of Technology, JPL

Pasadena, CA 91 109, USA
And

California State University, Fullerton
Fullerton, CA 92834, USA

Keywords: Software Safety, Software Analysis Activities, Microwave Limb Sounder and Flight Software
Development Phases

ABSTRACT
Safety analysis is a systematic and orderly process for the acquisition and evaluation of specific information
pertaining to the safety of a system. The Microwave Limb Sounder (MLS) Software Safety Analysis (SSA) is
an integral part of the overall system safety analysis effort. It requires a coordinated effort among all
organizations involved in the development of the instrument software. The purpose of the Software Safety
Analysis is to identify potential hazards to MLS, the Earth Orbiting System Satellite (EOS) and related
launch vehicle facilities and personnel. The results of the SSA will be used to: 1. Affect the requirement and
design of the software system whenever practical to assure control and mitigation of possible system
hazards, and 2. Identify those potential hazards introduced or impacted by the software systems. The MLS
software safety analysis is performed throughout the software life cycle, such that software safety analysis
activities take place in every phase of the software development life cycle. This paper describes the MLS
software safety analysis activities and documents the SSA results. The scope of this software safety effort is
consistent with the MLS system safety definition and is concentrated on the software faults and hazards that
may have impact on the personnel safety and the environment safety.

SOFTWARE SAFETY ACTIVITIES (SSA)
The MLS software safety analysis is tailored from the methodology provided in the NASA Technical
Standard for Software Safety [4]. The tailored SSA objectives and activities are described in this section.
Guidelines provided in the MLS System Safety are given below.
1. The safety criteria and methodology used to classify and rank the potential hazards are taken from MIL-

STD-882C Table 1 for Catastrophic (Category I) and Critical (Category II) Hazards. [3]
2. Software is classified as safety-critical when it is a potential cause of a hazard or will be used to support

the control of a hazard.
3. Hazardous software commands that are only executed during unmanned flight operations are not

regarded as safety risks, but rather as reliability risks with potential of damage to the instrumenthystem
or loss of scientific data.
All hazard reports will have traceability by providing specific source references for each control and
verification approach.

4.

INTRODUCTION
The Microwave Limb Sounder (MLS) is an instrument to be carried on board a NASA Earth Observing
System (EOS) satellite. Its objective is to measure naturally occurring microwave thermal emission from the
limb of Earth’s atmosphere to remotely sense vertical profiles of selected atmospheric gases, temperature
and pressure. Previous and on-going MLS experiments include spacecraft, aircraft and balloon versions.
The space MLS experiment is designed to address a broad range of global change issues. A series of
spectrometers and radiometers covering a range of frequencies will be employed in this MLS experiment.
The instrument software is defined to include all flight software developed for execution in the MLS
instrument flight computer. The electronics test equipment is developed in support of the instrument flight
software development and verification.

FLIGHT SOFTWARE DESCRIPTION
The MLS flight software consists of three parts: Remote Interface Unit (RIU), Master RIU, and Command
and Data Handling (C&DH). Each part is self-contained and operates on a distinct processor within the
Instrument. Each software element falls into two further divisions: ROM-based (firmware) and RAM-based.
Each of the three software parts will have a part that resides in ROM in the processor, and each will have an
uploadable RAM component. One function of each ROM-based part is the ability to load its corresponding
RAM-based software. The RIU is a control node of an onboard serial network that connects the various
instrument sensors and actuators to the C&DH. Nominally, the code in each RIU is identical. The RIU is
configured for its particular sensor/actuator by command directives to the RIU.The Master RIU is the
network controller. It removes the real-time needs of the network from the C&DH.The C&DH software
provides communication between the Instrument and the Spacecraft. The principle communication from the
Spacecraft to the Instrument consists of commands derived from ground directives that the Spacecraft
passes to the Instrument. The Instrument will primarily pass telemetry data from the sensors to the
Spacecraft, which will forward the data to the Ground. The C&DH will also provide primary health
maintenance for the Instrument.

FLIGHT SOFTWARE DEVELOPMENT PHASES
The software development for the EOS MLS Flight Software represents an approximate 3-year effort at a
staffing of three software developers on the average, for that duration. There is a total of approximately
10,000 Lines of Code (LOC). Table 1 summarizes the activities, deliverables and formal reviews associated
with each phase of the flight software development life cycle. Activities of subsequent phases may
commence before the current phase has been completed.

Table 1. Flight Software Activities, Deliverables and Reviews in MLS Development Life Cycle

Software
Requirements
Analysis

Software Design
Analysis

Develop detailed program
requirements

Develop key interface
specifications with the
spacecraft Command Data
Subsystem (CDS) and
with instrument devices

Describe command
definitions and contents

Produce bit-level
specifications for input and
output packets

Complete key timing
studies

Determine methodology
for the software
development

Preliminary timing study

Define major data
structures for the Flight
Program

Define main computational
flow for the Flight Program

Software Acceptance Test
Plan

Finalize timing study

Software
Management and
Implementation Plan

Requirements
Document (SRD)

Software

0 Software Design
Document (SDD)

Timing study memo

Software
Requirements
Review

Software Design
Review

2

Software
Implement.
Phase

Software
Acceptance Test
Phase

Produce Command and
Telemetry Handbook

Define memory map for
the Flight Computer

Determine all external
interrupts and device
addresses

Develop code and deliver
in incremental deliveries
with completed unit tests

Begin work on Software
Users Guide

Develop Software
Acceptance Test Plan
(final)

Complete Software Users
Guide

Perform acceptance
testing and correct all
anomalies

Prepare ROM code for
PROM creation

Softwarecode

Commandand
Telemetry Handbook

Incremental delivery
memos

0 Software Acceptance
Test Plan (ATP)

Note: unit tests shall not
be formalized for the MLS
Flight Software Task.

Software User Guide

0 Acceptance Test

Tested Software

Software Release
Description

Report

Internal Incremental
Delivery Reviews

Informal peer review:
Acceptance Test
Plan (ATP)

Software Delivery
Review

Informal peer review:
User Guide

SSA OBJECTIVES AND ACTIVITIES DURING SOFTWARE DEVELOPMENT PHASES

System Requirements and Design Phase

SSA Objective: Review input from system safety analyses and identify any software that has the potential to
cause a hazard or is required to support control of a hazard.

During this phase, the System Safety Engineer examines the MLS flight and ground support equipment
design, interfaces, test and operations for potential hazards at the system and subsystem levels. The
Preliminary Hazard Analysis (PHA) and the Phase I Safety Assessment Report are produced as result of
this activity. These reports identify catastrophic and critical hazard causes pertaining to pre-launch, launch,
and post-launch periods. The safety criteria and methodology used to classify and rank the potential hazards
of MLS instrument are taken from MIL-STD-882C Table 1 for Catastrophic (Category 1) and Critical
(Category 11) Hazards. 12)
The software hazard analysis is an extension of the system hazard analysis.
The SSA activities in this phase include:

0

Software Requirements Phase

SSA Objectives: Ensure that the development of the software requirements includes the software safety
requirements, which addresses software hazard issues identified in the previous phase. Also Ensure that
appropriate instrument safety requirements flow down to the software safety requirements and that they are
adequate.
The SSA activities in this phase include:

Review the available system safety reports [I, 21
Identify the reported hazards that may be attributed to software faults
Identify the software components that take part in the detection or control of systemkomponent hazards

Follow-up on the concerns identified in System Safety Analyses phase.
Identify critical commands using inputs from the SSA work of previous phase and the system safety
requirements. Critical commands are those commands that are hazardous to the operation or safety of
the instrument if used improperly or untimely
Recommend software safety requirements as appropriate. 0

3

Review the Software Requirements document to make sure that Instrument (system) safety
requirements are adequately addressed in the software safety requirements.

Software Design & Implementation Phase

SSA Objectives: Ensure that the software design and implementation properly incorporate software safety
requirements. And ensure that the appropriate test cases, procedures and success criteria are defined to
ensure proper implementation of the software safety requirements and design.
The SSA activities in this phase include:
a

a

a

a

Software Acceptance Test Phase

SSA Objective: Ensure that the results of the software safety verification are satisfactory.
The SSA activities in this phase include:

a

Instrument Integration Phase and Beyond

Review (sub)system and component Failure Mode Effect Analyses (FMEAs) and Fault Tree Analyses
(FTAs) for hazards that may potentially be attributed to software.
Identify safety-related deficiencies in design and recommend for correction
Ensure that test plan and procedure contain adequate test cases and success criteria for verifying
software safety requirements and design
Analyze software requirements and design changes for safety impact.

Ensure that test cases for software safetylfault-protection requirements have been conducted and that
the success criteria are met
Review software change requests for safety impact
Ensure that test cases for safetylfault-protection requirements are appropriately revised as needed
when changes are made to the software safety requirementsldesign.
Ensure that safety-related information is included in the User Guide or other appropriate documentation.

SSA Objective: Ensure that the results of the software safety-related verifications are satisfactory.
The SSA activities in this phase include:
a Assess proper closure of safety-related software anomalies. Software problem reports having safety

impact are directed to the Systems Safety Office for review.[3]
Review software change requests for safety impact
Ensure that software changes with safety impact are adequately verified in software regression test
prior to submission for system-level test

Results and Findings
The SSA results from each development phase are provided to cognizant engineers in a concurrent
engineering fashion to facilitate timely evaluation of safety issues. The results and findings are reported to
the System Safety Engineer for inclusion in the System Safety Data Package and are summarized in Table
2.

AC KNOW LEDGM ENTS
The work described in this paper was carried out at the Jet Propulsion Laboratory, (JPL), California

Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). The
authors would like to extend their sincere thanks to Michael Girard, Gary Lau and Dennis Flower for their
support of the MLS software safety analyses effort.

References
[I] MLS Preliminary Hazard Analysis IOM 516-DSR-97-059, August, 1997.
[2] MLS Phase I Safety Assessment Report, JPL D-14871, Jan. 1998.
[3] EOS MLS System Safety Plan, JPL D-12980, Sept. 1997.
[4] NASA Technical Standard, Software Safety, NASA-STD-8719.13A. 1999.
[5] NASA Software Assurance Standard, NASA-STD-2201-1993.
[6] JPL Standard for System Safety, JPL D-560, 1999.
[7] MLS Instrument Functional Requirements and Design Constraints, JPL D-13362, 1998.
(81 General Interface Requirements Document (GIRD), GSFC 422-1 1-1 2-01, Jan. 1994.
[9] EOS MLS Instrument Ground Support Equipment User's Guide, JPL D-17011, 1999.

4

Table 2. Summary of SSA Activities and Results by Development Phase

Development Phase
System Requirements and
Design Phase

SNV Requirements Phase

S W Design Phase

Activities
Review the two available system safety
reports [I, 21

Identify the reported hazards in [I, 21 that
may be attributed to software faults

Identify software components that take
part in the detection or control of
systemkomponent hazards, when
information is available.
Follow-up on the concerns identified in
System Safety Analyses phase.

Identify critical commands

Recommend software safety requirements
as appropriate
Ensure that instrument safety
requirements are adequately addressed in
the SRD.

Review system and component FMEA &
FTA analyses.

Results
Analysis of the MLS Flight Equipment and
Ground Operations has identified eight potential hazards. Out of these

eight hazards, two were identified for further investigation for possible
software involvement. Of these two potential software hazards, one was
determined to be a non-issue and the other was followed-up in the
software Requirements Phase (see first item in SMI Requirements
Phase).

No information on required software components to deted/control system
hazard was available during this phase. However this information
became available in the Software Design phase.

One command was identified as critical command. Recommendations
were made, and they were incorporated in the revised Software
Requirements Document.

Instrument safetylfault protection requirements were traced to software
safety/fault protection requirements. Various recommendations were
made to software requirements and changes were incorporated in the
subsequent SRD update.

Command-related requirements are in compliance with system-level
requirements.

Reviewed System-Level FMECA final version and found no shv related
issues, except for those previously identified in the Software Fault Tree
Analysis study. These are software reliability issues (or mission critical)
and are not safety-critical within the context of system safety

Reviewed IGSE FMEA [MLS IGSE-EM Interface FMEA (Rack #I) for
potential software safety issues. No safety issues relevant to software
were reported.

1

SNU Acceptance Test Phase

IT&V Phase

Identify safety-related deficiencies in
design and recommend for correction

Ensure that test plan and procedure
contain adequate test cases and success
criteria for verifying software safety
requirements and design
Analyze software changes for safety
imoact
Ensure software safety test cases are
successful

Review software change requests for
safety impact

Ensure appropriate revision of test cases
as needed

Ensure safety-related information is
included in the User Guide or other
appropriate documentation [8].
Assess proper closure of safety-related
software anomalies

Review software change requests for
safety impact

Ensure adequate software regression test
for software safety-related changes

Reviewed Software Design Document, Software Requirements
Document, and Command and Telemetry Handbook. Discrepancies,
issues and recommendations were noted. These include mission-critical
issues (inconsistencies in the engineering and science channels for the
downlink telemetry’s and command formats). None of these issues
identified are safety-hazardous.

Safety-related test cases are added. These new test cases are traced to
safety requirements I design [5-71.

Reviewed revised SRD and found no negative safety impact from - - .
changed requirements.
(This portion of the analyses is to be reported at the completion of system
integration testing.)

Reviewed IGSE User’s Guide [9] No safety-related operational
constraints were identified.

2

