Environmental Verification Standards for Space Hardware

Alan R. Hoffman and Kristan E. Evans
Jet Propulsion Laboratory, Pasadena, CA USA

Presented at
21st Aerospace Testing Seminar
Manhattan Beach, California
October 21-23, 2003

Topics

- Background
 - JPL Design Principles
 - JPL Flight Project Practices
- Environmental Design and Verification
- Environmental Program Flow
- Environmental Verification Summary
- Environmental Design and Test Margins
- Summary
JPL Environmental Testing Standards

• Design Principles
 • Capture institutional standards for designing, verifying, validating, and operating flight systems

• Flight Project Practices
 • Establish standards of uniformity, where standardization is judged to have significant benefit
 • Capture approaches and methods important to sponsors
 • Incorporate lessons learned that were key to past successes, and where deviations created significant problems
 • Require management review and approval to waive

ARH/KEE-3
08/15/2003

Speaker: K. Evans

JPL Environmental Testing Standards (Cont.)

• Flight Project Practices (Cont.)
 • 6.13 Design and Verification for Environmental Compatibility
 • Flight hardware designed and verified to be fully compatible with all anticipated environments.
 • System level environmental test program: modal, static, random vibration, acoustic, thermal, EMI/EMC and pyroshock
 • Assembly/subsystem level environmental test program: random vibration, acoustic, thermal pyroshock, EMC, and atmospheric

ARH/KEE-4
08/15/2003

Speaker: K. Evans
JPL Environmental Testing Standards (Cont.)
Flight Project Practices (Cont.)

6.13 Design and Verification for Environmental Compatibility (Cont.)

- Test Authorization: project approved and certified
- Test Execution: approved procedures qualification and flight acceptance testing
 - Protoflight testing all flight articles
 - Qualification testing one flight unit followed by flight acceptance testing all other flight units

- Test Configuration
 - All hardware environmentally tested before system level environmental tests
 - System level environmental tests include full complement of flight hardware

*Post-Test Documentation: Test results documented including exceptions
*Test Certification-Review of test objectives and requirements satisfied by project
JPL Environmental Testing Standards (Cont.)
Flight Project Practices (Cont.)
- 6.13 Design and Verification for Environmental Compatibility (Cont.)
 - Document Standards (ie implement this Flight Project Practice)
 - Spacecraft System Dynamic and Static Testing
 - System Thermal Testing
 - Assembly and Subsystem Level Environmental Verification

Typical Environmental Program Flow

Speaker: K. Evans
08/15/2003
TYPICAL TEST REQUIREMENTS AND MARGINS

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Flight Acceptance</th>
<th>Protoflight</th>
<th>Qualification</th>
<th>Protoflight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustics</td>
<td>MEFL</td>
<td>MEFL + 3dB</td>
<td>MEFL + 3dB</td>
<td>MEFL + 3dB</td>
</tr>
<tr>
<td>Amplitude</td>
<td>1 min</td>
<td>1 min</td>
<td>2 min</td>
<td>1 min</td>
</tr>
<tr>
<td>Duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random Vibration</td>
<td>MEFL</td>
<td>MEFL + 3dB</td>
<td>MEFL + 3dB</td>
<td>MEFL + 3dB</td>
</tr>
<tr>
<td>Amplitude</td>
<td>1 min/AXIS</td>
<td>1 min/AXIS</td>
<td>2 min/AXIS</td>
<td>1 min</td>
</tr>
<tr>
<td>Duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyro Shock</td>
<td>NONE</td>
<td>MEFL + 3dB</td>
<td>MEFL + 3dB</td>
<td>2 firings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 shock/AXIS</td>
<td>2 shocks/AXIS</td>
<td>(dominant</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>shock sources)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 firing (other sources)</td>
</tr>
</tbody>
</table>

MEFL: Maximum Expected Flight Level

Speaker: K.Evans
TYPICAL TEST REQUIREMENTS AND MARGINS (CONT.)

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Flight Acceptance</th>
<th>Assembly</th>
<th>Qualification</th>
<th>Protoflight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Allow Flt + 5°C or 35 to 75°C or Allow Flt +20 & -15°C</td>
<td>-35 to 75°C or Allow Flt +20 & -15°C</td>
<td>Temp. within Allowable Flt & not to exceed assembly PF.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cycles: 1-10 depending on mission cycles. Electronics Dwell: 60 hr. hot / 8 hr. cold</td>
<td>Cycles: 1-10 depending on mission cycles. Electronics Dwell: 144 hr. hot / 24 hr. cold</td>
<td>Dwell time and Number of Thermal Cycles are Mission Dependent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mechanisms Dwell: 24 hr. hot / 24 hr. cold</td>
<td>Mechanisms Dwell: 24 hr. hot / 24 hr. cold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure Profile</td>
<td>None</td>
<td>1.5 X MAX dP/dt</td>
<td>1.5 X MAX dP/dt</td>
<td>Facility Limited</td>
</tr>
<tr>
<td>EMC</td>
<td>None</td>
<td>MEFL + 6 dB</td>
<td>MEFL + 6 dB</td>
<td>MEFL + 6 dB</td>
</tr>
<tr>
<td>RF Susceptibility</td>
<td>None (grounding/ isolation only)</td>
<td>Freq. Dependent Margin > 60 dB</td>
<td>Freq. Dependent Margin > 60 dB</td>
<td>Freq. Dependent Margin > 60 dB</td>
</tr>
<tr>
<td>Emissions</td>
<td>None</td>
<td>MEFL - 6 dB</td>
<td>MEFL - 6 dB</td>
<td>MEFL - 6 dB</td>
</tr>
<tr>
<td>Radiated</td>
<td>(grounding/ isolation only)</td>
<td>Freq. Dependent</td>
<td>Freq. Dependent</td>
<td>Freq. Dependent</td>
</tr>
</tbody>
</table>

Speaker: K. Evans

Thermal Margins Comparisons

Besides more conservative overall margin for JPL, there is another significant difference. The JPL approach requires the assessment of uncertainties in the definition of worst-case thermal scenarios.

ARH/KEE-12
08/15/2003
Summary

- Environmental Design and Verification Standards for flight systems have been evolving at JPL and other NASA centers for the last 40 years.
 - JPL documenting in institutional standards imbedded in Flight Project Practices

- System level environmental test program: modal, static, random vibration, acoustic, thermal, EMI/EMC and pyroshock

- Assembly/subsystem level environmental test program: random vibration, acoustic, thermal pyroshock, EMC, and atmospheric

Backup
<table>
<thead>
<tr>
<th>TERMINOLOGY</th>
<th>BASIC</th>
<th>EUROPEAN</th>
<th>OTHER TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picaport</td>
<td>Part</td>
<td></td>
<td>component, element specific, item name</td>
</tr>
<tr>
<td>Assembly</td>
<td>Assembly (pt)</td>
<td></td>
<td>component, slice, tray, unit, element, trackbox</td>
</tr>
<tr>
<td>Subassembly</td>
<td>Assembly (pt)</td>
<td></td>
<td>component, slice, tray, unit, element, trackbox</td>
</tr>
<tr>
<td>Assembly</td>
<td>component, unit, section (attitude axis)</td>
<td></td>
<td>unit, element, trackbox instrument</td>
</tr>
<tr>
<td>Subsystem</td>
<td>Subsystem, instrument, module, structural assembly</td>
<td></td>
<td>unit, element, trackbox, instrument system</td>
</tr>
<tr>
<td>System</td>
<td>Payload, spacecraft, laboratory, detector, solar array</td>
<td>spacecraft</td>
<td>spacecraft, instrument, subsystem</td>
</tr>
</tbody>
</table>

Suggestions: all system, instrument, payload, issue 1) slice, tray, synonymous with subassembly, 2) make assembly brief up front in doc. list.

Speaker: K. Evans

08/15/2003