
Model-Based Code Generation:
Past, Present & Future
Nicolas Rouquette, Gregory Horvath

JPL Mathworks Day
October 29 2003

n uverview
History of Model-Based Code Generation
Past Activities
H Deep Space 1’s 13th Technology
Present Activities

Deep Impact FP System Design

Fu t u re Possi bi I it ies
MDSand beyond ...

Conclusions

MDS

0

U

0

0

U

0

v
)

m
m

 I

U

0

I
I

0

0

U

v
)

I
I

S

0

E 0

-

a

od L

0

S

0

I

Statecha rts
Statecharts have long been used as a tool for
modeling system behavior
Using statecharts as a software modeling too
has gained popularity as of late
Current architectural schemes promote
system-level analysis

w Component Based Architecture

Statecharts facilitate this type of analysis
w C2SADEL - UCIS C2 ADL

Code Generation

What is Software Code Generation?
Write software through a mechanical
process

What is Model-Based Code generation?
Separation of concerns

+ Model: information about the application
domain & architecture

+ Process: algorithms and approaches used to
generate the software

Why Code Generation?

Labor Constraints
H Building software systems is a labor

intensive process
Time Constraints

H Building a software system takes time,
building a good one takes longer

Shift in Development Focus
Concentrate on system-level design rather
than implementation details

a,

i

Deep space

Deep Space I

I

H New Millenium Project - Launched 10/98
H Testing ground for 12 new technologies

+ Ion Propulsion
+ Remote Agent
+ AutoNav
+ MICAS

Extended Mission Lasted through 2001
+ Borrelly flyby 9/01

DSI's 1Yh Technology (cont)

DSI FP successfully employed Model-Based
Code Generation techniques (13th technology)

Response code completely auto generated from

Code Generation allowed for:
Reuse of the Pathfinder FP System Design
Full generation of mission-specific responses
Success despite severe time constraints

statecharts with no post-processing

DSI Code Generation Strategy
Design Inputs

H Specifications
+ Structural Definition
+ Information Flow

Statecharts

S peci f ica t i o n Statecha rt
+ Behavioral Definition

Context Inputs
Software Interfaces

w Summary of all
Designs

J,

Source code, Differences, Test drivers, Cheat sheets, etc. I I

A Caveat ...
I Code Generation seems to follow a 90/10 rule

90% of user needs are met by the tool
lO0/o achievable through post-processing or
custom tool modifications

*Access to code generator source is
essen t ia I
DSI FP Team performed moderate extensions
to the Stateflow Coder Toolkit

Some of these extensions later became
part of the default tool configuration

+ Lexicographic state ordering, instrumentation
telemetry

I
I

S

0

m- U

L

a,
a,
W

>

I

S

a
)

a
)

U

0

v
)

Deep Impact (DI)

Discovery Mission
Fixed cost

Scheduled for launch in January 2005
Two Spacecraft

~ 3 8 0 k g Impactor steers itself to impact
comet Tempel/l with help of AutoNav SW
Flyby Spacecraft trails behind Impactor
sending science data and images of impact
back to earth

D I Fault Protection

FP System uses model-based
techniques developed on DSI

Process extended, tailored for D I
Statecharts are still the prime modeling
tool for fault responses
D I extends the generation
include some autonomy in
statechart design as well

process to
the response

On DSI, all statecharts were hand-made

D I Code Generation Strategy

I .c

Statechart

t
Response Code

Three step process
1.

2.

3.

Developer creates
specification and
generates ‘skeleton’
statechart
Specific behavior of
response defined
Response code
generated directly
from statechart

DI Results
For DI, code generator modification was not
necessary

H However, a fair amount of post-processing is done
Quite efficient
I On DI, 40 responses were defined
H FP team = 5 members

+ Impressive for a system that interacts with
every CSC

I Same results could not be realized without code
generation techniques

Mission Data Systems
(M W

Attempt to develop a widely reusable
core set of FSW components
Includes flight, ground, test, and sim
ca pa bi I i ties
CAR based system design

CAR = Component ARchitecture
Models are key!

MDS Code Generation Concepts
MDS uses code generation system-wide,
not just in a particular subsystem

I n fact, MDS has no notion of subsystems
Flexibility of Stateflow allows for a
myriad of applications

Stateflow defines a C-language target
MDS defines custom targets to arbitrary
languages

+ MDS-style C++
+Java
4 XML

MDS Code Generation Activities
statef lowstatechart Example1

XML CODER SF CODER

ii C Code (3 Java Code 0 C++ Code

FIGURE 1 : Sample view of XML Exporter in the Design and Implementation Process

n I n m . Loae beneration:
Future Pursuits

XML Code Generator
Extension to Stateflow Coder Tool box
Creates tool-neutral representation of
source statechart

Includes information about Stateflow-
defined order of evaluation of

+ Multiple parallel child states
+ Multiple transitions emanating from a common

Partitioned such that analysis can exclude
Stateflow-imposed properties if desired

source node

XML Code Generator (2)
XML descriptions are often not the final
product
H Can theoretically use XML descriptions to

generate code in any language
XML artifacts permit real-time decoding
of MDS instrumentation telemetry
H All necessary preprocessing done during

XML generation - No extra steps necessary

t
I

MDS Themes

I n MDS, Models are central
H Models tie everything together

MDS will use models as the basis for
configuring a FSW deployment
Reuse of a complex system like MDS
necessitates a utoma tion
H Code generation helps keep down

development costs

Conclusions
Model-based design and system-level
analysis becoming more prevalent
As software systems increase in size,
automation becomes essential
Marriage of the two concepts presents a
powerful method for system design,
implementation, and analysis required
by the high-performance, complex
systems of tomorrow

Links

Deep Space I Mission Homepage
H http://nmp.ipl .nasa.gov/dsl

Deep Impact Mission Homepage
H http://deepimpact.jpl. nasa.qov

MDS Homepage
H http://x2000.jpl. nasa .gov/flash/technology/mds. html

http://nmp.ipl
http://deepimpact.jpl
http://x2000.jpl

