Model-Based Code Generation:
Past, Present & Future

Nicolas Rouquette, Gregory Horvath

JPL MathWorks Day SPL

Jet Propulsion Laboratory

October 29 2003 o

- Overview

#History of Model-Based Code Generation
#Past Activities
» Deep Space 1's 13t Technology

#Present Activities

= Deep Impact FP System Design
= MDS

®Future Possibilities
= MDS and beyond...

#Conclusions

istory of Model-Based Code
Generation & Development

" Statecharts

Statecharts have long been used as a tool for
modeling system behavior

Using statecharts as a software modeling tool
has gained popularity as of late

Current architectural schemes promote
system-level analysis
= Component Based Architecture
= C2SADEL - UCIs C2 ADL

Statecharts facilitate this type of analysis

- Code Generation

#What is Software Code Generation?

s Write software through a mechanical
process

#What is Model-Based Code generat|on7

= Separation of concerns

* Model: information about the application
domain & architecture

+ Process: algorithms and approaches used to
generate the software

| Why Code Generation?

#Labor Constraints

= Building software systems is a labor
intensive process

‘ #Time Constraints

= Building a software system takes time,
building a good one takes longer

4 Shift in Development Focus

» Concentrate on system-level design rather
than implementation details

3 -
e e

Code Generation: Past
Activities

#Deep Space 1
= New Millenium Project — Launched 10/98

m Testing ground for 12 new technologies
+ Jon Propulsion
+ Remote Agent
+ AutoNav
+ MICAS

| 4

= Extended Mission Lasted through 2001
+ Borrelly flyby 9/01

(N
NASA

- DS1’s 13™ Technology (cont)

DS1 FP successfully employed Model-Based

Code Generation techniques (13t technology)

= Response code completely auto generated from

statecharts with no post-processing

Code Generation allowed for:

= Reuse of the Pathfinder FP System Design

= Full generation of mission-specific responses

= Success despite severe time constraints

Design Inputs

| .
= Specifications
& Structural Definition

+ Information Flow
s Statecharts

+ Behavioral Definition
Context Inputs
s Software Interfaces

= Summary of all
Designs

Specification Statechart

Source code, Differences, Test drivers, Cheat sheets, etc...

- A Caveat...

4 Code Generation seems to follow a 90/10 rule

= 90% of user needs are met by the tool

= 10% achievable through post-processing or
custom tool modifications

= Access to code generator source is
essential

DS1 FP Team performed moderate extensions
to the Stateflow Coder Toolkit

s Some of these extensions later became
part of the default tool configuration

+ Lexicographic state ordering, instrumentation
telemetry

de Generation:
Present Activities

-- Deep ImpaCt (DI)

#Discovery Mission
» Fixed cost

#Scheduled for launch in January 2005

#Two Spacecraft

» ~380kg Impactor steers itself to impact
comet Tempel/1 with help of AutoNav SW

» Flyby Spacecraft trails behind Impactor
sending science data and images of impact
back to earth

| ” DI Fault Protection

#FP System uses model-based
techniques developed on DS1

m Process extended, tailored for DI

#Statecharts are still the prime modeling
tool for fault responses

#DI extends the generation process to
include some autonomy in the response
statechart design as well

= On DS1, all statecharts were hand-made

NasA

. @ Three step process
1. Developer creates

~ DI Code Generation Strategy
specification and

~~ Specification
*A \:
\
! ‘generates ‘skeleton’

NN statechart

2. Specific behavior of
: response defined

3. Response code
generated directly

Response Code from statechart

\
|
I
I

Statechart

| Results

@ For DI, code generator modification was not
necessary

» However, a fair amount of post-processing is done
@ Quite efficient

= On DI, 40 responses were defined

s FP team = 5 members

» Impressive for a system that interacts with
every CSC

s Same results could not be realized without code
generation techniques

Mission Data Systems
(MDS) ‘

®Attempt to develop a widely reusable
core set of FSW components

#Includes flight, ground, test, and sim
capabilities

#CAR based system design
= CAR = Component ARchitecture

#Models are key!

Code Generation Concepts

@MDS uses code generation system-wide,
not just in a particular subsystem

= In fact, MDS has no notion of subsystems

#Flexibility of Stateflow allows for a
myriad of applications
a Stateflow defines a C-language target
= MDS defines custom targets to arbitrary
languages
+ MDS-style C++

+ Java
+ XML

T,

N

A

® MDS Code Generation Activities

stateflowStatechartExample1

SF CODER XML CODER C++ CODER

- XML -~
P - - = ~ ~
/’ \\
7 ~

7’ N
rd | NG

I :

|

Java Code C++ Code

FIGURE 1: Sample view of XML Exporter in the Design and Implementation Process

' Code Generation:
Future Pursuits

| Code Generator

#Extension to Stateflow Coder Toolbox

#Creates tool-neutral representation of
source statechart

m Includes information about Stateflow-
defined order of evaluation of

+ Multiple parallel child states

+ Multiple transitions emanating from a common
source node

= Partitioned such that analysis can exclude
Stateflow-imposed properties if desired

XML Code Generator (2)

| # XML descriptions are often not the final
product

= Can theoretically use XML descriptions to
generate code in any language

#®XML artifacts permit real-time decoding
of MDS instrumentation telemetry

= All necessary preprocessing done during
XML generation — No extra steps necessary

DS — Next Generation FSW

Telecommand

Measurements
Hardware Proxies

Sense

Act

~

Goals

Acﬁbns:

> Telemetry)

‘ MDS Themes

#In MDS, Models are central
= Models tie everything together

#MDS will use models as the basis for
configuring a FSW deployment

#Reuse of a complex system like MDS
necessitates automation

= Code generation helps keep down
development costs

- Conclusions

 @Model-based design and system-level
analysis becoming more prevalent

#As software systems increase in size,
automation becomes essential

#Marriage of the two concepts presents a
powerful method for system design,
implementation, and analysis required
by the high-performance, complex
systems of tomorrow

" Links

#Deep Space 1 Mission Homepage

= http://nmp.jpl.nasa.gov/ds1

#Deep Impact Mission Homepage
» http://deepimpact.jpl.nasa.gov

#MDS Homepage

= http://x2000.jpl.nasa.gov/flash/technology/mds.html

http://nmp.ipl
http://deepimpact.jpl
http://x2000.jpl

