
10/21/2003

JPL, CMU, and Sun’s Evaluation Effort
of Real-Time Java

Mark Indictor
Mark. Indictor@jpl.nasa.gov

This research was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and
Space Administration.Reference herin to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise, does
not constitute or imply its endorsement by the United States Government or
the Jet Propulsion Laboratory, California Institute of Technology.

I J

CMU
MBVKM 1

mailto:Indictor@jpl.nasa.gov

L

0

rc

E

L

0

u-
*

m Q

a,
m

-
 L

3

d= 0
cn

-
c

I

t- o

rc

0

m
 t
m E

a,

2
3

L

Eo% E

m

.- I
1

n

0

a

r
 I

L

rc

0

cn
a,
m

.- L

-

Q
F

.
s
m

I

0

0

Accomplishments: FY03 L

Rocky 7 rover in the JPL Mars Yard
with camera mast raised

Completed first proof-of-concept, RTSJ
implementation of a small subset of the
MDS (Mission Data System) architecture
- Developed an operational rover system
- Developed a suite of performance test

programs that can be used to compare RTSJ
with C++ implementations

effective use of available tools.
- Acquired experience and information about

- Test suite provided basis for experiments
comparing the twc

Experienced the pa
new technology

platforms.

n of early adoption of

1 012 1 /2003 CMU
MBI/KM3

Acco m p I i s h m e n t s : FY 0 3 (cont’d) JPL

Recognized need for standards-based benchmark suite to characterize
RTSJ’s performance
- Began test suite with cooperation and input from

Adward Pla, AFRLBoeing
Greg Bollella, Sun Microsystems
Jan Vitek, Open Virtual Machine (OVM)
Angelo Corsaro: rtjPerf

- Suramadu was born!

Created a preliminary report describing:
- Golden Gate’s first-year experiences
- Preliminary performance-suite results
- Expectations and recommendations for the future

1 012 1 /2003
CMU MBI/KM4

Golden Gate: Goals JPL

Generate full report for Mars Science Laboratory (MSL)
- R&TD efforts to be captured in FY04 report

Completed performance suite results
Further documentation of experiences
Recommendations for continued flight software development using RTSJ

Create a positive influence on vendors
- Promote an environment of cooperation and support
- Help guide vendors toward developing tools that are ...

Capable of delivering acceptable metrics for mission-critical applications
Verifiable and reliable

Unified performance suite hand-off
- Evolve suite to be general, easily comprehended, and extensible
- Adapt for integration with Open Group TETware test bed
- Aim for hand-off of test suite to Open Group

Lay groundwork for management by industry consortium

10/21/2003
CMU MBI/KM5

‘3 u ramad u ” JPL

(Suramadu: A bridge connecting the islands of Java and Madura in East Java)

Sounds like a cocktail: Madura and Java on the Rocks?

*** but seriously ***

Represents connection and integration: a bridge
- Transitions toward a unified, industry responsive, and standards

- Comprehensively tests areas of greatest importance
- Provides answers that allow critical decisions to be made

based benchmarking suite

10/21/2003
CMU MBI/KMG

Suramadu
RTSJ Snecific JP

Boundary
- JNI Overhead
- Crossing the hard/soft/non real-time boundary

Memory
- Scope memory entry and exit
- Allocation in Immortal
- Allocation in Scope
- Allocation in Heap

Latency
- Sync h ron iza t ion
- Queuing
- Inheritance
- Class Loading

10/21/2003 CMU MBVKM7

Su ramad u
Cross-Platform ComDarisons JP

Timeliness
- Jitter

Throughput
- Floating Point
- Integer
- Logical

Memory
- Allocation and Freeing
- Footprint

On disk
RAM

10/21/2003 CMU MBI/KM8

Suramadu
support JPL

. support

- High resolution time measurement

- Statistical calculation

- Collection of results and output

- Test and thread execution abstraction

1 012 1 /2003
CMU MBI/KMS

Experimental Resu Its JPL

I Comparisons performed using A NOVA on multiple result sets I
RTSJ Specific
- Jitter:

Tests at IOms and 500ms periods with 0, I , and IO background threads
- At such low loading, no difference in RT and NHRT threads.
- Jitter range from 89.7 to 2294.78ns (late)
- Need to load more heavily (more background threads) and retest

RTSJ to C++ Comparison
- Throughput: Comparison with C++ indicates

C++ 473% faster for logical shifting operations
C++ 428% faster for integer arithmetic operations
C++ 224% faster for floating point operations
- Hardware FPU could account for difference

- Startup Time:
Important after safing a spacecraft
Java 150% faster than C++
- Attributable to Vx Works symbol table loading

10/21/2003
CMU MBVKM 1 0

Analysis JPL

On-Disk Footprint
- L inw kernel smaller than 'VxWorks kernei
- Java Virtual Machine Larger than VxWorks libraries
- Java application image size larger than C++

In-Memory Footprint
- VxWorks/C++: 156.3Kb
- Java: 7780Kb

Throughput
- Java Native Interface (JNI) Overhead

Copy semantics expensive
Location of JNI in system architecture critical

Java needs support for direct unmapped memory and 110 access
- Moving higher in architecture reduces number of calls, increases amount of native (C/C++) code

- Specification is vague on this issue.
- JTime supports direct memory access as long as it is mapped

- Byte Code Interpretation
Java slower than C/C++
Java needs AOT or JIT!

1 012 1 /2003
CMU MBI/KMI 1

FY03 Findings JPL

Timeliness in JTime is comparable to that of C/C++

Throughput in JTime is two to five times slower in interpreted Java
- AOT and/or JIT technology is required for viability

RTSJ needs a story describing direct access of unmapped memory
and I/O space
- Java abstraction of OS for writing device drivers

RTSJ requires changing programming model from that of standard
Java programming
- Manual memory management (scope scratchpads and pools)
- Arguments passed by value (copy semantics) across RT/NRT boundary

1 012 1 /2003
CMU MBVKM 12

An a I y s is (cont’d)

Tool Maturity
- Early adoption: problems are inevitable
- Up-close and personal vendor support is vital

TimeSys was very responsive

- Functionality as yet unimplemented
Direct unmapped memory and I/O access
RT Scheduler runnable in user space (not as root)
Debugging and Profiling interfaces
Scope-safe class libraries
- java.util.*
- java.math.*

. . . -

AOT and JlT technologies

1 012 1 /2003 CMU
MBI/KM13

Plans for FY04 JPL

Continuing test suite development
- Implement more of the benchmarks
- Add more benchmarks
- Refine existing benchmark specifications

Re-factor MDS architecture
- Modify model to better define problem domain
- Consider RTSJ strengths and limitations in mapping problem domain to solution
- Identify areas where the RTSJ (or its implementation) fail to meet design needs
- Contribute ideas toward extending RTSJ moving forward

Devise the next round of experiments
- Focus on System Engineer’s concerns
- Design experiments to maximize discovery

Focus on areas closer to boundary conditions
Include more, and more effective, comparisons between RTSJ and C++

10/21/2003
CMU MBVKM 14

m

0

0

Tim elin ess
Jitter

s u ram ad u .tests .j itter. Java J itterTest

Measures the jitter of regular Java Threads.

This test It is NOT specific to the RTSJ specification, and may freely be used on regular J2ME and J2SE VMs.

PURPOSE: This test provides an indication of timeliness in a periodic thread, both with and without competing non-
real-time threads running in the system.

DESIGN: Given a periodic value for a thread, this test measures the actual time between periods. A periodic thread
is set up, and a time measurement is taken immediately upon entering its run() method. The difference between the
measurements taken indicates the actual time between the beginning of execution of the actual thread's code. Any
deviation from the required period is 'jitter'. At the conclusion of the test, statistical calculations are performed upon
these time measurements, and a summary is printed.

ASSUMPTIONS: This test uses regular Java threads, and does not require an RTSJ implementation in order to run.
It is used as a baseline on which to compare RTSJ performance.

OUTPUTS: The output contains the maximum, minimum, median, mean, standard deviation and mode statistical
measurements on the collected data.

EXAMPLES: None.

ORIGINS: This test is based upon ideas from the Boeing/AFRL and the Sun's rtpresto suites.

1 0/2 1 /2003 CMU MBI/KMI 6

Timeliness
Jitter JPL

s u ram ad u. tests.j itter. RTJava J itterTes t

Measures thejitter of Realtime Threads and NoHeap Realtime Threads.

This test is specific to the RTSJ specification, and may not be run under regular J2ME and J2SE VMs.

PURPOSE: This test provides an indication of timeliness in a periodic thread, both with and without competing non-
real-time threads running in the system.

DESIGN: Given a periodic value for a thread, this test measures the actual time between periods. A periodic thread
is set up, and a time measurement is taken immediately upon entering its run() method. The difference between the
measurements taken indicates the actual time between the beginning of execution of the actual thread's code. Any
deviation from the required period is 'jitter'. At the conclusion of the test, statistical calculations are performed upon
these time measurements, and a summary is printed.

ASSUMPTIONS: This test uses RTSJ Real-time and NoHeap Real-time threads, and requires an RTSJ
implementation in order to run.

OUTPUTS: The output contains the maximum, minimum, median, mean, standard deviation and mode statistical
measurements on the collected data.

EXAMPLES: None.

ORIGINS: This test is based upon ideas from the Boeing/AFRL and the Sun's rtpresto suites.

1 012 112003
CMU MBIIKM17

Throughput
Floating Point Arithmetic PL

suramadu.tests.throug hput.FloatingPoint

Measure Java's arithmetic capabilities to measure throughput during
computationally intensive operations with floating point numbers.

PURPOSE: To measure the Java and RTSJ computational throughput with floating point arithmetic operations.

DESIGN: This class does floating point operations - 30 operations in one call to doOps(). The arguments to that
function are simply to make sure that the compiler can't optimize away any operations. x3 must not be zero.

ASS U M PTlO NS:

OUTPUTS:

EXAMPLES:

ORIGINS:

10/21/2003 CMU MBVKM18

Throughput
Integer Arithmetic JPL

suramadu.tests.throug hput.IntegerOps

Measure Java's arithmetic capabilities to measure throughput during
computationally intensive operations using integers.

PURPOSE: To measure the Java and RTSJ computational throughput with integer arithmetic operations.

DESIGN: This class does integer arithmetic operations - 30 operations in one call to doOp()s. The arguments to that
function are simply to make sure that the compiler can't optimize away any operations. n3 must not be zero.

ASS U M PTl ONS :

OUTPUTS:

EXAMPLES:

ORIGINS:

10/21/2003 CMU MBI/KM19

Throughput
Logical Shifts PL

su ram ad u. tests. th roug h put.S h ifti ng

Measure Java 's arithmetic capabilities to measure throughput during
computationally intensive operations with shift operations

PURPOSE: To measure the Java and RTSJ computational throughput with shift operations.

DESIGN: This class does shift operations - 30 operations in one call to doOps(). The arguments to that function are
simply to make sure that the compiler can't optimize away any operations. in the navigation of a spacecraft.

ASS U M PTI 0 NS :

OUTPUTS:

EXAMPLES:

ORIGINS:

10121 12003
CMU MBI1KM20

Memory
Scope Memory JP

suramadu.tests.memory.ScopeMemoryTest

Tests the cost of entering I and exiting - ScopeMemo y.

PURPOSE: Tests the cost of entering and exiting ScopeMemory

DESIGN:

ASS U M PTlO N S:

OUTPUTS:

EXAMPLES:

ORIGINS:

1 0/2 112003 CMU MBI/KM2 1

Memory
footprint PL

suramadu.tests.memory.VMRuntimeSize

Measure the memory footprint of a Java application.

PURPOSE: Measure the memory footprint of a Java application.

DESIGN: This object does not actually test the size of the VM. What it does instead is start and stay active for a
configurable amount of time so that an external shell script can measure memory usage.

ASS U M PTI 0 N S :

OUTPUTS:

EXAMPLES:

ORIGINS:

10/21/2003 CMU MBI/KM22

Boundary
JNI Overhead PL

suramadu.tests. b0undary.J NlOverhead

Measures the overhead involved in making a simple JNI call

PURPOSE: This test is particularly pertinent in calculating the error of high-resolution time measurement. Since it
takes time to measure time, the results of this test can be used to correct for this overhead.

DESIGN: The JNI native method to retrieve CPU machine cycles is called repeatedly, and the value logged in an
array. The differences between the first and all subsequent, consecutive calls is calculated, and statistical calculations
made from these values. Since each difference represents the time it takes to return from the JNI call and then call it
again, the total value can be considered the entire JNI call overhead even though it was measured in the reverse
order as is considered normal.

ASSUMPTIONS: No attempt is made in this test to measure specific JNI callback or data copying methodologies.

OUTPUTS: The output contains the maximum, minimum, median, mean, standard deviation and mode statistical
measurements on the collected data.

EXAMPLES: None.

ORIGINS: This test was conceived and written by JPL and the Golden Gate Team.

10/21/2003
CMU MBVKM23

support
Statistical Calculation

suramadu.util.stats.*

Provide statistical analysis support for all tests.

StatPack Static helper class to compute various statistical values of collections and arrays.

Histogram
of various kinds of numeric data.

A class to facilitate the creation of a histogram data structure for examining the distribution

HistogramBinSpec
specification for a single bin in a Histogram. It is the duty of the HistogramBinSpec to enforce consistency across all
HistogramBins added to it, making sure that there are not overlaps, etc.

This class is a container for HistogramBin classes. Each HistogramBin defines the

Histogram Bin
criteria for being a member of this bin. By calling this classes isMember() method, it can be immediately determined
whether a particular value is a member of this bin.

This class represents a single bin in a histogram. It contains the complete definition of the

Counter A counter object suitable for storing in a Map

1 0/2 1 /2003 CMU
MBI/KM24

support
High Resolution Time Measurement

suramadu.util.time.*

Provide extremely high resolution time measurement capability.

Time
the number of machine cycles between events being measured. It contains two native methods, getCycles(), and
getTime() for retrieving low level time measurements from the underlying operating system. (See method
descriptions for details of their functionality).

This class is a utility class for measuring and calculating very high-resolution time based on

Cloc kspeedGHz
the Time class that allows it to calculate real-time results from cycle-count data. NOTE: This is a C sourced
executable file.

A utility for calculating the clock speed of the test bed’s processor. Provides the timebase to

10/21/2003 CMU MBVKM25

suppot?
Test and Thread Execution Abstraction

s u ramad u. uti I .exec.*

Provides a group utilitiy classes and a framework for standardizing and
simplifving the task of writing RTSJ Tests

JavaThreadLauncher Utility used to launch threads. It requires a Runnable object the type of thread you want to
run in and the priority to run at. It will create the Thread, SchedulingParameters, Releaseparameters
MemoryParameters MemoryArea and ProcessingGroupParameters. It will the start and join to the thread.

PeriodicJavaThread
the RTSJ. It allows both the period and the priority to be set.

Simulates the periodic capabilities of a RealtimeThread and a NoHeapRealtimeThread in

RTThreadLauncher
want to run in and the priority to run at. It will create the Thread, SchedulingParameters, Releaseparameters
MemoryParameters MemoryArea and ProcessingGroupParameters. It will the start the thread.

Utility used to launch realtime threads. It requires a Runnable object the type of thread you

Test P ro pe dies
input properties (loaded from a properties file with naming convention of <class name>.properties), and output
properties (set from test implementation). Outputting raw and calculated data is supported both in raw data as well as
summary format.

The TestProperties class supports the creation and maintenance of a hierarchical set of

10/21/2003 CMU MBI/KM26

