
i

s

David Gilliam, John Powell
California Institute of Technology,
Jet Propulsion Laboratory

Matt Bishop
University of California at Davis

California Institute of Technology, Jet Propulsion Lab

JPL

Acknowledgement

This research was carried out at the Jet
Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration
The work was sponsored by the NASA Office of
Safety and Mission Assurance under the
Software Assurance Research Program lead by
the NASA Software IV&V Facility
This activity is managed locally at JPL through
the Assurance and Technology Program Office

David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 2 January 8,2004

Current Collaborators

H David Gilliam - Principle Investigator, JPL
H John Powell - JPL Software Engineer

Matt Bishop - Associate Professor of
Computer Science, University of California at

H h tt p ://rss r. j pl . n asa . g ov

January 8,2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis)

JPL

3

Agenda

Problem
Software Security Assessment
Instrument (SSAI)
Final

JPL

David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 4 January 8,2004

JPL

Goal: Secure Computing

Secure Computing Environment

Reduce security risk to the computing

Secure Systems
Secure Data

environment by mitigating vulnerabilities
the software development and maintena
life cycles
Provide an instrument and tools to help
reduce vulnerabilities and exposures in

I

software
To aid in complying with security
requirements and best practices

5 David Gilliam, John Powell (JPL), & Matt Bishop (UC Da January 8,2004

JPL

I> Problem
Software Sec
Instrument (S
Final Notes

January 8,2004

urity
SAI)

As lsessment

David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 6

JPL

BAD

w Lack of Experts: Brooks -
cl “No Silver Bullet” is still valid

Poor Security Requirements
w Poor System Engineering

w Cycle of Penetrate and Patch

(IEEE Software Engineering, 1987)

Poor
Leads to poor design, coding, and testing

Piecemeal Approach to Security Assurance

David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) January 8,2004 8

E

a,

o
m

a
-

m
=

m
m

 t

h

m

.
3

2 n
 0

c
,

JPL
Reducing Software Security Risk
Through an Integrated Approach

Software Vulnerabilities Expos
Infrastructure to Security Risks

Goal: Reduce Security Risk in Software and
Protect IT Systems, Data, and Infrastructure

*Security Training for System Engineers and Developers

.Software Security Checklist for end-to-end life cycle

; -\
/ \

\
I

I \
\
\
I
I
I

8
8
/

Discovered attacks not been seen in the wild
Known attacks for Vmatrix / PBT Libaries

- - - - - -

Technology htegmtion

.Software Security Assessment Instrument (SSAI) \

SSAI Includes:

.Model-Based Verification

.Property-Based Testing

.Security Checklist

.Vulnerability Matrix

.Collection of security tools

JPL
Model Checking &
The Flexible Modeling Framework

MC with FMF Benefits Software Early in its

Earlier Discovery of Software Errors
Correction is easier / better / less expensive

FMF must adapt to early lifecycle events
CI Modular model design allows easy extension of

existing models
Multiple client scenarios for the server login example were
quickly modeled and verified

verification with ease
m The various client scenarios allows extensive off-nominal

David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) January 8,2004 11

JPL

The Flexible Modeling Framework(Cont.)
cl Rapidly changing requirements and designs

Multiple design trade offs in login protocol were easily

Varying levels of detail were defined for different
arbitrary system parts

w Multiple login failure propagation scenarios that are know
but not formally defined for different systems using the
login protocol
Model extensions are readily possible for many if not all

of these scenarios
These scenarios may be developed quickly and
adapted at will

u These extensions can be cross tested against all client
scenarios and protocol design trades with little
additional effort.

January 8,2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 12

JPL

Tester’s Assistant Specifications

No access until hash verified
Obtain user’s name
Obtain user’s password
Is password correct? {

Generate user’s password hash
Compare user’s password hash to hash stored for that user
name
If match, set UID to user’s uid (granting access)
If no match, set UID to ERROR (denying access)

If access granted {
compare UID to the uid for which access is granted
if match, all is well
if no match, specification violated

David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) January 8,2004 13

JPL

ewer L ogin Model

chan accessed = [O] of {bit};
short user-name = 0;
short password = 0;
bit accsd = 0;
bit hash-complete = 0;

proctype server(){
do

::user-name == 0 && password == 0 ->

::user-name != 0 && password == 0 -
::user-name != 0 && password != 0 ->

::user-name != password ->

login?user-name;

>login?password;

do

if
:: hash-complete == 0->

password = password * -1;
hash-complete = 1;

:: hash-complete == 1 ->accessed!O; break;
fi

br&-
::user-name == password ->accessed!l ;

Obtain User Name
Obtain User Password
After User Name and
Password Obtained
Use hash to transform
password for
verification

deny access

then grant access

If verification fails then

If verification succeeds

14

JPL

Verification
chan login = [O] of {short);

active proctype good-cl ient(){
...

short usr - nm = 1;

run server();
login!usr - nm;
log in ! pswd ;
accessed?accsd ;}

Short pswd = -1;

chan login = [O] of {short);

active proctype bad-client() {
...

short usr - nm = 1;

run server();
login!usr - nm;
login!-65535;
accessed?accsd; 1

short pswd = -1 ;

David Ciilliam, Jc January 8,2004

and Their

Property of Interest
a No access until hash verification

is complete
w accsd==O u hash - complete==l

Good Client
n Correct Login

H Hash verification correlates user and
password before access

Bad Client
Circumvents Login

w Buffer handles data range of -215 to
P - 1 (short data type)
-65535 overflows buffer

n Access granted before password

n Hash function ignored
hash execution

1 Powell (JPL), & Matt Bishop (UC Davis) 15

JPL

Property-Based Testing -

Property-based testing tool - Tester’s
Assistant (Matt Bishop, UC Davis)

Perform code slicing on applications for properties
for a known set of vulnerabilities

III Test for vulnerabilities in code on the system or
whenever the computing environment changes
Initially, checks software developed in JAVA and C

The goal is to have the tool check other programming and
scripting languages as well (C++, Perl, ActiveX, etc.)

David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) January 8,2004 16

JPL

Example C Code

I* get user name *I
if (fgets(stdin, uname, sizeof(uname)-I) == NULL)

ret u m(FA1 LED) ;
I* get user password *I
typedpwd = getpass("Password: ");
I* now get information about user with that name *I
if ((pw = getpwnam(uname)) != NULL){

I* generate user's password hash *I
hashtp = crypt(pw->pw - passwd, typedpwd);
I* compare this to stored hash; if match, grant access *I
if (strcmp(pw->pw-passwd, hashtp) == 0){

I* match -- grant access *I
setuid(pw->pw-uid);
return(SUCCESS);

1
I* didn't match -- fall through to deny access *I

1
return(FA1 LED);

January 8,2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 17

JPL

View process as sequence of states
Care only about those related to properties
State I: name, hash, uid for user with login name

State 2: add in hash of password supplied by user
a State 3: add in equality of hash of password

supplied by user and hash of user with login name
State 3A (alternate expression of state 3): user has
authenticated him/herself
State 4: add in granting of access

David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 18 January 8,2004

TAS P EC Specification

/* if assert, enter state 1 */
location func getpwnam(name) result pwent

{ assert user - password(name, pwent->pw-passwd, pwent->pw-uid); }
/* if assert, transition from state 1 to state 2 */
locat ion f u nc crypt(pass word,salt) result encryptp wd

/* if assert, transition from state 2 to state 3 */
location func strcmp(s7, s2) result 0

/* if in state 3, transition to state 3A */

{ assert password-entered(encryptpwd); }

{ assert equals(s7, s2); }

password-entered(p wd 7) and user-password(name, p wd2, UKI) and equa
{ assert authenticated(uid) ; }

/* if assert, transition from state 3A to state 4 */
location func setuid(uid) result 1

/* invariant; must always hold */
authenticated(uid) before access-acquired(uid)

{ assert access-acquired(uid); }

@wd7, pwd,

David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) January 8,2004

JPL

19

if (fgets(stdin, uname, sizeof(uname)-I) == NULL)

typedpwd = getpass("Password: ");
if ((pw = getpwnam(uname)) != NULL){

return(FAILED);

I* if here, enter state 7 *I
hashtp = crypt(pw->pw - passwd, typedpwd);
I* enter state 2 *I
if (strcmp(pw->pw - passwd, hashtp) == 0){

I* if here, enter state 3 and then 3A *I
setu id(pw-> pw - u id);
I* enter state 4 *I
return (S UCCESS);

1
1
return(FA1 LED);

January 8,2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 20

Mo
JPL

nitor

Bad login, but access granted
due to programming error
user - password(“me”, “xyz”, 91 7)

password - entered(“abc”)

eq u a I s(“a bd ” , “xyz”)

In state 1

In state 2

Fails, so do not enter state 3

access - acquired(917)

Invariant fails as state 3A
never entered, as invariant

In state 4

Davis) 21

JPL

Software Security Checklist (SSC)

Two Phases

Provide instrument to integrate security as a
formal approach to the software life cycle
Requirements Driven
Pre-Requirements

Requirements Gathering and Elicitation
Understand the Problem and Scope

Be Aware of Applicable Requirements Documents
Provide Trace to External Requirements Docs

David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) January 8,2004 22

d 1 n

S

+

s W 0

cn
cn

S

0

m 0
G

0

a,
L
1

c/)
v
)

S

.- I

.- I

E" 2 a,
3

CT

L

.-

v
)

a,
>

3

.- z I
S

0

v
)
a,
.- n

6

I

a,

0

S
 n

-
 L
I

8 2 v
)

v
)
a,
0

cij
3

S

0

a,

5 v
)
n
 t 3
0

m

m
i

a,
S

3

.- I

2

S
n

0

0

a,
S

3

m
LL

v
)

=-
I

9
1

-

I

-
 n

I

U

a,
cn
m

I

a,
0

I
0

S

m

5%

43 I

v
)

S

0

v
)

v
)
a,
0

m- L

z I a,
0

S

m S

a,
S

I

.- 3

Phase 2: - +
Release F Release F

Release
Analyst

T
Waver Security

Authority Authority
w External Release

Release Process
Areas for Protection: . Protect People . Protect ITAR and EAR . Protect Trade Secrets - Patents . Protect Organizational Resources

JPL
rocess

4 Authority tB(---J

CI Considerations . Insecure Subsystem Calls . Embedded IP Addresses or Phone Numbers

David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) January 8,2004 24

d 1
I

S

U

S

a

o
w

a
-

w
e

A 0 c, .
3

c
1

I

.
3

0

JPL

Final Notes

Protection of Resources and Data
Maintenance Costs Decrease
Integrates with Othe
Disciplines
End-to-End Life Cyc
Process

OOD

David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) January 8,2004 26

JPL

Final Notes (Cont.)

Current and Future Uses
Integrate with Deep Space Mission Systems

SSL Verification
Potential to Verify Space Communication Protocol
Standard (SCPS) Implementations (i.e., IPN)

Formal Verification of Patchlink JAVA client
Verification Checklist for External Release of

CI Integrate with IT Security Risk Management Tool
(Defect Detection and Prevention - DDP) for
Software Life Cycle

David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 27 January 8,2004

JPL

Final Notes (Cont.)
Future Development Needs
KI IT Security Risk Management Process Needed with

Extend Defect Detection and Prevention Tool (DDP) to

Include Mitigation Tools

Risk Mitigation Instruments

Include Security Template and Risk Mitigations

Training and Experts Needed to Provide Tool
Ass is tan ce

c3 Extend Modeling Framework to include Model
Security Templates for Re-Use
Extend PBT to Include More Languages (C++, C#,
Per1 Script, et.al.)

David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 28 January 8,2004

m

N

n

c

0
 m
I

W

cn a,
I

0

z
 S

I
-

LL

.- L

c
,

L

.
I

3

0

a,
0

0

S

0

m 3
m >
a,
U

m c 0
v
)

v
)

a

3

v
)

Y
-

.
I

c
,

- .
I

.
I

E

b
Y

-

c

0

m 0 0
J

.
I

-C
lr

Y
-

c
,

O

v
)

J

II

.
I

C
I
.
I

3

v
)

0

-

Y
-
0

v
)
a,
tn 3

U

c

m v
)

s U S

m v
)
0

a,
U

>

0

L

L

.
I

v
)
a,
>

m c
.
I

c
,

5
a c, -

n

rA

.
d

9

d u 5

W

@
-2
.- fa Y

3 0 c, .
3

c5
a
 9

.
3

a"

FOR MORE INFO ...

David Gilliam
JPL
400 Oak Grove Dr., MS 144-210
Pasadena, CA 91 109

Email: david.p.q illiamoip I. nasa .qov
Phone: (81 8) 354-0900 FAX: (818) 393-1377

John Powell
MS 125-233
Phone: (81 8) 393-1 377
Email: john.d.powell@ip I. nasa.qov

Website: http://rssr.jpl. nasa.gov/

David Gilliam, John January 8,2004 Powell (JPL), & Matt Bishop (UC Davis)

JPL

30

http://rssr.jpl
http://nasa.gov

