(An Integrated Approach to Reducing information
Technology (IT) Security Risk in the Software Life Cycle)

David Gilliam, John Powell
California Institute of Technology,
Jet Propulsion Laboratory

Matt Bishop
University of California at Davis

California Institute of Technology, Jet Propulsion Lab

o JPL
Acknowledgement

m NOTE:

O This research was carried out at the Jet
Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration

O The work was sponsored by the NASA Office of
Safety and Mission Assurance under the
Software Assurance Research Program lead by
the NASA Software IV&V Facility

O This activity is managed locally at JPL through
the Assurance and Technology Program Office

January 8, 2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) . 2

Current Collaborators

m David Gilliam — Principle Investigator, JPL
m John Powell — JPL Software Engineer

m Matt Bishop — Associate Professor of
Computer Science, University of California at
Davis

m hitp://rssr.jpl.nasa.gov

January 8, 2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 3

SPL

m Problem
m Software Security Assessment

Instrument (SSAI)
m Final Notes

a0

January 8, 2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 4

JPL

- Goal: Secure Computing

m Secure Computing Environment
O Secure Systems
0 Secure Data

m Reduce security risk to the computing
environment by mitigating vulnerabilities in
the software development and maintenance
life cycles

m Provide an instrument and tools to help
reduce vulnerabilities and exposures in
software

m To aid in complying with security
requirements and best practices

January 8, 2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Da

JPL

| m Goal

| —> = Problem

m Software Security Assessment
Instrument (SSAI)

m Final Notes

January 8, 2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 6

FEESTOP: 0x000000D1 (0x00000000, 0xFF3120AE, 0xC0O000008, 0xC0000000)

A problem has been detected and Windows has been shut down to prevent damage
to your computer

NDTWED TDAI MAT 1ECC AR Ealldl o

If this is the first time you've seen this Stop error screen, restart your
computer. If this screen appears again, follow these steps:

Check to make sure any new hardware or software is properly installed. If thisis a
new installation, ask your hardware or software manufacturer for any Windows updates
you might need.

If problems continue, disable or remove any newly installed hardware or software.
Disable BIOS memory options such as caching or shadowing. If you need to use Safe
Mode to remove or disable components, restart your computer, press f8 to select

Advanced Startup Options, and then select 5afe Mode.

TEE WXYZSYY - Address F73120AE base at C00000000, DateStamp 36b072a3

Kernel Debugger Using: COM2 <(Port Bx2f8, Baud Rate 19288)

Beginning dump of physical memory

Physical memory dump complete. Contact your system administrator or
technical support group.

Inaca

N

Problem

m Lack of Experts: Brooks —

0 “No Silver Bullet” is still valid
(IEEE Software Engineering, 1987)

m Poor Security Requirements

m Poor System Engineering
O Leads to poor design, coding, and testing

m Cycle of Penetrate and Patch
m Piecemeal Approach to Security Assurance

January 8, 2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 8

m Goal

m Problem

—> m Software Security Assessment
Instrument (SSAI)

m Final Notes

January 8, 2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis)

JPL

Reducing Software ecurity Risk
Through an Integrated Approach

« Software Vulnerabilities Expose IT Systems and
Infrastructure to Security Risks

*Goal: Reduce Security Risk in Software and

Protect IT Systems, Data, and Infrastructure

*Security Training for System Engineers and Developers
Vmatrk: -

*Software Security Checklist for end-to-end life cycle

4 Attacks not in the wild b
N

3 Software Security Assessment Instrument (SSAI)
"N SSAl Includes:
Sl lle]le ||« -Model-Based Verification
s ! 'y Property-Based Testing
And_1 And 2
| g l \ 1 Security Checklist
i Discovered attacks not been seen in the wild ------ ‘
Known attacks for Vmatrix / PBT Libaries Safe : Unsafe oVu I nerabi I ity Matrix
Technology Integration :

Collection of security tools

SPL

®\lodel Checking &
The Flexible Modeling Framework

m MC with FMF Benefits Software Early in its
Lifecycle
01 Earlier Discovery of Software Errors
0 Correction is easier / better / less expensive

m FMF must adapt to early lifecycle events

0 Modular model design allows easy extension of
existing models

s Multiple client scenarios for the server login example were
quickly modeled and verified

m The various client scenarios allows extensive off-nominal
verification with ease

January 8, 2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 11

JPL
odel Checking &

The FIexibIh Modeling Framework(Cont.)

O Rapidly changing requirements and designs

= Multiple design trade offs in login protocol were easily
explored

0 Varying levels of detail were defined for different
arbitrary system parts
= Multiple login failure propagation scenarios that are know

but not formally defined for different systems using the
login protocol

m Model extensions are readily possible for many if not all
of these scenarios

O These scenarios may be developed qwckly and
adapted at will

0 These extensions can be cross tested against all client
scenarios and protocol design trades with little
additional effort.

January 8, 2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 12

JPL

Tester's Assistant Specifications

m No access until hash verified

Obtain user’'s name
Obtain user’s password
Is password correct? {
Generate user’s password hash

Compare user's password hash to hash stored for that user
name

If match, set UID to user's uid (granting access)
If no match, set UID to ERROR (denying access)
}
If access granted {
compare UID to the uid for which access is granted
if match, all is well
if no match, specification violated

}

January 8, 2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 13

Wserver Login

Model

chan accessed = [0] of {bit};
short user_name = 0;

short password = 0;

bit accsd = 0;

bit hash _complete = 0;

proctype server(){
do
::user_name == 0 && password == 0 ->
login?user_name;
;:user_name != 0 && password == 0 -
>login?password;
::user_name != 0 && password !=0 ->
do
::user_name != password ->
if
:: hash_complete == 0->
password = password * -1;
hash_complete = 1;
::hash_complete == 1->accessed!0; break;
fi
::user_name == password ->accessed!1;

break:

od
Jaduary 8, 2004

JPL

Obtain User Name
Obtain User Password

After User Name and
Password Obtained

Use hash to transform
password for
verification

If verification fails then
deny access

If verification succeeds
then grant access

David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 14

chan login = [0] of {short};

active proctype good_client(}
short usr nm = 1;
short pswd = -1;
run server();
logintusr_nm;
loginlpswd;
accessed?accsd;}

¥ Client Login Models and Their
Verification

JPL

m Property of Interest

7 No access until hash verification
is complete

= accsd==0 U hash_complete==

m Good Client

1 Correct Login
a Hash verification correlates user and

chan login = [0] of {short};

active proctype bad_client(){
short usr nm=1;
short pswd =-1;
run server();
login!usr_nm;
login!-65535;
accessed?accsd;}

password before access

m Bad Client

O Circumvents Login
= Buffer handles data range of 25 to
215-1 (short data type)
s -65535 overflows buffer

7 Access granted before password
hash execution

o Hash function ignored

January 8, 2004

David Gilham, Jo

hn Powell (JPL), & Matt Bishop (UC Davis) 15

JPL

- Property -Based Testing

n Property-based testing tool — Tester's
Assistant (Matt Bishop, UC Davis)

O Perform code slicing on applications for properties
for a known set of vulnerabilities

0 Test for vulnerabilities in code on the system or
whenever the computing environment changes

O Initially, checks software developed in JAVA and C

m The goal is to have the tool check other programming and
scripting languages as well (C++, Perl, ActiveX, etc.)

January 8, 2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 16

Example C Code

/* get user name */
if (fgets(stdin, uname, sizeof(uname)-1) == NULL)
return(FAILED);
I* get user password */
typedpwd = getpass(“Password: “);
I* now get information about user with that name */
if ((pw = getpwnam(uname)) != NULL)
/* generate user’s password hash */
hashtp = crypt(pw->pw_passwd, typedpwd);
I* compare this to stored hash; if match, grant access */
if (stremp(pw->pw_passwd, hashtp) == O
I* match -- grant access */
setuid(pw->pw_uid);

return(SUCCESS);
}
[* didn’t match -- fall through to deny access */
}
return(FAILED);

January 8, 2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis)

JPL

17

JPL

" TASPEC

m View process as sequence of states
[0 Care only about those related to properties

O State 1: name, hash, uid for user with login name
obtained

] State 2: add in hash of password supplied by user

0 State 3: add in equality of hash of password
supplied by user and hash of user with login name

O State 3A (alternate expression of state 3): user has
authenticated him/herself

O State 4: add in granting of access

January 8, 2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 18

JPL

TASPEC Specification

/* if assert, enter state 1 */
location func getpwnam(name) result pwent
{ assert user_password(name, pwent->pw_passwd, pwent->pw_uid); }
[* if assert, transition from state 1 to state 2 */
location func crypt(password,salf) result encryptpwd
{ assert password_entered(encryptpwd); }
[* if assert, transition from state 2 to state 3 */
location func strcmp(s1, s2) result 0
{ assert equals(s1, s2); }
/* if in state 3, transition to state 3A */
password_entered(pwd1) and user_password(name, pwd2, uid) and equal(pwd1, pwd2)
{ assert authenticated(uid) ; }
/* if assert, transition from state 3A to state 4 */
location func setuid(uid) result 1
{ assert access_acquired(uid); }
/* invariant; must always hold */
authenticated(uid) before access acquired(uid)

January 8, 2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 19

C Code and States

if (fgets(stdin, uname, sizeof(uname)—1) == NULL)
return(FAILED);
typedpwd = getpass(“Password: “);
if ((pw = getpwnam(uname)) = NULLX
I* if here, enter state 1*/
hashtp = crypt(pw->pw_passwd, typedpwd);
[* enter state 2 */
if (stremp(pw->pw_passwd, hashtp) == 0}
[* if here, enter state 3 and then 3A */
setuid(pw->pw_uid);
I* enter state 4 */
return(SUCCESS);

}

return(FAILED);
January 8, 2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis)

SPL

20

Good login

user_password(‘me”, “xyz”, 917)
In state 1
password_entered(“xyz")
In state 2
equals(“xyz”, “xyz”)
In state 3
authenticated(917)
In state 3A
access_acquired(917)
In state 4

Invariant holds

January 8, 2004

JPL

. Fed to Test Execution Monitor

Bad login, but access granted
due to programming error

user_password(“me”, “xyz”, 917)
In state 1

password entered(“abc”)
In state 2

equals(“abd”, “xyz”)
Fails, so do not enter state 3

access_acquired(917)
In state 4

Invariant fails as state 3A
never entered, as invariant

David Gilliam, John Povmqyiﬁév[att Bishop (UC Davis) 21

SPL
SC)

m Two Phases

COPhase 1:

= Provide instrument to integrate security as a
formal approach to the software life cycle

= Requirements Driven
= Pre-Requirements
0 Understand the Problem and Scope

m Requirements Gathering and Elicitation
00 Be Aware of Applicable Requirements Documents
00 Provide Trace to External Requirements Docs

January 8, 2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 22

m Requirements Specification
m Design — Reviews

m Code —Inspection & Walkthroughs, Safe
Routines, Bounds Checking, Access Control, etc.

m Testing — Property-Based Test, Fault Injection,
et.al.

m Maintenance — Regression Test o]

January 8, 2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 23

SPL

) Release Process

Release Release
Developer [#—0— Analyst O Authonity

SSC (Cont

O Phase 2: % %
s External Release v Sty
0 Release Process Avthority Authority

0 Areas for Protection:
= Protect People
= Protect ITAR and EAR
» Protect Trade Secrets — Patents
» Protect Organizational Resources
0 Considerations
= |nsecure Subsystem Calls
» Embedded IP Addresses or Phone Numbers

January 8, 2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 24

JPL

m Goal
m Problem
m Software Security Assessment

Instrument (SSAI)
—> m Final Notes

January 8, 2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 25

SPL

m Protection of Resources and Data
m Maintenance Costs Decrease

m Integrates with Other Formal
Disciplines
m End-to-End Life Cycle¢
Process

| cooD

January 8, 2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 26

JPL

g Final Notes (Cont)

m Current and Future Uses

O Integrate with Deep Space Mission Systems
(DSMS)
m SSL Verification

m Potential to Verify Space Communication Protocol
Standard (SCPS) Implementations (i.e., IPN)

1 Formal Verification of Patchlink JAVA client

0 Verification Checklist for External Release of
Software

O Integrate with IT Security Risk Management Tool
(Defect Detection and Prevention — DDP) for
Software Life Cycle

January 8, 2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 27

JPL

M Final Notes (Cont.)

m Future Development Needs

O IT Security Risk Management Process Needed with
Risk Mitigation Instruments

m Extend Defect Detection and Prevention Tool (DDP) to
Include Security Template and Risk Mitigations

m Include Mitigation Tools

01 Training and Experts Needed to Provide Tool
Assistance

0 Extend Modeling Framework to include Model
Security Templates for Re-Use

O Extend PBT to Include More Languages (C++, C#,
Perl Script, et.al.)

January 8, 2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 28

SPL

Final Notes (Cont.)

[Maintain Security Assessment Tool (SAT) Site at
UC Davis

m Location for submission and evaluation of Security
Assessment Tools

m Provide Pros and Cons and Uses of Tools with List of
Alternatives

January 8, 2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 29

SPL

FOR MORE INFO...

David Gilliam

JPL

400 Oak Grove Dr., MS 144-210

Pasadena, CA 91109

Phone: (818) 354-0900 FAX: (818) 393-1377
Email: david.p.gilliam@jpl.nasa.gov

John Powell

MS 125-233

Phone: (818) 393-1377

Email: john.d.powell@jpl.nasa.gov

Website: http://rssr.jpl.nasa.gov/

January 8, 2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) 30

http://rssr.jpl
http://nasa.gov

Poor
Software

Eng nrinq:()

Questions?

GOOD

Software

Eng ineerirb

January 8, 2004 David Gilliam, John Powell (JPL), & Matt Bishop (UC Davis) T 31

