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Abstract 

The sheer amount of data produced by modern 
science research has created a need for the 
construction and understanding of “data-intensive 
systems ”, large-scale, distributed systems which are 
IO-bound (Moore et al. 1999). The formal nature of 
constructing such sofiare systems; however, is 
relatively unstudied, and has been a large focus of the 
super-computing and distributed computing 
communities, rather than the software engineering 
communities. These data-intensive systems exhibit 
characteristics which appear fiuitjiul for research *om 
a sofiare engineering, and sofiare architectural 
focus. From our experience, the methodologies and 
formal notations for design and implementation of 
data-intensive systems look to be a good starting point 
for this important research area. This paper presents 
our experience with OODT, a novel sofiare 
architectural style, and middleware-based 
implementation for data-intensive systems. To date, 
OODT has been successfully evaluated in several 
different science domains including Cancer Research 
with the National Cancer Institute (NCO, and 
Planetary Science with NASA’s Planetary Data System 
(PDS). 

1. Introduction 

With the advent of new technologies and paradigms 
such as Grid-based systems (Globus 2004), 
distributed-object middlewares (Dashofy & Taylor & 
Medvidovic 1999) and wrapper-based information 
extraction tools (Knoblock et al 2000), there has been 
a change in practice from developing one-off data 
management solutions which manage data 
independently (with little attention paid to future 
interoperability with other systems), to developing 
architectures and middlewares which are able to 
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integrate and re-use existing data resources, such as 
legacy data systems and legacy databases. This 
potential for re-use allows one to imagine and more 
importantly realize, the construction of large-scale 
distributed data management systems, whose main 
purpose is to query, locate, access, process and 
distribute data for potential users. 

The data-intensive nature of these systems; 
however, shifts the focus from traditional software 
engineering methodologies and practices (which would 
involve generating requirements, converting those 
requirements into architectural elements, implementing 
the system architecture, and evolving the system as 
needed) to believing that hardware processing power, 
parallelism, and technology alone will be enough to 
construct software which: 

1 .  Accesses data in legacy data resources 
2. Discovers data which may not be known to 

the system initially at run-time 
3. Correlates the different data models which 

describe each data resource 
4. Correlates the software interfaces to the 

legacy data resources. 

Existing work in these data-intensive systems 
severely lacks any common software engineering 
design constructs and relations between architectural 
components and implementation-level decisions. Our 
work has focused on this very area, the design and 
construction of large-scale, integrated data-intensive 
systems. We have developed an architectural style for 
data-intensive systems which allows software 
developers to construct architectural designs which 
satisfy data-intensive requirements (items 1-4 above), 
and middleware implementation framework of the 
OODT style software components and software 
connectors. Programmers can then take these designs, 
and use the middleware to implement the desired 
system functionality. We have coined our 



architecture, and subsequent middleware 
implementation, OODT (Object Orientated Datu 
Technology). 

Section 2 describes the OODT architectural style. 
Section 3 covers the OODT middleware; ajava based 
reference implementation of the OODT architectural 
components, and connectors, and ties the middleware 
back to the architectural style assumptions and 
properties. Section 4 presents two case studies of the 
OODT middleware deployment in two different 
science domains which share many of the same data- 
intensive system requirements presented above. 
Section 5 surveys related work in data-intensive 
systems (such as Data Grids) and architectural styles 
for large-scale, distributed data-intensive systems. 
Section 6 addresses open issues within OODT. 
Section 7 presents future research directions with 
software architecture for large-scale, data-intensive 
systems. Section 8 concludes our discussions. 

2. An Architectural Style for Data- 
Intensive Systems 

One method of defining an architectural style has 
been to define the primitive building blocks, software 
components and connectors, and then define legal 
topologies of these primitive building blocks needed to 
construct systems that implement the style itself 
(Taylor et al. 1996). Using these core definitions, 
system implementations are then constructed in the 
style, and analyzed to verify that key assumptions of 
the style at design-time are validated by the 
implemented system at implementation time. We use 
this method to construct the basis for the OODT 
architectural style. 

2.1 Components 

The core components for OODT are Product 
Servers, Profile Servers and Query Servers (Crichton 
& Hughes & Kelly 2002). 

Product Sewers abstract away data resource 
interfaces (such as SQL, File Systems, HTTP) 
into system-independent interfaces for 
retrieval of data which satisfy the user 
queries. 
Profile Sewers serve back scientific 
metadata (Crichton & Hughes & Kelly 2002) 
in the form of resource profiles, which 
provide methods for deciding what resources 
satis6 particular queries. 

Query Sewers accept user queries, and then 
use profile servers to determine what 
resources to query and collect in order to 
satisfy the query and retum data products. 
The Query Server then aggregates and retums 
back the federated data products to the caller. 

2.1.1 Product Servers 

Product Servers abstract away system dependent 
interfaces to data by wrapping (Sneed 1997) the 
system dependent interface such that it can support 
OODT queries. OODT queries are in the format of 
one or more (keyword logical operator value) 
predicates which themselves are joined by zero or 
more logical operators (such as AND and OR). More 
formally, a query q can be represented as: 

3 Where k is the keyword, v is the value, and op is 
the logical operator 

At the system interface level, OODT queries are 
posed against a set of Common Data Elements (which 
describe a high-level data model for the integrated data 
system, referred to as a Data Dictionary), and thus the 
set of allowable keywords k in each (keyword logical 
operator value) predicate comes from the set of the 
Common Data Elements in the system Data 
Dictionary. Each Product Server contains zero or 
more, Query Handlers. Because there may be multiple 
types of data products that are stored in the same data 
source, there may exist Query Handlers which serve 
back different products (a case like this could be 
imagined in a relational database, which stores both 
binary images of Mars, and also metadata containing 
information about the instrument which captured each 
image). Each Query Handler contains an abstract 
translation function t(q), which maps the query from 
the Common Data Element domain, to a query in the 
domain which the system dependent interface 
understands (Le. maps Common Data Elements against 
Source Data Elements, Data Elements in the system- 
dependent domain). This function is represented by: 

( 2 )  
Essentially this function takes a query in Domain 1, 

and maps it to a new query, q', in domain 2. Because 
Product Server translation functions are implemented 
at implementation time, rather than design time, it is 
also possible for the implementer to define even more 
abstract translation functions which aren't described 
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here, but can be envisioned from the discussion above. 
The main goal is to take the abstract query against the 
Common Data Elements, and map that into something 
the underlying data system, or resource understands. 
Figure 2 depicts the internal structure of the Product 
Server component. 

In Ouwy 

Fi 
gure 2. The internal structure of the Product Server 
component. 

2.1.2 Profile Servers 

Profile Servers respond to system queries, and 
return resources which can satisfy the system query. 
To achieve this functionality, Profile Servers store 
resource Profiles which describe the Data Elements, 
and semantic relationships that each data resource 
supports. In this fashion, a Profile Server can receive 
an OODT query, and match each keyword Data 
Element and associated semantic constraints, to a 
particular Resource that a profile describes, and return 
the matching profile(s) which satisfy the query. This 
scenario is illustrated in Figure 3. 

9’ “country = US and windspeed > 120“ 

Figure 3. Query q, and matching profile of resource. 

The profile structure is based on two internationally 
accepted standards, ISO/IEC 11179 (IS0 1999) to 
describe the structure of Data Elements, and the 

Dublin Core (DCMI 1999) set of Data Elements, 
which are used to describe any electronic resource. 
Our choices for these standards are explained further 
in (Crichton & Hughes & Kelly 2002) and beyond the 
scope of this paper, but we refer to them here in order 
to motivate the discussion of the profile structure. The 
profile contains metadata about the profile itself, such 
as a unique ID, a name for the profile, and an author of 
the profile. We refer to this metadata as Profile 
Attributes. The next piece of the metadata that the 
profile contains is an implementation and extension of 
the Dublin Core Elements to describe the resource that 
the profile describes, elements such as Creator, Name 
and Author. Further, our Dublin Core extensions 
include the addition of specific Data Elements to 
describe resources, including Resource Location and a 
taxonomy to categorize the type of resource (which we 
refer to as Resource Class). A Resource Location can 
be a Product Server, another Profile Server, or the Data 
Product itself. Resource Class is a ‘.’ delimited 
character string such as data. granu le ,  which 
implies that the resource described by the profile is a 
low-level Data Product. We refer to this extended 
Dublin Core metadata as Resource Attributes. The 
final piece of metadata that we include in profiles is 
domain-specific Data Elements which describe the 
resource in its originating domain. For example, in the 
Planetary Data System (Hughes & McMahon 1998), 
the Data Element “Target Name” is used to describe 
each data product’s originating “target” (i.e. planet). 
These domain-specific Data Elements are called 
Profile Elements. The profile metadata is summarized 
in Table 1 below. 

Table 1. Metadata stored in each resource profile. 

Profile 

Attributes 

Resource 

Attributes 

itself. 

include elements such as resource 

location and resource class. 



profile describes. 

Much like Product Servers, each Profile Server 
contains zero or more Query Handlers which accept an 
OODT query, and then translate it into a query against 
the profiles which the Profile Server contains. Profile 
Servers can have backend data stores which store 
profiles, file systems which store profiles, or they can 
reference URL’s which store file-based profiles, and 
thus there exists a need for a query handler mechanism 
to retrieve and query the back end profile store to 
retrieve profiles which satisfy the query criteria. 
Profile Query Handlers perform this task. Figure 4 
shows the internal structure of the Profile Server 
Component. 
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Figure 4. 
Component. 

Internal structure of the Profile Server 

2.1.3 Query Sewers 

Query Servers are responsible for “putting it all 
together”. Essentially a Query Server is bootstrapped 
with an initial set of “root” Profile Servers, much like 
Berkeley’s DNS (BIND 2004). Upon receiving an 
00DT-style query, the Query Server proceeds to ask 
each one of the Profile Servers it knows about to 
retrieve the profiles which match resources which 
satisfy the query. This polling of Profile Servers is 
performed by Profile Client components which are 
present in an initial set of Querier threads. Essentially, 
the Profile Client is given a location for the Profile 
Server, and is able to query the profile server, and 
retrieve the list of profiles (if any) that match up 
resources that could satisfy the particular query. Each 

list of profile(s) returned by the Profile Client is passed 
to the Querier thread for examination of the Resource 
Class attribute in each profile. There are three cases 
which occur during this examination: 

The Resource Class points to another 
Profile Server: In this case, the Querier 
creates another instance of a Querier 
thread, seeded with the returned Profile 
Server resource location attribute as its 
root Profile Server. 
The Resource Class points to a Product 
Server: In this case, the Querier creates a 
Product Client component instance, which 
it seeds with the resource location attribute 
of the returned profile. The Product Client 
component retrieves the data products 
from the Product Server, and then the 
Product Client returns the data products 
back to the Querier thread. The Querier 
thread then adds its data products to the 
collected data products list in the Query 
Server, and ends its thread lifespan. 
The Resource Class points to an 
individual data resource: In this case, the 
Querier retrieves the individual data 
product and adds it to the collect data 
products list in the Query Server and ends 
its thread lifespan. 

Once all the Querier threads have ended their 
respective lifespan, the Query Server is done collecting 
data products in its collected list. The collected data 
product list is then returned to the original user query. 
Figure 5 depicts the internal structure of the Query 
Server. 
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Figure 5.  Internal structure 
Component. 

of the Query Server 

2.2 Connectors 



OODT supports one type of connector, a Messaging 
Layer, which allows OODT components to 
communicate with each other. The main form of 
communication between OODT components is the 
Query Object. A Query Object contains the Query q 
(mentioned in Section 2.1.1), and the query result, 
essentially the collected list of data products 
(mentioned in Section 2.1.3). The Query Object also 
contains a set of associated metadata regarding the 
query, such as Maximum Accepted Results, Accepted 
Mime Types (of Data Products within the collected 
data products list), and Query Description. 

2.2.1 Messaging Layer 

The OODT Messaging Layer's responsibility is to 
route Query Objects between Query Server, Product 
Server, and Profile Server Objects, and return the 
Query object to the correct User Client (typically the 
client which contacted the Query Server). The 
messaging layer essentially creates a virtual data bus 
which allows many Query Objects to be transferred 
between OODT components in a variety of different 
Messaging Protocols discussed below: 

Unicast: The Query Object is sent from an 
originating OODT component to exactly one 
other OODT component. 
Multicast: The Query Object is sent from an 
originating OODT component to a group of n 
other OODT components, defined by some 
common attribute, e.g. a type of Component 
URN (RFC3613 2003). 
Broadcast: The Query Object is sent from an 
originating OODT component to all other 
OODT components that the originator knows 
of. 

Since Query Objects contain both the originating 
user query, as well as the collected data products 
which satisfy the originating query itself, the Query 
Object contains all the necessary information to 
generate important user satisfaction metrics such as 
information quality and query time. 

2.3 Configurations 

of configurations that are possible with this 
architectural style. To motivate and conclude our 
discussion of this architectural style, we discuss a 
possible configuration of OODT in the context of 
linking together 4 different types of science data 
resources. 

In the OODT architectural style, Product Servers 
are attached to an underlying Data System or Data 
Resource (such as a relational database, or an HTML 
web site, or a network file system). This relationship 
is shown in Figure 6, an augmented view of Figure 1 ,  
with Product Servers addedKhe diagram. 

Figure 6. 
Product Servers depicted as red, shaded figures. 

Augmented view of DIS scenario, with 

The Product Servers alone; however, do not fully 
implement the system. The system needs a method for 
discovery of Product Servers, and for federation of 
Products returned from each data source in the 
underlying system. In Figure 7, we augment the view 
of the DIS scenario from Figure 6 further, and begin to 
address this issue. 

In this section, we discuss the possible 
configurations of OODT components in a real world 
situation. Since we discuss implementation level 
deployments at length throughout the rest of this paper, 
this discussion is purposefully brief and is not intended 
to be all encompassing, or to cover the entire spectrum 
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Figure 7. Augmented view of DIS scenario, with 
Profile Servers depicted as blue, lightly shaded figures. 

In this scenario, each Profile Server projles two 
Product Servers, along with information regarding 
what types of Data Products are stored in each Product 
Server (in order to satisfy the profile queries). The two 
profile servers lay infrastructure in terms of having the 
ability to locate and discover data resources which 
satisfy query parameters, but one more piece of 
infrastructure, the Query Server, will serve to tie the 
system components together to support the integrated 
system. This final piece of the configuration is shown 
in Figure 8. 

Figure 8. Augmented view of DIS scenario, with 
Query Servers depicted as yellow figures. 

Figure 8 depicts a full configuration of OODT 
components. A full configuration is a configuration 
such that it can support querying from multiple, 

heterogeneous resources, as if they were one integrated 
virtual data source. The OODT style does not mandate 
that full configurations are the only existing 
configurations from style. Each system component 
(Query Server, Product Server, and Profile Server) are 
allowed to exist in a vacuum, but each alone will not 
necessarily realize the full capabilities of the style. 
Profile Servers and Product Servers alone may be 
queried in vacuum's as long as their location is known 
to the respective client component (Product or Profile 
Client). 

The validation of this style is discussed with respect 
to its implementation middleware, and the 
middleware's respective successhl large-scale 
deployments in both planetary science, as well as bio- 
medicine. We realize that there exist many further 
areas of research within the OODT style, as well as 
within architectural styles for data-intensive systems as 
a whole. OODT open areas of research with respect to 
style are further discussed in Section 6, as well as 
Section 7. 

3. Architecture-based Middleware 

The core OODT middleware has been implemented 
in Java, using Sun's Java Development Kit version 1.4. 
Programmers extend OODT core component classes 
such as Profile Servers, Product Servers, and Query 
Servers if additional functionality is needed, otherwise, 
the core classes are ready to use out of the box. 

For the implementation of the Product Server 
component, programmers are required to write 
QueryHandler classes which implement the 
j p l  . oodt . p r o d u c t .  [ l a y e r ]  . QueryHandler interface. 
Layer represents the type of messaging layer connector 
the programmer wants to use. Currently, C O M A  and 
RMI exist, and we are working on a SOAP-based 
messaging layer at the time of writing this paper. The 
interface method to a query handler for a Product 
Server is the query method. The query method takes 
as input a Query Object (described in Section 2.2) 
which we can represent and serialize in XML (in the 
case where the distributed object middleware does not 
support more than the primitive data type parameters, 
such as in COMA). The Query Object contains the 
query q (described in Section 2.1.1), and the associated 
query metadata (described in Section 2.2), and returns 
the Query Object back to the user, this time including 
any results which satisfied the query to the underlying 
data resource. The query interface method becomes the 
abstract translation hnction t(4) discussed in section 
2.1.1. We present below an XML DTD definition of 
our query object structure. 



<!ELEMENT query 
(queryAttributes, 

queryResultModeId, 
queryPropogationType, 

queryPropogationLevels, 
queryMimeAccept*, 
queryMaxResults, 
queryResults, 
queryKWQString, 

queryselectset, 
queryFromSet, 

querywhereset, 
queryResultSet)> 

querystatistics?, 

<!ELEMENT queryAttributes 
(queryId, queryTitle*, 

quer yType* I 

queryDesc*, 

queryStatusId*, querySecurityType*, 
queryParentId*, queryChildId*, 
queryRevisionNote*, 
queryDataDictId*) > 

<!ELEMENT querystatistics (statistic*)> 

<!ELEMENT queryselectset 
(queryElement*)> 

<!ELEMENT queryFromSet 
(queryElement*) > 

<!ELEMENT querywhereset 
( queryElement * ) > 

<!ELEMENT queryElement 
(tokenRole*, tokenvalue* ) > 

<!ELEMENT statistic ( u r l ,  time)> 

<!ELEMENT queryResultSet 
(resultElement*)> 

<!ELEMENT resultElement 
(resultId*, resultMimeType*, 
profId*, identifier*, 

resultvalue*) > 
resultHeader, 

< !ELEMENT resultHeader 

<!ELEMENT headerElement (elemName, 
(headerElement*) > 

elemType?, elemunit?)> 

The Product Server itself supports the exact same 
query method in its interface. When a query comes 
into the product server (via CORBA or RMI), the 
Product Server creates worker threads which each are 
given a particular Query Handler object reference in 
the List of Product Server Query Handlers, as well as a 
reference to the Product Server query method’s xml 
query object. In parallel, each worker thread invokes 
its QueryHandler’s query method, and passes it the 
reference to the Product Server’s xml query object, so 
that each query handler upon return will aggregate the 
list of data return in the results section of the query 
object. To illustrate the ease with which query 
handlers can be written in the OODT middleware, we 

present a snippet of code below for a bare-bones query 
handler, which simply takes a query q, ignores the 
query, and adds one result to the result list of the query 
object. 

import jpl.oodt.product.QueryHand1er; 
import java.io.*; 

public class QueryHdlr implements QueryHandler 
{ 

public XMLQuery query(XMLQuery q) throws 
ProductException( 

q.addResult(new Result()); 

1 
I 

The Profile Server component implementation 
centers around the implementation of XML-based 
profiles, which profile data resources (and are 
described in Section 2.1.2 and Table 1). An XML 
DTD for the profile structure is given below: 

<!ELEMENT profiles 
(profile*) > 
<!ELEMENT profile 
(profAttributes, 
resAttributes, 
profElement*)> 
<!ELEMENT profAttributes 
(profId, profversion?, profType, 
profStatusId, profSecurityType?, 
profParentId?, profChildId*, 
profRegAuthority?, profRevisionNote*, 
profDataDictId?) > 
<!ELEMENT resAttributes 
(Identifier, Title?, Format*, Description?, 
Creator*, Subject*, 
Publisher*, Contributor*, Date*, Type*, 
Source*, 
Language*, Relation*, Coverage*, Rights*, 
resContext+, resAggregation?, resClass, 
resLocation*) > 
<!ELEMENT profElement 
(elemId?, elemName, elemDesc?, elemType?, 
elemunit?, 
elemEnumFlag, (elemvalue* 1 (elemMinValue, 
elemMaxvalue)), 
elemsynonym*, 
elemobligation?, elemMaxoccurrence?, 
elemcomment?)> 

The Profile Server functionality is implemented by 
writing Profile Server query handlers, which return 
back resource profiles in the above XML format. The 
Profile Server itself provides two interface methods, 
(1) A query method which accepts an xml based query 
object and returns resources profiles which implement 
the Common Data Elements used in query object’s 
query string and (2) A getProfile method which 
accepts a profile Id, and returns the exact profile which 
matches the given id. The query method given in 1 
essentially returns profiles by polling (in parallel using 



the worker thread method discussed for the Product 
Server implementation) its respective Profile Query 
Handlers. Each QueryHandler implements the same 2 
methods as its parent Profile Server, which allows each 
QueryHandler to return profiles asynchronously back 
to the parent. 

The core Profile and Product Server class 
implementations are relatively small, averaging 56 
SLOC each. This is due in part to the fact that 
programmer’s typically write OODT Product and 
Profile Query Handlers, instead of extending the 
Profile and Product Server base components 
themselves each time. Since their respective query 
interaction mechanisms are relatively the same (we say 
relative& because one returns data product results, and 
one returns resource profiles, but both accept the same 
query object structure), then we felt that the domain 
translation mechanism should be the onus of the Query 
Handlers. 

Upon creating Query Handlers that return both data 
products, and profiles, the method for linking the 
Query Handlers to the Product and Profile Servers 
respectively can be performed via XML configuration 
files, or at system-runtime. The XML configuration 
file essentially sets each Product and Profile server 
specified to have the associated Query Handlers, and 
instantiates each base component. After instantiation, 
the system determines what type of messaging 
connector is used (either RMI or CORBA), and then 
registers the distributed Profile or Product Server 
component with the appropriate registry (in RMI, 
Sun’s RMI Registry can be used, in CORBA, the 
CORBA Name Service is used). Query Server 
components can then be instantiated and given the list 
of Profile Servers which exist in the system. Each 
Profile, Product, and Query Server is identified in the 
form of URNs, which uniquely identifi the distributed 
component in the respective registry type. Our URN’S 
are in the form of urn:oodt: [layer] : [component- 
name]. The respective layer registry enforces the 
requirement that the combination of [layer]: 
[component-name] must be unique when components 
register at run-time. 

The implementation of the Query Server component 
typically comes last, which is directly tied to its 
architectural style notion of “bringing it all together”. 
The Query Server component is seeded (either at run- 
time via configuration files or compile time) with a set 
of root Profile Server components (identified by URNs 
described in the next paragraph). The Query Server 
component supports one interface method, a query 
method. The query method accepts a query object as a 
parameter, and returns back the same query object this 
time containing the federated results that it was able to 

collect from the OODT connected system. To perform 
this result collection, the Query Component 
instantiates a base set Querier threads (mentioned in 
Section 2.1.3) which are each given a root Profile 
Server in the Query Server component’s initial list. 
Each Querier thread proceeds in parallel to query its 
profile server and retrieve resource profiles by which 
to discover locations of data products which satisfy the 
original query. The Querier threads use the algorithm 
described in Section 2.1.3 to examine each resource 
profile’s Resource Class attribute to determine how to 
go about reaching an eventual data product. Once all 
the original and any additional Querier threads which 
were created are finished collecting products, the 
method returns the query object with all the collected 
results. 

4. Experience and Evaluation 

In this section, we discuss deployments of the 
OODT middleware in two diverse domains, Planetary 
Science, with NASA’s Planetary Data System (Hughes 
& McMahon 1998), and Cancer Research, with NIH’s 
Early Detection Research Network (EDRN). 

4.1 Planetary Data System 

The Planetary Data System (PDS) manages and 
archives planetary science data for NASA’s Office of 
Space Science. It has been in existence since the late 
1980’s and to this point has collected approximately 
six terabytes of data, which pre-OODT was distributed 
and archived for scientists on CD and DVD media. 

The PDS is divided up into seven disciplined 
“nodes”, which are geographically distributed across 
the country. Each node is responsible for managing 
and distributing its own particular planetary science 
data which is cumbersome due to their geographically 
diverse locations, and different methodologies 
(discussed below) for storing and accessing their data. 
Figure 10 illustrates the geographic diversity of the 
PDS. 



j" $--< 
L.uln-*."--YI 
I-rl'**-ru- 
.r- <* 

\-*lmrr--w 
a-a-rr -u 

Figure 10. The Planetary Data System OODT 
Deployment. 

The OODT middleware was used in 2002 to deploy 
an infrastructure for the distribution of PDS data from 
all seven nodes via the internet. OODT Product Server 
components wrapped data resources at each PDS Node 
(a total of 7 Product Servers) and a master set of 
Profile Servers were used to profile the data resources 
exposed by the OODT Product Server components. 
To tie everything together, a web portal search page 
was constructed to allow a user to pose a federated 
query across the entire PDS, and receive back all the 
PDS data and metadata which satisfies the query. The 
web portal search page poses its queries to an OODT 
Query Server, seeded with the master set of Profile 
Servers mentioned above. 

To measure the amount of data transferred by the 
PDS OODT Deployment, we have employed 
Recorder Thread components at each PDS Product 
Server which monitor the amount of data traffic for 
each query transaction per Product Server in the 
system. Since 11/15/2002, the PDS Product Server 
components have transferred 25GB of PDS Data 
Products to Scientists across the country (note that the 
25GB so far are not including the full distributions of 
Mars Global Surveyor, Mars Odyssey, and MRO) 
Table 2 summarizes the metrics that we have collected 
to date regarding the PDS OODT Deployment. 

Table 2. PDS Deployment total bytes and Products 
served since 11/15/2002. 

Table 3 helps to illustrate the benefit of OODT in the 
PDS. Before OODT, PDS data was distributed via CD 
and DVD media, and the NASA PDS nodes had to 
mail out CDs and DVDs to scientists which contained 
the planetary science data from the missions which 

they desired to study. Since OODT, the data can now 
be distributed, and accessed via the web. In Table 2, 
we show 3 NASA/JPL missions, Mars Global 
Surveyor (MGS), Mars Odyssey (Odyssey), and Mars 
Reconnaissance Orbiter (MRO) and the amount of 
science data (in terabytes and gigabytes) that each 
mission was set to produce. The last column, Cost 
shows the estimated cost for distributing those PDS 
products on DVD media, and mailing out the PDS data 
to the scientists. In the case of MRO, OODT has 
saved NASA $186 million dollars in mailing and DVD 
costs, clearly an enormous savings. 

$500K 

4,000 $3.3M 

MRO 224.0 224,000 $1 86M 

Table 3. PDS mission data: expected volumes, and 
relative cost pre-OODT. 

4.2 Early Detection Research Network 

The National Cancer Institute's Early Detection 
Research Network (Kincaid et al2002) is a network of 
over 30 cancer research centers participating in 
research geared towards the early detection of cancer. 
Particularly of interest to EDRN is cancer biomarker 
data (Kincaid et a1 2002). Similar to the PDS, each 
EDRN site is geographically distributed across the 
United States, and each site manages their own data 
which does not interoperate and commingle with the 
other site's data. The ability to correlate this 
information is critical to cancer research (Kincaid et a1 
2002) in that it has been shown that as study volumes 
increase, so does the rate of scientific discovery. Also, 
in terms of validating and testing biomedical data, it is 
important to compare and contrast similar data at 
different EDRN sites. 
The OODT middleware is currently supporting 

EDRN by providing the middleware infrastructure to 
tie together the distributed cancer research data located 
across EDRN's sites. Product Servers at 9 of the 
current EDRN locations wrap site specific data 
sources, and expose the cancer data to the overall 
system. A Profile Server network, located at Fred 
Hutchinson Cancer Research Center in Seattle 
provides the means for discovery of the existing 
Product Servers in the network. A portal web page, 
the ERNE (EDRN Resource Network Exchange) 
(ERNE 2002) provides web-based access to the 
OODT-based infrastructure. Figure 1 1 depicts the 



EDRN architecture, and Figure 12 depicts the 9 sites 
tied together by the OODT middleware. 

Figure 11. Nine sites connected by the OODT 
middleware in the geographically distributed Early 
Detection Resource Network (EDRN). 

DUt$..lWH*M.un 
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Figure 12. A conceptual view of EDRN’s architecture. 

5. Related Work 

Work by (Kolp & Mylopolous 2001) models 
information systems using business-organizational 
structure as an architectural style, and argues that 
Multi-agent Systems (MAS) should be considered as a 
construct for information system architectural styles. 
They focus on business information systems; however, 
which are clearly a subset of data-intensive systems, 
and not broadly applicable. Also, (Kolp & 
Mylopolous 2001) focus only on requirements 
engineering for information systems, and conceptual 
architecture, whereas our approach focuses on 
architecture styles, and architectural-based middleware 
support, and system evolution. 

(Kerschberg et a1 1996) and (Gomaa & Menasce & 
Kerschberg 1996) present a novel information and data 
architecture for describing large-scale data-intensive 
information systems, specifically applied to NASA’s 
EOSDIS science domain. Their work is most related 
to ours, but falls short in terms of a new architectural 
style as their work focuses only on the federated client- 
server (Fielding 2000) style for data-intensive systems. 

Also they present no fine-grained mapping of 
conceptual architecture to deployment architecture, or 
middleware-based solutions for implementing the data- 
intensive system. Of note, the EOSDIS system also 
suffered from many design flaws, which are discussed 
in (Leath 1998). 

(Moore et a1 1999) define Data-intensive systems as 
systems which are IO-bound. (Moore et al 1999) go 
on to describe the SDSC’ Storage Request Broker 
(SRJ3) and how it can be used to abstract domain- 
specific data sources using a layered architectural style 
(Shaw and Garlan 1996). (Moore et al 1999) also 
presents a table’ defining a basic set of application 
requirements for data-handling environments. There 
exists no mapping of these requirements; however to 
architectural components, nor to implementation-level 
constructs. Our approach aims to perform such work 
through the software engineering lifecycle for data- 
intensive systems. Also, as shown below in the related 
work for Grids, layered service architectures provide 
no insight as to the topologies of software architectural 
building blocks, such as components and connectors. 
Layered Service Architectures also typically present 
little guidance as to the legal configurations or 
behaviors of components, as laid out in deployment 
architectures, which is another aspect that we intend to 
research. 

Recent work in the Grid Community (Globus 2004) 
has characterized a class of distributed data 
interoperable systems as Data Grids (Chrevenak 2000). 
Data Grids are discussed architecturally in terms of a 
layered services architecture (Shaw and Garlan 1996), 
and web-serviced based (Webservices.org 2004) 
middleware implementation. This approach is similar 
to ours in the sense that the architecture is developed 
first, and then middleware is instantiated to implement 
the architectural constructs. There is no mapping; 
however, of system requirements, to architectural 
components, to implementation level middleware in 
the Data Grid community, as (Casanova 2002) notes 
where he states that initial efforts in Data Grids (and 
the Grid community as a whole) were focused on 
“getting it to work” rather than system scalability, 
evolution, or design. 

(Singh et. a1 2003) defines a Metadata Catalog 
Service component, but does not describe its 
relationship in full to the layered services architecture 
that is implemented by the Globus toolkit (Globus 
2004), nor to its deployment and interactions with 
other Grid components. (Singh et al. 2003) focuses on 

~~~ 
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the component’s scalability, which is indicative of the 
Grid community’s tendency to focus on super- 
computing challenges, as opposed to formal software 
engineering methodology and software architectural 
research. Our work focuses on uniting formal software 
engineering principles with the design of data- 
intensive systems such as Data Grids. 

6. Open Issues 

There remain several open issues with OODT that 
we will address briefly in this section. First and 
foremost, architecting, and deploying OODT software 
architectures, and subsequent middleware is very 
programmer-intensive. By “programmer-intensive” 
we mean to imply that a programmer is required to be 
“in the loop” in order to successfully deploy and 
architect these systems. This is due to the fact that the 
programmer is responsible for translating OODT 
architectural constructs into extensions of our existing 
middleware framework (discussed in Section 4). 
Typically, a programmer will be involved in the early 
phases of the software process, helping to gather 
requirements, and translate requirements into some 
tailoring, configuration, deployment of existing OODT 
code. 

One way of addressing problems like these has 
typically been to provide architectural design tools, 
such as UC Irvine’s xADL (Dasofhy & Van der Hoek 
& Taylor 2002), for software designers to create 
architectural diagrams, and then have a way of 
mapping those architectural diagrams to software 
implementation and code deployment. There is 
existing work in this area (Medvidovic et al. 2003), 
and we aim to research and construct tool support to 
model and deploy architectures and software systems 
in the 00DT-style. 

Another open-issue in OODT is the issue of 
middleware deployment metrics, such as scalability of 
hundreds of components deployed across a set of 
different hosts. We are currently working on 
generating metrics for research in this area, and initial 
results look promising. 

The OODT middleware also assumes a reliable 
network is present in order for the Product, Profile, and 
Query Servers to communicate across. We currently 
have no support for issues such as disconnected 
operation (Mikic-Rakic & Medvidovic 2003), and off- 
loading of data to support unreliable hosts. This type 
of fault-tolerance is crucial in data-intensive systems 
which may be deployed in unreliable environments. 

7. Future Research 

Our future research centers on a software- 
architecture focused approach to design, 
implementation, and evolution of data-intensive 
systems. We also are studying software architecture 
for generally describing the nature of integrating 
heterogeneous data sources. An end-to-end, and re- 
useable methodology for this problem, to our 
knowledge, has not been developed, and existing 
research has not taken this type of focused approach to 
creating a solution to this problem. Potential future 
work includes: 

1. 

2. 

3. 

4. 

5 .  

What types of architectural styles (Fielding 
2000) exist for data-intensive systems, and 
how can they be re-used, learned from, and 
put to use in designing, implementing, and 
evolving DIS? 
Does a set of standard components, 
connectors (Mehta & Medvidovic & Phadke 
2000), and configurations exist which can 
describe data-intensive systems? 
Can product-line architectures (Clements & 
Northrop 2001) be developed for data- 
intensive systems? 
How well does UML describe data-intensive 
systems? 
Can an ADL (Architecture Description 
Language) (Medvidovic & Taylor 200) be 
developed to describe data-intensive systems? 

At JPL and USC, we are researching these questions 
and look to provide guidance, research experience and 
working prototypes for investigating these important 
issues. 

8. Conclusions 

We have presented OODT, an architectural style 
and middleware implementation for data-intensive 
systems. We feel that data-intensive systems have 
been a neglected area of research in the software 
engineering and software architecture communities, 
and we desire to apply formal software architectural 
methodologies to the design, implementation, and 
evolution of data-intensive systems. The OODT style 
and middleware was developed at NASA’s Jet 
Propulsion Laboratory and has been supporting 
NASA’s Planetary Data System in the Planetary 
Science Domain. The OODT middleware also 
supports Cancer Research, and is currently deployed at 



the National Institute of Health’s National Cancer 
Institute, supporting the EDRN (Early Detection 
Resource Network) task. From our experience, the 
area of software architecture for data-intensive systems 
appears to be a fruitful area of research for the years to 
come. 
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