
Software Architecture for Large-Scale, Distributed, Data-Intensive Systems

Chris A. Mattmann, Nenad Medvidovic
and Paul M. Ramirez

University of Southern California
Computer Science Department

{mattmann. neno, pmramire 1 @,use. edu

Abstract

The sheer amount of data produced by modern
science research has created a need for the
construction and understanding of “data-intensive
systems ”, large-scale, distributed systems which are
IO-bound (Moore et al. 1999). The formal nature of
constructing such sofiare systems; however, is
relatively unstudied, and has been a large focus of the
super-computing and distributed computing
communities, rather than the software engineering
communities. These data-intensive systems exhibit
characteristics which appear fiuitjiul for research *om
a sofiare engineering, and sofiare architectural
focus. From our experience, the methodologies and
formal notations for design and implementation of
data-intensive systems look to be a good starting point
for this important research area. This paper presents
our experience with OODT, a novel sofiare
architectural style, and middleware-based
implementation for data-intensive systems. To date,
OODT has been successfully evaluated in several
different science domains including Cancer Research
with the National Cancer Institute (NCO, and
Planetary Science with NASA’s Planetary Data System
(PDS).

1. Introduction

With the advent of new technologies and paradigms
such as Grid-based systems (Globus 2004),
distributed-object middlewares (Dashofy & Taylor &
Medvidovic 1999) and wrapper-based information
extraction tools (Knoblock et al 2000), there has been
a change in practice from developing one-off data
management solutions which manage data
independently (with little attention paid to future
interoperability with other systems), to developing
architectures and middlewares which are able to

Daniel J. Crichton, J. Steven Hughes and
Sean C. Kelly

Jet Propulsion Laboratory
4800 Oak Grove Drive

{dcrichton, ishughes, sean. kellv) @jp 1.nasn.zov

integrate and re-use existing data resources, such as
legacy data systems and legacy databases. This
potential for re-use allows one to imagine and more
importantly realize, the construction of large-scale
distributed data management systems, whose main
purpose is to query, locate, access, process and
distribute data for potential users.

The data-intensive nature of these systems;
however, shifts the focus from traditional software
engineering methodologies and practices (which would
involve generating requirements, converting those
requirements into architectural elements, implementing
the system architecture, and evolving the system as
needed) to believing that hardware processing power,
parallelism, and technology alone will be enough to
construct software which:

1 . Accesses data in legacy data resources
2. Discovers data which may not be known to

the system initially at run-time
3. Correlates the different data models which

describe each data resource
4. Correlates the software interfaces to the

legacy data resources.

Existing work in these data-intensive systems
severely lacks any common software engineering
design constructs and relations between architectural
components and implementation-level decisions. Our
work has focused on this very area, the design and
construction of large-scale, integrated data-intensive
systems. We have developed an architectural style for
data-intensive systems which allows software
developers to construct architectural designs which
satisfy data-intensive requirements (items 1-4 above),
and middleware implementation framework of the
OODT style software components and software
connectors. Programmers can then take these designs,
and use the middleware to implement the desired
system functionality. We have coined our

architecture, and subsequent middleware
implementation, OODT (Object Orientated Datu
Technology).

Section 2 describes the OODT architectural style.
Section 3 covers the OODT middleware; ajava based
reference implementation of the OODT architectural
components, and connectors, and ties the middleware
back to the architectural style assumptions and
properties. Section 4 presents two case studies of the
OODT middleware deployment in two different
science domains which share many of the same data-
intensive system requirements presented above.
Section 5 surveys related work in data-intensive
systems (such as Data Grids) and architectural styles
for large-scale, distributed data-intensive systems.
Section 6 addresses open issues within OODT.
Section 7 presents future research directions with
software architecture for large-scale, data-intensive
systems. Section 8 concludes our discussions.

2. An Architectural Style for Data-
Intensive Systems

One method of defining an architectural style has
been to define the primitive building blocks, software
components and connectors, and then define legal
topologies of these primitive building blocks needed to
construct systems that implement the style itself
(Taylor et al. 1996). Using these core definitions,
system implementations are then constructed in the
style, and analyzed to verify that key assumptions of
the style at design-time are validated by the
implemented system at implementation time. We use
this method to construct the basis for the OODT
architectural style.

2.1 Components

The core components for OODT are Product
Servers, Profile Servers and Query Servers (Crichton
& Hughes & Kelly 2002).

Product Sewers abstract away data resource
interfaces (such as SQL, File Systems, HTTP)
into system-independent interfaces for
retrieval of data which satisfy the user
queries.
Profile Sewers serve back scientific
metadata (Crichton & Hughes & Kelly 2002)
in the form of resource profiles, which
provide methods for deciding what resources
satis6 particular queries.

Query Sewers accept user queries, and then
use profile servers to determine what
resources to query and collect in order to
satisfy the query and retum data products.
The Query Server then aggregates and retums
back the federated data products to the caller.

2.1.1 Product Servers

Product Servers abstract away system dependent
interfaces to data by wrapping (Sneed 1997) the
system dependent interface such that it can support
OODT queries. OODT queries are in the format of
one or more (keyword logical operator value)
predicates which themselves are joined by zero or
more logical operators (such as AND and OR). More
formally, a query q can be represented as:

3 Where k is the keyword, v is the value, and op is
the logical operator

At the system interface level, OODT queries are
posed against a set of Common Data Elements (which
describe a high-level data model for the integrated data
system, referred to as a Data Dictionary), and thus the
set of allowable keywords k in each (keyword logical
operator value) predicate comes from the set of the
Common Data Elements in the system Data
Dictionary. Each Product Server contains zero or
more, Query Handlers. Because there may be multiple
types of data products that are stored in the same data
source, there may exist Query Handlers which serve
back different products (a case like this could be
imagined in a relational database, which stores both
binary images of Mars, and also metadata containing
information about the instrument which captured each
image). Each Query Handler contains an abstract
translation function t(q), which maps the query from
the Common Data Element domain, to a query in the
domain which the system dependent interface
understands (Le. maps Common Data Elements against
Source Data Elements, Data Elements in the system-
dependent domain). This function is represented by:

(2)
Essentially this function takes a query in Domain 1,

and maps it to a new query, q', in domain 2. Because
Product Server translation functions are implemented
at implementation time, rather than design time, it is
also possible for the implementer to define even more
abstract translation functions which aren't described

t (4) =4 E 4 , 4 - 4 ' , 4 ' E D,

here, but can be envisioned from the discussion above.
The main goal is to take the abstract query against the
Common Data Elements, and map that into something
the underlying data system, or resource understands.
Figure 2 depicts the internal structure of the Product
Server component.

In Ouwy

Fi
gure 2. The internal structure of the Product Server
component.

2.1.2 Profile Servers

Profile Servers respond to system queries, and
return resources which can satisfy the system query.
To achieve this functionality, Profile Servers store
resource Profiles which describe the Data Elements,
and semantic relationships that each data resource
supports. In this fashion, a Profile Server can receive
an OODT query, and match each keyword Data
Element and associated semantic constraints, to a
particular Resource that a profile describes, and return
the matching profile(s) which satisfy the query. This
scenario is illustrated in Figure 3.

9’ “country = US and windspeed > 120“

Figure 3. Query q, and matching profile of resource.

The profile structure is based on two internationally
accepted standards, ISO/IEC 11179 (IS0 1999) to
describe the structure of Data Elements, and the

Dublin Core (DCMI 1999) set of Data Elements,
which are used to describe any electronic resource.
Our choices for these standards are explained further
in (Crichton & Hughes & Kelly 2002) and beyond the
scope of this paper, but we refer to them here in order
to motivate the discussion of the profile structure. The
profile contains metadata about the profile itself, such
as a unique ID, a name for the profile, and an author of
the profile. We refer to this metadata as Profile
Attributes. The next piece of the metadata that the
profile contains is an implementation and extension of
the Dublin Core Elements to describe the resource that
the profile describes, elements such as Creator, Name
and Author. Further, our Dublin Core extensions
include the addition of specific Data Elements to
describe resources, including Resource Location and a
taxonomy to categorize the type of resource (which we
refer to as Resource Class). A Resource Location can
be a Product Server, another Profile Server, or the Data
Product itself. Resource Class is a ‘.’ delimited
character string such as data. granu le , which
implies that the resource described by the profile is a
low-level Data Product. We refer to this extended
Dublin Core metadata as Resource Attributes. The
final piece of metadata that we include in profiles is
domain-specific Data Elements which describe the
resource in its originating domain. For example, in the
Planetary Data System (Hughes & McMahon 1998),
the Data Element “Target Name” is used to describe
each data product’s originating “target” (i.e. planet).
These domain-specific Data Elements are called
Profile Elements. The profile metadata is summarized
in Table 1 below.

Table 1. Metadata stored in each resource profile.

Profile

Attributes

Resource

Attributes

itself.

include elements such as resource

location and resource class.

profile describes.

Much like Product Servers, each Profile Server
contains zero or more Query Handlers which accept an
OODT query, and then translate it into a query against
the profiles which the Profile Server contains. Profile
Servers can have backend data stores which store
profiles, file systems which store profiles, or they can
reference URL’s which store file-based profiles, and
thus there exists a need for a query handler mechanism
to retrieve and query the back end profile store to
retrieve profiles which satisfy the query criteria.
Profile Query Handlers perform this task. Figure 4
shows the internal structure of the Profile Server
Component.

1.3m

Ut*̂ SJ.d~
C\,* nzlx

i

/ ‘ * o x , ‘,

Figure 4.
Component.

Internal structure of the Profile Server

2.1.3 Query Sewers

Query Servers are responsible for “putting it all
together”. Essentially a Query Server is bootstrapped
with an initial set of “root” Profile Servers, much like
Berkeley’s DNS (BIND 2004). Upon receiving an
00DT-style query, the Query Server proceeds to ask
each one of the Profile Servers it knows about to
retrieve the profiles which match resources which
satisfy the query. This polling of Profile Servers is
performed by Profile Client components which are
present in an initial set of Querier threads. Essentially,
the Profile Client is given a location for the Profile
Server, and is able to query the profile server, and
retrieve the list of profiles (if any) that match up
resources that could satisfy the particular query. Each

list of profile(s) returned by the Profile Client is passed
to the Querier thread for examination of the Resource
Class attribute in each profile. There are three cases
which occur during this examination:

The Resource Class points to another
Profile Server: In this case, the Querier
creates another instance of a Querier
thread, seeded with the returned Profile
Server resource location attribute as its
root Profile Server.
The Resource Class points to a Product
Server: In this case, the Querier creates a
Product Client component instance, which
it seeds with the resource location attribute
of the returned profile. The Product Client
component retrieves the data products
from the Product Server, and then the
Product Client returns the data products
back to the Querier thread. The Querier
thread then adds its data products to the
collected data products list in the Query
Server, and ends its thread lifespan.
The Resource Class points to an
individual data resource: In this case, the
Querier retrieves the individual data
product and adds it to the collect data
products list in the Query Server and ends
its thread lifespan.

Once all the Querier threads have ended their
respective lifespan, the Query Server is done collecting
data products in its collected list. The collected data
product list is then returned to the original user query.
Figure 5 depicts the internal structure of the Query
Server.

6 a-3 Lhd
c-,
‘-tb,rPlt*m

_ ”

Figure 5. Internal structure
Component.

of the Query Server

2.2 Connectors

OODT supports one type of connector, a Messaging
Layer, which allows OODT components to
communicate with each other. The main form of
communication between OODT components is the
Query Object. A Query Object contains the Query q
(mentioned in Section 2.1.1), and the query result,
essentially the collected list of data products
(mentioned in Section 2.1.3). The Query Object also
contains a set of associated metadata regarding the
query, such as Maximum Accepted Results, Accepted
Mime Types (of Data Products within the collected
data products list), and Query Description.

2.2.1 Messaging Layer

The OODT Messaging Layer's responsibility is to
route Query Objects between Query Server, Product
Server, and Profile Server Objects, and return the
Query object to the correct User Client (typically the
client which contacted the Query Server). The
messaging layer essentially creates a virtual data bus
which allows many Query Objects to be transferred
between OODT components in a variety of different
Messaging Protocols discussed below:

Unicast: The Query Object is sent from an
originating OODT component to exactly one
other OODT component.
Multicast: The Query Object is sent from an
originating OODT component to a group of n
other OODT components, defined by some
common attribute, e.g. a type of Component
URN (RFC3613 2003).
Broadcast: The Query Object is sent from an
originating OODT component to all other
OODT components that the originator knows
of.

Since Query Objects contain both the originating
user query, as well as the collected data products
which satisfy the originating query itself, the Query
Object contains all the necessary information to
generate important user satisfaction metrics such as
information quality and query time.

2.3 Configurations

of configurations that are possible with this
architectural style. To motivate and conclude our
discussion of this architectural style, we discuss a
possible configuration of OODT in the context of
linking together 4 different types of science data
resources.

In the OODT architectural style, Product Servers
are attached to an underlying Data System or Data
Resource (such as a relational database, or an HTML
web site, or a network file system). This relationship
is shown in Figure 6, an augmented view of Figure 1 ,
with Product Servers addedKhe diagram.

Figure 6.
Product Servers depicted as red, shaded figures.

Augmented view of DIS scenario, with

The Product Servers alone; however, do not fully
implement the system. The system needs a method for
discovery of Product Servers, and for federation of
Products returned from each data source in the
underlying system. In Figure 7, we augment the view
of the DIS scenario from Figure 6 further, and begin to
address this issue.

In this section, we discuss the possible
configurations of OODT components in a real world
situation. Since we discuss implementation level
deployments at length throughout the rest of this paper,
this discussion is purposefully brief and is not intended
to be all encompassing, or to cover the entire spectrum

m

.............

Figure 7. Augmented view of DIS scenario, with
Profile Servers depicted as blue, lightly shaded figures.

In this scenario, each Profile Server projles two
Product Servers, along with information regarding
what types of Data Products are stored in each Product
Server (in order to satisfy the profile queries). The two
profile servers lay infrastructure in terms of having the
ability to locate and discover data resources which
satisfy query parameters, but one more piece of
infrastructure, the Query Server, will serve to tie the
system components together to support the integrated
system. This final piece of the configuration is shown
in Figure 8.

Figure 8. Augmented view of DIS scenario, with
Query Servers depicted as yellow figures.

Figure 8 depicts a full configuration of OODT
components. A full configuration is a configuration
such that it can support querying from multiple,

heterogeneous resources, as if they were one integrated
virtual data source. The OODT style does not mandate
that full configurations are the only existing
configurations from style. Each system component
(Query Server, Product Server, and Profile Server) are
allowed to exist in a vacuum, but each alone will not
necessarily realize the full capabilities of the style.
Profile Servers and Product Servers alone may be
queried in vacuum's as long as their location is known
to the respective client component (Product or Profile
Client).

The validation of this style is discussed with respect
to its implementation middleware, and the
middleware's respective successhl large-scale
deployments in both planetary science, as well as bio-
medicine. We realize that there exist many further
areas of research within the OODT style, as well as
within architectural styles for data-intensive systems as
a whole. OODT open areas of research with respect to
style are further discussed in Section 6, as well as
Section 7.

3. Architecture-based Middleware

The core OODT middleware has been implemented
in Java, using Sun's Java Development Kit version 1.4.
Programmers extend OODT core component classes
such as Profile Servers, Product Servers, and Query
Servers if additional functionality is needed, otherwise,
the core classes are ready to use out of the box.

For the implementation of the Product Server
component, programmers are required to write
QueryHandler classes which implement the
j p l . oodt . p r o d u c t . [l a y e r] . QueryHandler interface.
Layer represents the type of messaging layer connector
the programmer wants to use. Currently, C O M A and
RMI exist, and we are working on a SOAP-based
messaging layer at the time of writing this paper. The
interface method to a query handler for a Product
Server is the query method. The query method takes
as input a Query Object (described in Section 2.2)
which we can represent and serialize in XML (in the
case where the distributed object middleware does not
support more than the primitive data type parameters,
such as in COMA). The Query Object contains the
query q (described in Section 2.1.1), and the associated
query metadata (described in Section 2.2), and returns
the Query Object back to the user, this time including
any results which satisfied the query to the underlying
data resource. The query interface method becomes the
abstract translation hnction t(4) discussed in section
2.1.1. We present below an XML DTD definition of
our query object structure.

<!ELEMENT query
(queryAttributes,

queryResultModeId,
queryPropogationType,

queryPropogationLevels,
queryMimeAccept*,
queryMaxResults,
queryResults,
queryKWQString,

queryselectset,
queryFromSet,

querywhereset,
queryResultSet)>

querystatistics?,

<!ELEMENT queryAttributes
(queryId, queryTitle*,

quer yType* I

queryDesc*,

queryStatusId*, querySecurityType*,
queryParentId*, queryChildId*,
queryRevisionNote*,
queryDataDictId*) >

<!ELEMENT querystatistics (statistic*)>

<!ELEMENT queryselectset
(queryElement*)>

<!ELEMENT queryFromSet
(queryElement*) >

<!ELEMENT querywhereset
(queryElement *) >

<!ELEMENT queryElement
(tokenRole*, tokenvalue*) >

<!ELEMENT statistic (u r l , time)>

<!ELEMENT queryResultSet
(resultElement*)>

<!ELEMENT resultElement
(resultId*, resultMimeType*,
profId*, identifier*,

resultvalue*) >
resultHeader,

< !ELEMENT resultHeader

<!ELEMENT headerElement (elemName,
(headerElement*) >

elemType?, elemunit?)>

The Product Server itself supports the exact same
query method in its interface. When a query comes
into the product server (via CORBA or RMI), the
Product Server creates worker threads which each are
given a particular Query Handler object reference in
the List of Product Server Query Handlers, as well as a
reference to the Product Server query method’s xml
query object. In parallel, each worker thread invokes
its QueryHandler’s query method, and passes it the
reference to the Product Server’s xml query object, so
that each query handler upon return will aggregate the
list of data return in the results section of the query
object. To illustrate the ease with which query
handlers can be written in the OODT middleware, we

present a snippet of code below for a bare-bones query
handler, which simply takes a query q, ignores the
query, and adds one result to the result list of the query
object.

import jpl.oodt.product.QueryHand1er;
import java.io.*;

public class QueryHdlr implements QueryHandler
{

public XMLQuery query(XMLQuery q) throws
ProductException(

q.addResult(new Result());

1
I

The Profile Server component implementation
centers around the implementation of XML-based
profiles, which profile data resources (and are
described in Section 2.1.2 and Table 1). An XML
DTD for the profile structure is given below:

<!ELEMENT profiles
(profile*) >
<!ELEMENT profile
(profAttributes,
resAttributes,
profElement*)>
<!ELEMENT profAttributes
(profId, profversion?, profType,
profStatusId, profSecurityType?,
profParentId?, profChildId*,
profRegAuthority?, profRevisionNote*,
profDataDictId?) >
<!ELEMENT resAttributes
(Identifier, Title?, Format*, Description?,
Creator*, Subject*,
Publisher*, Contributor*, Date*, Type*,
Source*,
Language*, Relation*, Coverage*, Rights*,
resContext+, resAggregation?, resClass,
resLocation*) >
<!ELEMENT profElement
(elemId?, elemName, elemDesc?, elemType?,
elemunit?,
elemEnumFlag, (elemvalue* 1 (elemMinValue,
elemMaxvalue)),
elemsynonym*,
elemobligation?, elemMaxoccurrence?,
elemcomment?)>

The Profile Server functionality is implemented by
writing Profile Server query handlers, which return
back resource profiles in the above XML format. The
Profile Server itself provides two interface methods,
(1) A query method which accepts an xml based query
object and returns resources profiles which implement
the Common Data Elements used in query object’s
query string and (2) A getProfile method which
accepts a profile Id, and returns the exact profile which
matches the given id. The query method given in 1
essentially returns profiles by polling (in parallel using

the worker thread method discussed for the Product
Server implementation) its respective Profile Query
Handlers. Each QueryHandler implements the same 2
methods as its parent Profile Server, which allows each
QueryHandler to return profiles asynchronously back
to the parent.

The core Profile and Product Server class
implementations are relatively small, averaging 56
SLOC each. This is due in part to the fact that
programmer’s typically write OODT Product and
Profile Query Handlers, instead of extending the
Profile and Product Server base components
themselves each time. Since their respective query
interaction mechanisms are relatively the same (we say
relative& because one returns data product results, and
one returns resource profiles, but both accept the same
query object structure), then we felt that the domain
translation mechanism should be the onus of the Query
Handlers.

Upon creating Query Handlers that return both data
products, and profiles, the method for linking the
Query Handlers to the Product and Profile Servers
respectively can be performed via XML configuration
files, or at system-runtime. The XML configuration
file essentially sets each Product and Profile server
specified to have the associated Query Handlers, and
instantiates each base component. After instantiation,
the system determines what type of messaging
connector is used (either RMI or CORBA), and then
registers the distributed Profile or Product Server
component with the appropriate registry (in RMI,
Sun’s RMI Registry can be used, in CORBA, the
CORBA Name Service is used). Query Server
components can then be instantiated and given the list
of Profile Servers which exist in the system. Each
Profile, Product, and Query Server is identified in the
form of URNs, which uniquely identifi the distributed
component in the respective registry type. Our URN’S
are in the form of urn:oodt: [layer] : [component-
name]. The respective layer registry enforces the
requirement that the combination of [layer]:
[component-name] must be unique when components
register at run-time.

The implementation of the Query Server component
typically comes last, which is directly tied to its
architectural style notion of “bringing it all together”.
The Query Server component is seeded (either at run-
time via configuration files or compile time) with a set
of root Profile Server components (identified by URNs
described in the next paragraph). The Query Server
component supports one interface method, a query
method. The query method accepts a query object as a
parameter, and returns back the same query object this
time containing the federated results that it was able to

collect from the OODT connected system. To perform
this result collection, the Query Component
instantiates a base set Querier threads (mentioned in
Section 2.1.3) which are each given a root Profile
Server in the Query Server component’s initial list.
Each Querier thread proceeds in parallel to query its
profile server and retrieve resource profiles by which
to discover locations of data products which satisfy the
original query. The Querier threads use the algorithm
described in Section 2.1.3 to examine each resource
profile’s Resource Class attribute to determine how to
go about reaching an eventual data product. Once all
the original and any additional Querier threads which
were created are finished collecting products, the
method returns the query object with all the collected
results.

4. Experience and Evaluation

In this section, we discuss deployments of the
OODT middleware in two diverse domains, Planetary
Science, with NASA’s Planetary Data System (Hughes
& McMahon 1998), and Cancer Research, with NIH’s
Early Detection Research Network (EDRN).

4.1 Planetary Data System

The Planetary Data System (PDS) manages and
archives planetary science data for NASA’s Office of
Space Science. It has been in existence since the late
1980’s and to this point has collected approximately
six terabytes of data, which pre-OODT was distributed
and archived for scientists on CD and DVD media.

The PDS is divided up into seven disciplined
“nodes”, which are geographically distributed across
the country. Each node is responsible for managing
and distributing its own particular planetary science
data which is cumbersome due to their geographically
diverse locations, and different methodologies
(discussed below) for storing and accessing their data.
Figure 10 illustrates the geographic diversity of the
PDS.

j" $--<
L.uln-*."--YI
I-rl'**-ru-
.r- <*

\-*lmrr--w
a-a-rr -u

Figure 10. The Planetary Data System OODT
Deployment.

The OODT middleware was used in 2002 to deploy
an infrastructure for the distribution of PDS data from
all seven nodes via the internet. OODT Product Server
components wrapped data resources at each PDS Node
(a total of 7 Product Servers) and a master set of
Profile Servers were used to profile the data resources
exposed by the OODT Product Server components.
To tie everything together, a web portal search page
was constructed to allow a user to pose a federated
query across the entire PDS, and receive back all the
PDS data and metadata which satisfies the query. The
web portal search page poses its queries to an OODT
Query Server, seeded with the master set of Profile
Servers mentioned above.

To measure the amount of data transferred by the
PDS OODT Deployment, we have employed
Recorder Thread components at each PDS Product
Server which monitor the amount of data traffic for
each query transaction per Product Server in the
system. Since 11/15/2002, the PDS Product Server
components have transferred 25GB of PDS Data
Products to Scientists across the country (note that the
25GB so far are not including the full distributions of
Mars Global Surveyor, Mars Odyssey, and MRO)
Table 2 summarizes the metrics that we have collected
to date regarding the PDS OODT Deployment.

Table 2. PDS Deployment total bytes and Products
served since 11/15/2002.

Table 3 helps to illustrate the benefit of OODT in the
PDS. Before OODT, PDS data was distributed via CD
and DVD media, and the NASA PDS nodes had to
mail out CDs and DVDs to scientists which contained
the planetary science data from the missions which

they desired to study. Since OODT, the data can now
be distributed, and accessed via the web. In Table 2,
we show 3 NASA/JPL missions, Mars Global
Surveyor (MGS), Mars Odyssey (Odyssey), and Mars
Reconnaissance Orbiter (MRO) and the amount of
science data (in terabytes and gigabytes) that each
mission was set to produce. The last column, Cost
shows the estimated cost for distributing those PDS
products on DVD media, and mailing out the PDS data
to the scientists. In the case of MRO, OODT has
saved NASA $186 million dollars in mailing and DVD
costs, clearly an enormous savings.

$500K

4,000 $3.3M

MRO 224.0 224,000 $1 86M

Table 3. PDS mission data: expected volumes, and
relative cost pre-OODT.

4.2 Early Detection Research Network

The National Cancer Institute's Early Detection
Research Network (Kincaid et al2002) is a network of
over 30 cancer research centers participating in
research geared towards the early detection of cancer.
Particularly of interest to EDRN is cancer biomarker
data (Kincaid et a1 2002). Similar to the PDS, each
EDRN site is geographically distributed across the
United States, and each site manages their own data
which does not interoperate and commingle with the
other site's data. The ability to correlate this
information is critical to cancer research (Kincaid et a1
2002) in that it has been shown that as study volumes
increase, so does the rate of scientific discovery. Also,
in terms of validating and testing biomedical data, it is
important to compare and contrast similar data at
different EDRN sites.
The OODT middleware is currently supporting

EDRN by providing the middleware infrastructure to
tie together the distributed cancer research data located
across EDRN's sites. Product Servers at 9 of the
current EDRN locations wrap site specific data
sources, and expose the cancer data to the overall
system. A Profile Server network, located at Fred
Hutchinson Cancer Research Center in Seattle
provides the means for discovery of the existing
Product Servers in the network. A portal web page,
the ERNE (EDRN Resource Network Exchange)
(ERNE 2002) provides web-based access to the
OODT-based infrastructure. Figure 1 1 depicts the

EDRN architecture, and Figure 12 depicts the 9 sites
tied together by the OODT middleware.

Figure 11. Nine sites connected by the OODT
middleware in the geographically distributed Early
Detection Resource Network (EDRN).

DUt$..lWH*M.un
C W U M l t h E * U

Figure 12. A conceptual view of EDRN’s architecture.

5. Related Work

Work by (Kolp & Mylopolous 2001) models
information systems using business-organizational
structure as an architectural style, and argues that
Multi-agent Systems (MAS) should be considered as a
construct for information system architectural styles.
They focus on business information systems; however,
which are clearly a subset of data-intensive systems,
and not broadly applicable. Also, (Kolp &
Mylopolous 2001) focus only on requirements
engineering for information systems, and conceptual
architecture, whereas our approach focuses on
architecture styles, and architectural-based middleware
support, and system evolution.

(Kerschberg et a1 1996) and (Gomaa & Menasce &
Kerschberg 1996) present a novel information and data
architecture for describing large-scale data-intensive
information systems, specifically applied to NASA’s
EOSDIS science domain. Their work is most related
to ours, but falls short in terms of a new architectural
style as their work focuses only on the federated client-
server (Fielding 2000) style for data-intensive systems.

Also they present no fine-grained mapping of
conceptual architecture to deployment architecture, or
middleware-based solutions for implementing the data-
intensive system. Of note, the EOSDIS system also
suffered from many design flaws, which are discussed
in (Leath 1998).

(Moore et a1 1999) define Data-intensive systems as
systems which are IO-bound. (Moore et al 1999) go
on to describe the SDSC’ Storage Request Broker
(SRJ3) and how it can be used to abstract domain-
specific data sources using a layered architectural style
(Shaw and Garlan 1996). (Moore et al 1999) also
presents a table’ defining a basic set of application
requirements for data-handling environments. There
exists no mapping of these requirements; however to
architectural components, nor to implementation-level
constructs. Our approach aims to perform such work
through the software engineering lifecycle for data-
intensive systems. Also, as shown below in the related
work for Grids, layered service architectures provide
no insight as to the topologies of software architectural
building blocks, such as components and connectors.
Layered Service Architectures also typically present
little guidance as to the legal configurations or
behaviors of components, as laid out in deployment
architectures, which is another aspect that we intend to
research.

Recent work in the Grid Community (Globus 2004)
has characterized a class of distributed data
interoperable systems as Data Grids (Chrevenak 2000).
Data Grids are discussed architecturally in terms of a
layered services architecture (Shaw and Garlan 1996),
and web-serviced based (Webservices.org 2004)
middleware implementation. This approach is similar
to ours in the sense that the architecture is developed
first, and then middleware is instantiated to implement
the architectural constructs. There is no mapping;
however, of system requirements, to architectural
components, to implementation level middleware in
the Data Grid community, as (Casanova 2002) notes
where he states that initial efforts in Data Grids (and
the Grid community as a whole) were focused on
“getting it to work” rather than system scalability,
evolution, or design.

(Singh et. a1 2003) defines a Metadata Catalog
Service component, but does not describe its
relationship in full to the layered services architecture
that is implemented by the Globus toolkit (Globus
2004), nor to its deployment and interactions with
other Grid components. (Singh et al. 2003) focuses on

~~~ 

San Diego Supercomputing Center 1 

(http://www.sdsc.edu) ’ Table 5.2 in (Moore et a1 1999) 

http://Webservices.org
http://www.sdsc.edu


the component’s scalability, which is indicative of the 
Grid community’s tendency to focus on super- 
computing challenges, as opposed to formal software 
engineering methodology and software architectural 
research. Our work focuses on uniting formal software 
engineering principles with the design of data- 
intensive systems such as Data Grids. 

6. Open Issues 

There remain several open issues with OODT that 
we will address briefly in this section. First and 
foremost, architecting, and deploying OODT software 
architectures, and subsequent middleware is very 
programmer-intensive. By “programmer-intensive” 
we mean to imply that a programmer is required to be 
“in the loop” in order to successfully deploy and 
architect these systems. This is due to the fact that the 
programmer is responsible for translating OODT 
architectural constructs into extensions of our existing 
middleware framework (discussed in Section 4). 
Typically, a programmer will be involved in the early 
phases of the software process, helping to gather 
requirements, and translate requirements into some 
tailoring, configuration, deployment of existing OODT 
code. 

One way of addressing problems like these has 
typically been to provide architectural design tools, 
such as UC Irvine’s xADL (Dasofhy & Van der Hoek 
& Taylor 2002), for software designers to create 
architectural diagrams, and then have a way of 
mapping those architectural diagrams to software 
implementation and code deployment. There is 
existing work in this area (Medvidovic et al. 2003), 
and we aim to research and construct tool support to 
model and deploy architectures and software systems 
in the 00DT-style. 

Another open-issue in OODT is the issue of 
middleware deployment metrics, such as scalability of 
hundreds of components deployed across a set of 
different hosts. We are currently working on 
generating metrics for research in this area, and initial 
results look promising. 

The OODT middleware also assumes a reliable 
network is present in order for the Product, Profile, and 
Query Servers to communicate across. We currently 
have no support for issues such as disconnected 
operation (Mikic-Rakic & Medvidovic 2003), and off- 
loading of data to support unreliable hosts. This type 
of fault-tolerance is crucial in data-intensive systems 
which may be deployed in unreliable environments. 

7. Future Research 

Our future research centers on a software- 
architecture focused approach to design, 
implementation, and evolution of data-intensive 
systems. We also are studying software architecture 
for generally describing the nature of integrating 
heterogeneous data sources. An end-to-end, and re- 
useable methodology for this problem, to our 
knowledge, has not been developed, and existing 
research has not taken this type of focused approach to 
creating a solution to this problem. Potential future 
work includes: 

1. 

2. 

3. 

4. 

5 .  

What types of architectural styles (Fielding 
2000) exist for data-intensive systems, and 
how can they be re-used, learned from, and 
put to use in designing, implementing, and 
evolving DIS? 
Does a set of standard components, 
connectors (Mehta & Medvidovic & Phadke 
2000), and configurations exist which can 
describe data-intensive systems? 
Can product-line architectures (Clements & 
Northrop 2001) be developed for data- 
intensive systems? 
How well does UML describe data-intensive 
systems? 
Can an ADL (Architecture Description 
Language) (Medvidovic & Taylor 200) be 
developed to describe data-intensive systems? 

At JPL and USC, we are researching these questions 
and look to provide guidance, research experience and 
working prototypes for investigating these important 
issues. 

8. Conclusions 

We have presented OODT, an architectural style 
and middleware implementation for data-intensive 
systems. We feel that data-intensive systems have 
been a neglected area of research in the software 
engineering and software architecture communities, 
and we desire to apply formal software architectural 
methodologies to the design, implementation, and 
evolution of data-intensive systems. The OODT style 
and middleware was developed at NASA’s Jet 
Propulsion Laboratory and has been supporting 
NASA’s Planetary Data System in the Planetary 
Science Domain. The OODT middleware also 
supports Cancer Research, and is currently deployed at 



the National Institute of Health’s National Cancer 
Institute, supporting the EDRN (Early Detection 
Resource Network) task. From our experience, the 
area of software architecture for data-intensive systems 
appears to be a fruitful area of research for the years to 
come. 

9. Acknowledgments 

This work was performed at the Jet Propulsion 
Laboratory, managed by the California Institute of 
Technology, under contract with the National 
Aeronautics and Space Administration (NASA). 
Copyright 0 2004. This work was also supported by 
<insert Neno grant here>. 

10. References 

Richard N. Taylor, Nenad Medvidovic, Kenneth M. 
Anderson, E. James Whitehead, Jr., Jason E. Robbins, Kari 
A. Nies, Peyman Oreizy, and Deborah L. Dubrow. “A 
Component- and Message-Based Architectural Style for GUI 
Software.” IEEE Transactions on Sofiare Engineering, vol. 
22, no. 6, pages 390-406 (June 1996). 

R. W. Moore et al. “Data-Intensive Computing”. In The 
Grid: Blueprint for a New Computing Infrastructure. 
Morgan-Kautinan Publishers, 1999. 

D Crichton, J.S. Hughes, S. Kelly. “A Science Data System 
Architecture for Information Retrieval”. In Clustering and 
Information Retrieval. Kluwer Academic Publishers. June 
2003. 

H.M. Sneed. “The Rationale for Software Wrapping”. In 
Proceedings of the IEEE International Conference on 
Sofiare Maintenance (ICSW, October 01-03, 1997, p. 303. 

DCMI, “Dublin Core Metadata Element Set, Version 1.1: 
Reference Description,” Dublin Core Metadata Initiative, 
1999. 

ISO/IEC, “Framework for the Specification and 
Standardization of Data Elements 11 179-1,“ Specification 
and Standardization of Data Elements 11 179, International 
Organization for Standardization, Geneva, 1999. 

J. Steven Hughes, Susan K. McMahon. “The Planetary Data 
System. A Case Study in the Development and Management 
of Meta-Data for a Scientific Digital Library”. In 
Proceedings of the European Conference on Digital 
Libraries (ECDL), 1998. pp. 335-350 

Berkeley Internet Name Domain (BIND). 
http://ww.isc.ordbind.html, 2004. 

Extensible Markup Language (XML) 1.0 (Second Edition) 
W3C Recommendation 6 October 2000, 
htt~://www.w3.or~W2000/REC-xm1-20001006 

RFC 3613. “Definition of a Uniform Resource Name (URN) 
namescape”, 2003. http://~~~.faas.ora/rfcs/rfc3613.html 

Marija Mikic-Rakic and Nenad Medvidovic. “Toward a 
Framework for Classifying Disconnected Operation 
Techniques”. In Proceedings of the Second International 
Workshop on Software Architecturesfor Dependable Systems 
(WADS’O3), Portland, Oregon, May 2003. 

E.M. Dashofy, A. Van der Hoek and R.N. Taylor. “An 
Infrastructure for the Rapid Development of XML-based 
Architecture Description Languages”. In Proceedings of the 
24th International Conference on Software Engineering 
(ICSE), p.266-267,2002. 

Nenad Medvidovic, Marija Mikic-Rakic, Nikunj Mehta, and 
Sam Malek. “Software Architectural Support for Handheld 
Computing”. Cover feature in IEEE Computer , September 
2003. 

R. T. Fielding. Architectural Styles and the design of 
Network-based Software Architectures, Ph.D. Dissertation, 
University of California, Irvine, 2000. 

Nenad Medvidovic and R. N. Taylor. “A Classification and 
Comparison Framework for Architecture Description 
Languages”. IEEE Transactions on Software Engineering, 
VOI 26. NO 1. January, 2000, pp. 70-93. 

Nikunj R. Mehta, Nenad Medvidovic, and Sandeep Phadke. 
“Towards a Taxonomy of Software Connectors”. In 
Proceedings of the International Conference on Software 
Engineering (ICSE), Limerick, Ireland, June 2000. 

P. Clements & L. Northrop. Software Product Lines: 
Practices and Patterns. Boston, MA: Addison-Wesley, 2001. 

Webservices.org. httd/www.webservices.org, January, 
2004. 

Henri Casanova, ”Distributed Computing Research Issues in 
Grid Computing”, ACM SIGAct News, Vol. 33, No. 3,2002, 
PP. 50 _ _  70. 
http://citeseer.nj .nec.com/casanova02distributed.html 

L. Kerschberg et al. Data and Information Architectures for 
Large-scale Data Intensive Information Systems. In 
Proceedings Eighth International Conference on Statistical 
and Scientijlc Database Management, Stockholm, Sweden, 
June 18-20, 1996 

Audrey T. Leath. NASA’s Earth Science Programs come 
under Scrutiny. The American Institute of Physics Bulletin of 

http://ww.isc.ordbind.html
http://Webservices.org
http://httd/www.webservices.org
http://citeseer.nj



