
An Integrated Approach to Reducing Information Technology (IT)
Security Risk in the Software Life Cycle

A White Paper Proposal

David Gilliam & John Powell
California Institute of Technology, Jet Propulsion Laboratory
david.p.gilliam@,iol.nasa.gov, iohn.d.powellG9ipl.nasa.gov

Matt Bishop
University of California at Davis

bishop@cs.ucdavis.edu

1. Introduction
Jet Propulsion Laboratory (JPL) was funded by the NASA Office of Safety and Mission Assurance

(OSMA) with a Center Initiative, “Reducing Software Security Risk through an Integrated Approach”
(RSSR). A partner on this initiative is the University of California at Davis (UC Davis). The Initiative is a
formal approach to addressing Information Technology (IT) security through the instantiation of a System
Security Assessment Instrument (SSAI) for the development and maintenance life cycles. Section 2
describes the current effort on the SSAI and the associated deliverables. Section 3 describes follow-on
work to enhance and extend the instrument if additional funding is obtained.

2. Current System Security Assessment Instrument (S S A I)
The current SSAI, to date, has five elements: 1) a Model-Based Verification (MBV) instrument with

a Flexible Modeling Framework (FMF) that uses Model Checking and the SPIN model checker to check
for properties in the requirements specifications that lead to vulnerabilities or unwanted exposures; 2) a
Property-Based Tester (PBT) for JAVA and C Code for verification of security properties to verify the
code that violations of these properties have not been re-introduced into it; 3) a Software Security
Checklist (SSC) having two phases: Phase 1 addresses the development and maintenance life cycles, and
Phase 2 addresses the external release of software; 4) a list of Security Assessment Tools (SAT’S); and 5)
Formal training for software and system engineers on software security and the use of these and other tools
and instruments in the life cycle.

2.1. Security Assessment Tools (SAT)
The SAT is a collection of publicly available software security code checking tools available on the

Intemet that can be used to test for potential weaknesses in software code. The SAT is being maintained by
UC Davis. The SATs are classified and grouped according to purpose and life cycle use. Included on the
web site is a description of each tool and its intended application. Additionally, each tool’s advantages and
limitations are provided. Alternate tools are also included in this assessment including links showing
where to obtain the tool.

2.2. Model Checking (MC) and the Flexible Modeling Framework (FMF)
Software model checkers automatically explore all paths fiom a start state in a computational tree that

is specified in an MC model. The computational tree may contain repeated copies of sub-trees. State of the
art Model Checkers such as SPIN exploit this characteristic to improve automated verification efficiency.
The objective is to verify system properties with respect to models over as many scenarios as feasible.
Since the models are a representation of all functional capabilities under analysis, the number of feasible
scenarios is much larger than the set that can be checked during testing. Model Checkers differ from
traditional formal techniques by the following characteristics:
0

0

0

Model checkers are operational as opposed to deductive
Model checkers provide counter examples when properties are violated (error traces)
Their goal is oriented toward finding errors as opposed to proving correctness since the model is
correct

1

mailto:david.p.gilliam@,iol.nasa.gov
http://iohn.d.powellG9ipl.nasa.gov
mailto:bishop@cs.ucdavis.edu

For example, consider a software system containing two concurrent processes with three states each.
(See Figure 1) Process 1 (Pl) is driven by an “X” event or input and process 2 (P2) is driven through its
states by a “Y” event/ input. A model checker will automatically explore all possible paths through this
system to determine if a given system property holds.

0

e

e

Testing of concurrent software systems quickly become infeasible as:
The possible number of concurrent processes increases
The functionality in one or more processes grows
The interactivity between or complexity of one or more processes increases

This is largely due to the exponential growth in the operational state space of the software system
response to any one of the above stimuli.

Process P 1 Process P2

Figure 1 : Concurrent Processes I

...

Processes P 1, P2

Figure 2: Interleaving Concurrent Processes

in

This phenomenon is also, to a lesser degree, a limitation specific to model checking referred to as the
state space explosion problem. [2] Similar to the growth of the operational space mentioned above, the state
space that a model checker must search to verify properties grows at an exponential rate as the model of the
software system necessarily becomes more detailed. Continuing with the example from figure 1, Figures 1
through 3 illustrate how the state space grows at a rate of m” where m is the range of possible values a
variable may assume and n is the number of variables in the model.

Figure 3: State Space

Despite the use of modeling techniques such as abstraction and homomorphic reduction, it is infeasible
to verify many software systems in their entirety though model checking that are more than “moderately”
large or complex.

An innovative verification approach, whch employs MC as its core technology, is offered as a means
to bring software security issues under formal control early in the life cycle. [3,4] The FMF seeks to
address the problem of formal verification of larger systems by a divide and conquer approach. [5] It

2

Figure 4: Model Component Combination Tree

accomplishes this by verifying a property over portions of the system, then incrementally inferring the
results over larger subsets of the entire system As such, the FMF is: 1) a system for building models in a
component based manner to cope with system evolution over time and, 2) an approach of compositional
verification to delay the effects of state space explosion. This methodology allows property verification
results of large and complex models to be examined and extrapolated appropriately. (See Figure 4)

Modeling in a component-based manner involves building a series of small models, which later will be
strategically combined for system verification purposes. This strategic combination correlates the modeling
function with modern software engineering and architecture practices whereby a system is divided into
major parts, and subsequently into smaller detailed parts, and then integrated to build up a software system
An initial series of simple components can be built when few operational specifics are known about the
system. However, these components can be combined and verified for consistency with properties of
interest such as software security properties.

The approach of compositional verification used in the FMF seeks to verify properties over individual
model components and then over strategic combinations of them The goals of this approach are to: 1)
infer verification results over systems that are otherwise too large and complex for MC from results of
strategic subsets (combinations) whle minimizing false reports of defects; 2) retain verification results
from individual components and component combinations to increase the efficiency of subsequent
verification attempts in light of modifications to a component.

2.3. Property-Based Testing
Property-based testing is a testing techque designed to detect violations of given properties. In this

context, the properties desired are obtained from the checklist, or from the properties used in the model
checking. The properties are viewed as invariants that are to hold as the program executes. PBT views the
execution of the program as a sequence of state transitions. If any of these transitions cause a violation of
the properties, PBT causes an error message to report the failure (see Figure 5 below).

First, the properties are expressed in a low-level testing language called TASPEC. A tool called the
instrumenter takes these properties and a program to be tested. The instrumenter then modifies the program
so that, when any event occurs that affects whether the state of the program’s execution satisfies the
properties, a text representation of the change in state is emitted. The instrumented program is then
compiled and executed. After the execution is complete, the changes of state will have been saved to a file.

The testers then execute a second program called the test execution monitor (TEM). This program is
given the properties (in TASPEC) and the changes of state generated fiom the test run of the program. The
TEM then checks each change of state to ensure that, if the properties held when the program began
execution, then they held throughout the execution. If not, the TEM can determine where in the program
the failure occurred.

3

Tat Data

Program

State Tramitrons Instrumented
Program Imtrumnter

1

r 1

S a t i s f a Properties
Test Execution

I Properti= J
Monitor UEM)

Error

Figure 5: PBT Process
I

Knowladgeof~ty I hprty-bakd Testing

Figure 6: PBT Model

PBT is different than formal verification. It recognizes that implementation difficulties, and
environment considerations, may affect conformance to the properties (and hence the security of
execution). A key observation is that testing does not validate that a program will always meet the
properties, unless all possible paths of execution are traversed. But it does provide additional assurance that
the implementation is correct, and does satisfy the properties, when execution follows the tested control and
data flow paths.

Many control and data flow paths are irrelevant to the program’s satisfying the desired properties. A
technique called slicing [6] creates a second program that satisfies the properties if, and only if, the original
program satisfies those properties. The second program contains only those paths of control and data flow
that affect the properties. This focuses the testing on paths of execution relevant to the security properties,
rather than on all possible paths of execution (See Figure 6).

The property-based tester currently handles Java programs, and has found vulnerabilities in several
programs, including a server of several thousand lines. The instrumenter is language dependent because it
must parse the program to be tested in order to add the appropriate code to print the relevant changes of
state. The current instrumenter handles Java, and one currently is being written for C.

2.4. Software Security Checklist (SSC)
The SSC has two foci: 1) a checklist for software developers to write secure code for applications

(including tools to integrate security into the various stages of the software life cycle); and 2) a checklist to
verify that software released does not allow unauthenticated access into networks, or provide other

4

information about processes, systems, networks, or other sensitive data (such as IP Address space, HR data,
or processes that can be exploited).

A checklist for the development and maintenance life cycles begins with system inception and
continues through retirement known as a ‘womb to tomb’ process. It begins with a pre-requirements study
to be able to elicit the appropriate requirements from the stakeholders and applicable documents, standards,
regulations, laws, etc. and specify them; and it ends with decommissioning software and systems and the
impact on the computing environment, including re-verification of systems from which critical software
has been decommissioned. In between there are a number of critical design and programming issues as
well as tracing security requirements, and performing test and verification of them, including the
maintenance life cycle phase.

There is also a need for a checklist for the external release of software (i.e., software that is developed
for release external to the organizational environment). However, there is no guidance provided on the
contents of neither the checklist nor a release authority process. This research initiative delivered to JPL
and NASA a draft of a potential checklist and release authority process to be used for the external release of
software. A process for evaluation of code for potential security issues was also provided. The evaluation
of the source code included looking for problems that might expose NASA and NASA partners to potential
security exposures. Included in the release checklist is a sample set of PERL scripts to aid in looking for
potential items in the software that may violate security requirements or present security risks such as
embedded Center IP addresses, Human Resource information like phone numbers, use of known vulnerable
libraries, and weak subroutines.

2.5. Collective System Security Assessment Instrument (SSAJJ

Software Vulnerabilities Expose IT Systems and
Infrastructure to Security Risks

educe Security Risk in Software and
tect IT Systems, Data, and Infrastructure

.Security Training for System Engineers
and Developers

curity Checklist for end-to-end

.Software Security Assessment Instrument
, e r r 1 I\

ecurity Instrument Includes:

.Security Checklist

.Vulnerability Matrix
IhscowredatecksmtbeenseeninmeHnld ------
K w w n ~ f a V m a r i X / P B T ~ ~ e s __ Property-Based Testing

T-In@m .Model-Based Verification

.Collection of security
tools

Figure 7: Integrated Use of the Security Assessment Instrument

This collection of tools and utilities, collectively named the System Security Assessment Instrument
(SSAI), can be used individually or in concert to ensure the security of network aware application software
and systems as shown in Figure 7 below. Working together, the various tools and utilities provide a
distinct advantage whereby each tool’s output may be used for input for the other tools.

A unified approach to software security has the potential to identify software security weaknesses. An
approach that addresses security issues early in the life cycle increases that potential. Unifjmg the model-
based approach with property-based testing through the use of temporal logic properties provides consistent

5

verification across life cycle phases. The m a t r i x provides the basis for instantiating the temporal logic
properties for both MBV and PBT. Other security assessment tools like fault injection and fault trees can
be used cooperatively or independently to address other software security concerns. The software security
checklist identifies the critical areas in security that need to be addressed in the life cycle. The outcome is
an integrated approach to reducing software security risk.

The use of these tools and instruments results in a more comprehensive assessment of the software
undergoing analysis. It provides an end-to-end life cycle approach to formal security verification of
software. These techniques and instruments are extensible to other areas of formal verification such as
safety and reliability.

3. Future Development Needs for the SSAI
The SSAI current provides the means to formally verify the security of software. However, extension

of the research can enhance and extend its current capabilities. Areas that could be extended are as follows:

3.1. IT Security Risk Management
A risk assessment methodology is needed to manage IT security risk and risk mitigations, and to

provide an overall awareness of the type of risks, mitigation trade-offs, and residual risk in the overall
framework of software systems in an IT infrastructure. The National Institute of Standards and Technology
(NIST) “Risk Management Guide for Information Technology Systems,” presents a nine step process to
risk assessment: 1) System Characterization, 2) Threat Identification, 3) Vulnerability Identification, 4)
Control Analysis, 5) Likelihood Determination, 6) Impact Analysis, 7) Risk Determination, 8) Control
Recommendations, 9) Results Documentation, with each step having specified inputs and outputs that lead
to the succeeding step. (Figure 8) [101

Figure 8: Risk Assessment Process Figure 9: Exploit Attack Probability

In application to security, risk is a function of the impact an adverse event would have were it to
succeed in breaching defenses, its likelihood of succeeding, and thefiequency at which such events are
perpetrated. Quantifymg risk in these terms depends on the relative value of the potential loss or disruption
should the risk event occur. A formula to quantify IT security risk is defined here as:

Risk = impact * likelihood *frequency =impact * likelihood * (ease * likelihood * impact) =

impactA2 * likelihoodA2 * ease

The key characteristic of Software Engineering (compared to safety engineering) is the malicious
intent of the attackers, who deliberately favor attacks that they perceive have a greater potential for success
and a greater propensity for impact. Attack sophistication and complexity are unpredictable and these must
factor into risks and their mitigations. Damage is premised on the fact that attacks that are easier to carry
out and that result in greater harm will occur more often (Figure 9). However, it is dificult to predict new
attacks and attack types. System complexity factors and sophistication of attacks create events that must be
evaluated as they occur. For this reason IT security risk management must be a persistent process.

Development of a security template for a Risk Management Tool such as the Defect Detection and
Prevention (DDP) tool can aid in identifying and mitigating risks as well as quantifying residual risk. DDP
assists system engineers in identifying risks, the relative cost of mitigating the risks and the trade-offs in
risk mitigation and acceptance. “DDP explicitly represents risks, the objectives that risks threaten, and the

6

mitigations available for risk reduction. By linking these three concepts, DDP is able to represent and
reason about the cost-effectiveness of risk reduction alternatives.” [1 11 The DDP process brings together
stakeholders in the project who are domain experts and who represent the life cycle phases from inception
to retirement. According to Feather, “The single most important aspect of the DDP approach is that it
supports multiple experts [who] pool their knowledge” allowing them “to take the sum total of their pooled
knowledge into account as they make decisions.” [12] In addition, it allows users and domain experts to
assign relative weights to risks and risk mitigations. This process represents a multi-disciplinary approach
to risk management in the project life cycle-one of the strengths of the DDP process.

The application of DDP to security as a risk management tool will allow a Software Engineer (SE)
more effectively to assess and manage risks whether it is for the institution or for the SDLC. Both
institutional and project risks and their mitigations need to be evaluated together for a full risk
impacthitigation assessment. The security engineer needs to work closely with the system engineer and
domain experts in this process. Figure 10 depicts the process that facilitates providing weighted inputs into
the DDP tool.

Risk Reduction & Mitigation Processes
I Risk = impactA2 likelihoodA2 ease I Systems Security Risk Engineering

Management Domain Expert A

Risk Data Input‘

Risk Cost vs.
Tech. Risk Reduction

Personnel Effectiveness Output

Domain Expert C

Figure 10: Security Engineering Risk AssessmentiManagement Process

The process pools the combined inputs of the domain experts and performs calculations over the entire
body of gathered information providing aggregate risk calculation information and searches for near-
optimal solutions for mitigating risks. It then provides coherent visualizations back to the domain experts
so well-informed decisions can be made. The process can be refined until an optimal solution is achieved.
[12] Integration of available security mitigation tools and their effectiveness and uses can benefit the
process of identifying potential security risk mitigations and the trade-offs in ascertaining the extent of
security risk reduction, and the impact on other areas of risk (reliability and safety).

3.2. Extension of the Flexible Modeling Framework (FMF)
Development of the Flexible Modeling Framework provides software experts the ability to model

systems in the early stages of the software life cycle. Modeling complex software in components as
described in the FMF aids in the process. However, this process still often requires extensive time and
effort. In terms of maintenance the FMF provides high benefit in only developing new models of those
components that have changed.

The modeling process can be further reduced in time and effort through the development of security
property types of templates that aid in transitioning the properties into the Promela programming language
used by the SPIN model checker. A library of such templates can be developed and provided to SE’s to
model the specifications more efficiently reducing modeling cycle time and costs.

7

3.3. Extension and Maintenance of the Security Assessment Tool (SAT) web site
Further development and maintenance of the Security Assessment Tool (SAT) web site originally

developed and hosted by the University of California at Davis (UC Davis) can provide security
professionals a location to obtain information about security products, their relative strengths and
weaknesses, and related tools for both commercial and non-commercial applications. Currently, users are
inundated with security products with varying claims. Some valuable commercial and non-commercial
products may be overlooked due to the voluminous number of products and claims made by vendors.

A web site to provide unbiased evaluation of security products, in particular for those for the software
life cycle, using the initial effort by UC Davis needs to be M e r developed and maintained. This would
be a joint venture by JPL, UC Davis and Citigal (www.citigal.com), with Citigal as a potential organization
for hosting the web site. The ability to go to a single source to obtain information about formal security
assessment instruments and tools will provide a valuable service to the internet community looking for the
best solutions to protect their environments. It also will allow providers and vendors of security products to
have a place to submit their products for an independent evaluation with links for users to obtain their
products. In addition, the providers and vendors could receive a certification check of their product(s).
This certification can provide standardization for security products and be integrated into the International
Standards Organization (ISO) and International Electrotechnical Comission (IEC), Joint Technical
Committee (JTC), Subcommittee 7 (Life Cycle Management), Software Engineering Standards.

3.4. Extension of Property-Based Testing
Property-based testing is a testing technique designed to detect violations of given properties. In this

context, the properties desired are obtained from the checklist, or from the properties used in the model
checking. The properties are viewed as invariants that are to hold as the program executes. PBT views the
execution of the program as a sequence of state transitions. If any of these transitions cause a violation of
the properties, PBT causes an error message to report the failure.

First, the properties are expressed in a low-level testing language called TASPEC. A tool called the
instrumenter takes these properties and a program to be tested. The instrumenter then modifies the program
so that, when any event occurs that affects whether the state of the program’s execution satisfies the
properties, a text representation of the change in state is emitted. The instrumented program is then
compiled and executed. After the execution is complete, the changes of state have been saved to a file.

given the properties (in TASPEC) and the changes of state generated from the test run of the program. The
TEM then checks each change of state to ensure that, if the properties held when the program began
execution, then they held throughout the execution. If not, the TEM can determine where in the program
the failure occurred.

PBT is different than formal verification. It recognizes that implementation difficulties, and
environment considerations, may affect conformance to the properties (and hence the security of
execution). A key observation is that testing does not validate that a program will always meet the
properties, unless all possible paths of execution are traversed. But it does provide additional assurance that
the implementation is correct, and does satisfy the properties, when execution follows the tested control and
data flow paths.

The testers then execute a second program called the test execution monitor (TEM). This program is

3.4.1. Property-based testing is a testing technique designed to detect violations of given
properties. In this cont Status of Property-Based Testing Tools

the instrumenter and the TEM. A testing environment consisting of a library of common security
properties, a test generating and analysis system, and a user interface would complete a property-based
testing environment.

the state transitions generated from the instrumented program regardless of the language in which the
instrumented program is written. The TEM itself is programmed in Prolog, a logic-based programming
language that is naturally suited for the analysis required.

written in a particular language, and a set s of security properties, and outputs a program Q meeting the
following requirements:

As the above description indicates, a property-based testing system consists of two basic components:

Currently, the TEM is implemented in a language-independent manner. It is a back-end that can be fed

Unlike the TEM, the instrumenter is of necessity language-specific. It takes as input a program P

8

1.

2.

In order to insert the additional code to meet the second requirement, the instrumenter must be able to

P satisfies S if and only if Q satisfies S; and

When Q executes, it creates a file F containing statements representing the state transitions
relevant to P’s satisfjmg S

parse and analyze the input program P. Hence each programming language requires a different
instrumenter. Currently instrumenters exist for both the C programming language and the Java
programming language.

A component of some instrumenters is the slicer. A slicer takes as input a set of properties and a
program, and generates the minimal equivalent program that satisfies the given properties. In short, a slicer
satisfies the first requirement for the instrumenter. For some languages, such as C, a slicer may produce a
program 5% to 10% the size of the original program. For other languages such as Java (and, in fact, any
object oriented language), the complexity of the code underlying the manipulation of objects means that the
slicer produces a much smaller reduction. For this reason, the C instrumenter includes a slicer; the Java
instrumenter does not.

for example for buffer overflows and for more specific vulnerabilities such as web servers not properly
c o d i n g clients or servers granting privileges to users without the users having been properly
authenticated. We have used these successfully to detect errors in programs.

During testing and analysis of the TEM and the instrumenters, we have developed several properties,

3.4.2. Next Steps
We would like to accomplish six extensions to the current property-based work

Create a library of security properties in TASPEC. Currently, programmers test that their programs are
“secure” in a haphazard manner. We propose to develop properties that can be used with software
security checklists, such as the one NASA is developing, to provide a more systematic analysis of
implementation-level problems. We would use Christy’s list of common programming errors, because
this list was developed from Christy’s work in the Common Vulnerabilities and Exposures list (CVE
and CAN vulnerabilities), which reflects a wide survey of software security vulnerabilities. These
properties would be written in TASPEC, so an analyst could use them with minimal effort.

Demonstrate a mapping between the LTL properties and the TASPEC properties. This would require
us to develop a mapping between the languages to determine whether the mapping of properties from
model to implementation could be automated to some extent.

Create C++ and Objective-C instrumenters. C++ is a very complex object-oriented language; it is also
very widely used. The difficulty in developing an instrumenter is in the analysis of the
interdependencies among modules of the program, and the lack of a clean model of the language. The
benefit would be its applicability to far more programs and systems, and corresponding enhancement
of its utility. Objective-C is a simpler, cleaner object-oriented version of C. It is used on MacOS X as
the primary programming and development language, and would allow us to develop a useful tool
while we overcome some problems that we expect to encounter with C++. It would also allow us to
develop a tool that could be used in the early stages of maturity of a UNIX-based operating system.

Develop a user interface to integrate the different components of property-based testing. Currently, the
instrumenter, TEM, and properties are separate entities, and the tester must know how to set each up
and execute each in order to perform property-based testing. We would like to develop a graphical user
interface to allow the tester to manipulate the components more easily, select properties to be tested for
by clicking on elements of a GUI rather than editing files, and display the results clearly. Our focus
thus far has been on developing the technology; this aspect of our future work would help make that
technology accessible to programmers and analysts who are not experts in security.

Development of the test data and coverage aspects of property-based testing. One of the issues in
testing is how thorough the testing is. As stated above, testing cannot prove correctness; it can prove
the presence of errors in those parts of the program executed during testing. A coverage metric
measures how much of the program has been executed. In general, the greater the value of the metric,
the more complete the coverageand testing-of the program. An ancillary aspect of this is to derive
test data that causes the program to execute along the desired flows of control. This can be used to

9

increase the value of the coverage metric, thereby increasing the confidence of the tester in the results
of the testing. Both of these aspects require further work, as they will aid the tester in using property-
based testing.

6) Port the system to Windows. Currently, some of the components have been ported to various versions
of the Windows environment, but the porting has been done on request from interested parties, and
usually by using a UNIX-like interface. We would like to explore making the components and the GUI
native to Windows to enhance their use. (The properties, and TASPEC, are the same regardless of
environment .)

4. Conclusion
If follow on effort is funded as proposed, the SSAI can become a powerful tool used in conjunction

with other assessment tools. NASA has funded the original effort to provide a formal approach to reducing
security risk through an integrated approach. However, further effort is needed to enhance and extend the
current instrument. Additional funding to extend this research is being sought both to extend the research
and to broaden the scope of the effort to integrate formalisms into the software life cycle.

5. Acknowledgements

Institute of Technology, under a contract with the National Aeronautics and Space Administration.
The research described in this paper is being carried out at the Jet Propulsion Laboratory, California

6. References

[11 C. Mann. “Why Software Is so Bad,” Technology Review (July/August 2002).

[2] G. Holzmann. Design and Validation of Computer Protocols. Prentice Hall 1990; ISBN: 0135399254

[3] D. Gilliam, J. Kelly, J. Powell, M. Bishop. “Development of a Software Security Assessment Instrument to Reduce
Software Security Risk” Proceedings of the Tenth IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, Boston, MA, pp 144-149.

[4] D. Gilliam, J. Powell, J. Kelly, M. Bishop. “Reducing Software Security Risk Through an Integrated Approach”,
IEEE Goddard 26th Annual Software Engineering Workshop.

[5] Component Based Model Checking, J. Powell, D. Gilliam. Proceedings of the 6th World Conference on Integrated
Design and Process Technology, June 23-28, Pasadena CA, p66 & CD

[6] M. Weiser. “Program Slicing,” ZEEE Transactions on Software Engineering SE-lO(4) pp. 352-357 (July 1984).

[7] NPG 2210. “NASA Procedures and Guidelines: External Release ofNASA Software,” January, 2002, August 26,
1999, http:llnodis3.gsfc.nasa.gov/library/lib docs.cfm?range=2

[SI NPG 7120.5B. “NASA Procedures and Guidelines: NASA Program and Project Management Processes and
Requirements,” November, 2002, http://nodis3.gsfc.nasa.aov/n~g imdN PG 7120 0058 /N PG 71 20 005B .pdf

[9] NPG 2810.1. “NASA Procedures and Guidelines: Security of Information Technology,” August, 1999,
http://nodis3.gsfc.nasa.gov/librar~/displavDir.cfm?Intemal ID=N PG 2810 0001 &page name=main

[101 NASA Cl2M Resource Center website http://www.crm.nasa.govlknowledgeldefault.html, accessed 09-
15-2003

[111 Cornford, S. L., Feather, M.S., Dunphy, J., Salcedo, J., and Menzies, T., “Optimizing Spacecraft
Design - Optimization Engine Development: Progress and Plans,” IEEE Aerospace Conference, March
2003, (available on the web at: http://ddptool.jpl.nasa.gov)

[12] Feather, M.S., Comford, S. L., and Moran, K., “Risk-Based Analysis And Decision Making In Multi-
Disciplinary Environments,” Proceedings of IMECE’03 2003 ASME International Mechanical Engineering
Congress & Exposition Washington, D.C., November 16-21,2003.

10

http:llnodis3.gsfc.nasa.gov/library/lib
http://www.crm.nasa.govlknowledgeldefault.html
http://ddptool.jpl.nasa.gov

