Autonony Software Verification and Validation
Might Not be as Hard as it Seems

Erann Gat
Jet Propulsion Lab

The verification and validation of autonomy software is widely believed to be a challenging unsolved
problem. To a certain extent this is true, but in this paper I argue that the problem is not nearly as severe as
seems to be widely perceived. Many of the perceived hard problems in autonomy software V&V also exist
for traditional software, and can be solved using many of the same methods and techniques used for
traditional spacecraft software. In particular, the problem of intractably large state spaces exists for any
non-trivial software system. This problem can be addressed for autonomy software in the same way that it
has been addressed for traditional software: by decomposing the large state space into a tractable number of
equivalence classes that exhibit qualitatively identical behavior, each one containing a large number of
states.

1. Motivation

There is an extensive literature on verification and validation of autonomy software. (See e.g.
[Simmons00], [Pecheur00], and the lengthy bibliography at
http://ase.arc.nasa.gov/docs/vandv.html#papers.) Despite this, anecdotal evidence indicates that autonomy
software for space applications is still a source of serious concern in some quarters.

Autonomy software is getting more attention nowadays as a means of making mission operations more
efficient, and providing new mission capabilities. This new technology bring with it understandable
concerns about how to insure that the software is correct. The purpose of this paper is to try to alleviate
some of that concern by arguing that verifying and validating autonomy software is not different in any
fundamental way from verifying so-called “classical” spacecraft control software. This is not to say that
there is no cause for concern, merely that the use of autonomy software is not cause for any additional
concern over and above what would be warranted without it. Indeed, one of our conclusions will be that
not enough attention has been paid to this issue in the past.

2. What is “autonomy software”

If we are going to talk about a particular property of something called “autonomy software” it behooves us
to begin by defining exactly what the term “autonomy software” means. Unfortunately, that turns out to
be not so easy to do. Autonomy is one of those things about which people tend to say, “I know it when I
see it.” Programs like the Remote Agent (RA) [Pell98a] are generally considered autonomous, while a
classical attitude control loop or fault control subsystem are not. Certainly, these latter two examples do
not carry with them the additional concerns about verification and validation (V&V) that encumber
something like RA.

I will adopt a purely operational definition: autonomy software is any software that fits into a part of the
spacecraft control process that would normally involve a human. Attitude control and fault protection
software are therefore not autonomy software (at least not on unmanned spacecraft) simply because it is
impossible to put a human in those loops.

http://ase.arc.nasa.gov/docs/vandv.html#papers

3. The source of the concern

There are two main sources of concern about autonomy software, which we will call the technological
concern and the operational concern.

The technological concern is that the particular technology used in autonomy software tends to involve
techniques like search that are 1) not used in traditional software and 2) not amenable to exhaustive testing
because the number of possible states is astronomically large.

The operational concern is that irrespective of the particular technology used, the mere act of taking
humans out of the loop introduces risk because programs can make mistakes, so if a program has direct
control over a spacecraft such a mistake can have serious consequences, including loss of mission.

I will now address both of these concerns in turn.

4. Practical limits on exhaustive testing

Traditional software is often trusted because it is believed to have been exhaustively tested. In fact it is
impossible to exhaustively test any non-trivial piece of software. This is easily shown with a simple
calculation of how many states could be enumerated if the entire universe were one gigantic computer. The
answer turns out to be a surprisingly small number: less than sixty bytes worth. Here is the calculation:

There are about 10*° elementary particles in the known universe.
The universe is about 10'® seconds old.

The Planck time is 10 seconds. According to currently accepted theories of physics this is the shortest
meaningful subdivision of time, and this the shortest time period over which physical processes can take
place.

So if every elementary particle in the universe were a computing element operating at the Planck frequenc
(one divided by the Planck time) then this computer could have enumerated at most about 10%°x 10'® x 10®
= 10" = 2*B states over its current 10-billion-year lifetime. (Lloyd, using a completely different entropy-
based calculation [Lloyd02] arrives at an upper bound of 10'% states.) This number of states corresponds
to fewer than sixty bytes of information. Of course, the actual practical limit on exhaustive enumeration is
much less than that.

It is therefore impossible to exhaustively test any non-trivial piece of software. Even something as simple
as multiplying two quaternions is beyond what can be exhaustively enumerated even in principle (unless
there is a major breakthrough in quantum computing).

Of course, the actual practical limit on enumeration is even smaller. Current state-of-the-art
supercomputers contain fewer than 10° nodes operating at clock frequencies of under 10". So in a year
(<10® seconds) such a computer could enumerate no more than about 80 bits, just barely enough to
exhaustively enumerate all the values of a single extended-precision floating point number.

We may conclude therefore that no piece of flight software, indeed no non-trivial piece of software
whatsoever, has ever been exhaustively tested, and none ever will be.

This may sound like a negative result, but in fact it is exceedingly good news because (sufficiently) reliable
software can be created despite the fact that it cannot be exhaustively tested. In other words, exhaustive
testing is not necessary to produce reliable software. Thus, the fact that search algorithms cannot be
exhaustively tested is not in an of itself cause for concern.

Of course, the possibility remains that the reliability of autonomy algorithms cannot be established for a
reason other than the impossibility of exhaustive testing. I will return to this possibility in the next section.
But for now let us address some more immediate questions:

1. How is it that reliable software is produced despite the impossibility of exhaustive testing?
2. Can these techniques be applied to autonomy software?

I will argue that the answer to the second question is “yes”, but first things first.

5. Software has structure

The first thing to recognize is that what has passed for “exhaustive testing” is not exhaustive at all, but is in
fact testing only very sparse samples from the true range of possible states. What makes this technique
reliable rather than just a statistical crap shoot is that software has structure, and that as a result of this
structure the behavior of the software in one state is not generally independent of its behavior in other
states. Thus, testing the software in one state actually gives us in many cases reliable information about its
behavior in a very large number of other states. These states can therefore be grouped together into an
equivalence class with respect to a particular property of concern. These equivalence classes are generally
very large, astronomically large in fact, which is fortunate because that is what provides the leverage that
allows us to finish testing our software before the end of the universe.

As an example of this structure, consider floating point numbers. The semantics of floats are such that
computations on floats can be modeled to reasonable accuracy as mathematical operations on real numbers.
The correspondence is so good, in fact, that programmers often forget that floating point operations are not
actually mathematical operations on real numbers, and the small (and occasionally large) deviations from
this behavior do occasionally lead to catastrophic consequences [ESA96].

The key to making autonomy software reliably testable therefore is exactly the same as that for making any
non-trivial software reliably testable: design the software in such a way that its structure allows its state
space to be decomposed into a tractable number of equivalence classes with respect to a property of
interest, and then perform tests on a small number of samples from each equivalence class.

Exactly how that is to be accomplished is, of course, a long story and beyond the scope of this paper. For
some possible directions see [Gat03].

6. Reliable results from unreliable components

The second concern, the operational concern, is independent of technology. The worry is that giving a
program direct control over a spacecraft is risky because it removes human judgment from the control loop.

One possible response to this is to observe that human judgment is a two-edged sword. Human judgment is
inextricably linked to human error, and replacing a human with a program could just as easily make things
better as make them worse a priori.

Once again we must consider the situation in context. Current spacecraft control processes are reliable not
because they involve humans, but because those humans are embedded into a complex process of checks
and balances specifically designed to compensate for the fact that humans make mistakes. There is no
reason why the same thing could not be done for programs.

This is not to say that the concern isn’t a valid one; it is. But the situation is not inherently more serious for
autonomy software than it is for control processes with humans in the loop.

An example of how unreliable components can be packaged to create a reliable overall system is given in
[Gat97]. The general idea is to design the software so that when it fails it does so cognizantly, that is, it
never fails to recognize when it has failed. Unreliable components that fail cognizantly can be combined in
an overall architecture that has recovery procedures for cognizant failures.

7. A survey of spacecraft autonomy software

The first (and as of this writing still the only) autonomous spacecraft was ST1 (originally DS1) which
operated autonomously for two days under the control of the Remote Agent Experiment (RAX) [Pell98a].
The Remote Agent software consisted of three major components: a planner and scheduler (PS)
[Muscettola97], a fault diagnosis system (Mode Identification and Recovery or MIR) [Williams96], and a
smart executive (EXEC) [Pell98b]. The code was written in ANSI standard Common Lisp running on a
customized version of Harlequin Lispworks ported to run under vxWorks.

The Mars Exploration Rover (MER) mission will be landing between when the final version of this paper is
due and the publication date. The twin MER rovers will be operating under the control of an autonomous
navigation algorithm called GESTALT.

The EO-1 mission will shortly fly (and probably will have already flown by the time this is published) an
autonomous planner as part of the Autonomous Sciencecraft Experiment (ASE) [Chien03].

The Three-Corner-Sat (3CS) mission [Chien01] was scheduled to launch this year, but has been delayed
due to the loss of the space shuttle Columbia.

The Mars Science Laboratory (MSL) mission, currently in pre-phase-A planning, is also considering the
use of autonomy software, including autonomous science software for automatically classifying images and
spectra into scientifically interesting categories.

From this repertoire we can identify the following major classes of autonomy software:
e Mission planners
o Executives
e Fault detection, isolation and recovery (FDIR) software
e Science autonomy software
e Rover navigation software, which can be further broken down into:
o Terrain analysis and modeling
o Localization
o Path generation

I will now discuss each of these in terms of the kinds of V&V strategies that could be applied.

7.1 Planners

Planners make decisions about spacecraft actions by projecting the results of those actions into the future
according to a model of the spacecraft’s behavior, and evaluating the desirability of the resulting outcome
according to an evaluation function. The evaluation function encodes the spacecraft’s goals and constraints
(flight rules) by returning high ratings for plans that meet the mission goals without violating the flight
rules.

Contemporary planning technology invariably involves some form of search through a space of possible
plans until an acceptable plan is found. In general this is an NP-hard problem. The art of developing
planning algorithms involves finding ways to prune the search space using heuristics so that only plans that
are likely to be successful and considered.

There are three major risks associated with planners, listed in order of decreasing severity: 1) the planner
could generate a plan that makes inefficient use of mission resources, 2) the planner could fail to generate a
plan or 3) the planner could generate a plan that places the spacecraft in danger.

The reason (2) is a less serious problem than (3) is that it is a cognizant failure [Gat92], that is, the system
knows when it has failed to generate a plan, and can therefore automatically invoke some sort of recovery
procedure (including contacting the ground for assistance). This situation is therefore no different from any
other sort of unanticipated fault, and is therefore a situation not unique to autonomy software.

Situation (1) must be taken in context. The impetus for using autonomy software in the first place is to
reduce ground operations costs and enable new classes of missions that would not be otherwise possible.
The negative impact of inefficient use of resources must therefore be evaluated in that context. In
retrospect it might appear obvious that an autonomous planner might have done something foolish that a
human would not have done, but this situation must be compared not against the case where a human in the
loop might have done better, but rather against the case where the mission might not have flown at all
because the resources required for fully staffed ground operations were not available.

That leaves situation (3) as the one that we really need to worry about, and here two happy circumstances
come to our aid. First, to assure ourselves that (3) cannot happen we do not need to verify the entire
planner, but only the evaluation function. If we can prove that the evaluation function is correct then
situation (3) cannot happen. Second, the evaluation function is not very different from ground modeling
software that has been used for decades to help in the generation of traditional command sequences. The
only difference is that when used on the ground there are humans available to double-check the results, or
to apply non-formalized intuition to the overall evaluation. Therefore, we do have to hold the evaluation
function to a higher standard of verification than we have in the past, but this is mostly a difference of
degree, not of kind.

There is one exception: those aspects of evaluation that have relied on non-formalized human intuition will
need to be formalized in order to be rendered into code. How to do this is an area of active research being
spearheaded by the JPL Mission Data System (MDS), which is based on formalizing the idea of a goal as a
constraint on system state over a time interval. This approach is still in the early stages of development,
but so far has shown great promise.

7.2 Executives

Smart executives are analogous to sequencing engines, but with more complex semantics [Pell98b]. They
typically comprise complex multi-threaded algorithms, and are therefore subject to the long litany of
problems that such algorithms are notoriously prone to: race conditions, deadlocks, and non-deterministic
behavior.

Fortunately, recent developments in formal methods have shown great promise in getting a handle on such
difficulties. In particular, static analysis of multithreaded algorithms [Holzmann97] has been shown to be
effective in finding multi-thread-related bugs. A detailed war story can be found in [Havelund98].

7.3 Fault detection, isolation and recovery

Autonomous operations places a greater burden on fault detection than traditional fault protection
mechanisms. Traditional fault protection only needs to determine that something has gone wrong and to
bring the spacecraft to a safe state. But for autonomous operations the fault protection system must leave
the spacecraft in an operational state whenever possible. Therefore, it must be able to determine not only
that something has gone wrong, but what has gone wrong. Furthermore, it must be able to figure out how
to restore functionality in the face of a failure, not just how to make the spacecraft safe.

Autonomous FDIR software (e.g. [Williams96]) typically works by taking a model of the spacecraft and
running it “backwards”, that is, by taking the raw measurements from sensor data and the commands sent
to the hardware and finding the most likely state of the given model that explains the observed

measurements. The algorithms used can in many cases be formally proven to be sound. In practice the
quality of the results depends entirely on the accuracy of the model. The models are typically probabilistic,
and so generating accurate models presents a significant challenge.

Fortunately, FDIR software lends itself readily to having its states subdivided into a tractable number of
equivalence classes which can in turn be empirically tested. Standard spacecraft design processes typically
include the enumeration of all possible hardware faults. Typical measurements in the face of each fault can
be synthesized by simulation, and the results given to the FDIR system to see if it correctly diagnoses and
responds to the underlying fault. This approach can also be applied to likely combinations of multiple
simultaneous faults. This of course does not provide a 100% guarantee that the system will work correctly
in all circumstances, but this situation is no different from any software that is verified by empirical testing.

7.4 Science autonomy

Science autonomy algorithms comprise a class of algorithms that analyze science data (typically images or
spectra) to find scientifically interesting features. The use of science autonomy algorithms is controversial.
The earliest possible deployment for such an algorithm is on the MSL mission, and even then it is unlikely
that such an algorithm will be deployed in anything other than an experimental context where its
performance is not mission-critical. Current validation methods for science autonomy software are purely
empirical and mostly ad hoc, which is adequate for the context in which these algorithms are likely to be
deployed. It is possible that statistical methods could serve as a basis for more principled approach to
science autonomy V&V. I discuss these in the next section.

7.5 Rover navigation

Rover navigation is arguably the most challenging context for autonomy. It is necessarily mission-critical.
It involves complex algorithms from the entire spectrum of autonomy technology. And it operates in the
context of a system embedded in a complex environment which can be modeled with only very limited
fidelity.

The state of the art in verifying rover navigation software is to use statistical methods to provide
probabilistic measures of the reliability of the algorithms based on empirical data [Gat95].

8. Summary and Conclusions

I have presented some informal arguments that verifying and validating autonomy software is not
inherently any more difficult than verifying and validating traditional spacecraft control software. A simple
counting argument proves that no non-trivial piece of software can ever be exhaustively tested. Thus, all
software must be tested by dividing the possible states of the software into a small number of equivalence
classes and testing sample states from within each class.

I have also presented a survey of the kinds of different autonomy software, along with suggestions on how
each kind may be verified.

Furthermore, because humans are fallible, spacecraft control processes already have checks and balances
built in to them that compensate for human error. The same kinds of checks and balances can be built into
software architecture that include (possibly fallible) autonomous components. Examples of such
architectures exist.

Acknowledgements

This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration.

References

[Chien01] S. Chien, et al. Onboard Autonomy on the Three Corner Sat Mission. Proceedings of the 2001
International Symposium on Artificial Intelligence, Robotics, and Automation for Space, Montreal, Canada,
June 2001.

[Chien03] Steve Chien, et al. Autonomous Science on the EO-1 Mission. International Symposium on
Artificial Intelligence, Robotics, and Automation in Space (i-SAIRAS 2003). Nara, Japan. May 2003.

[ESA96] Ariane 501 - Presentation of Inquiry Board report European Space Agency report #33-1996.

[Gat92] Erann Gat. Integrating Planning and Reaction in a Heterogeneous Asynchronous Architecture for
Controlling Mobile Robots. Proceedings of the Tenth National Conference on Artificial Intelligence (AAAl)
, 1992

[Gat95] Erann Gat. Towards principled experimental study of autonomous mobile robots. Autonomous
Robots , 2(3), 1995.

[Gat97] Erann Gat. ESL: A language for supporting robust plan execution in embedded autonomous
agents. Proc. of IEEE Aeronautics (AERO-98), Aspen, CO, IEEE Press, 1997.

[Gat03] Erann Gat. Architecture, Language, and Non-compositional Constraints. Proc. of IEEE
Aeronautics (AERO-03), Big Sky, MT, IEEE Press, 2003.

[Havelund98] Klaus Havelund, Michael Lowry, and John Penix. Formal Analysis of a Space Craft
Controller using SPIN. In 4th International SPIN Workshop , Paris, France, November, 1998.

[Holzmann97] G.J. Holzmann, “The Model Checker SPIN.” IEEE Transactions on Software Engineering,
23(5), May 1997.

[Lloyd02] Seth Lloyd. Computational Capacity of the Universe. Phys. Rev. Lett. 88 , 237901 (10 June
2002).

[Mjolsness01] E. Mjolsness and D. DeCoste. Machine Learning for Science: State of the Art and Future
Prospects,Science 293, pp. 2051-2055, 14 September 2001.

[Muscettola97] Nicola Muscettola, et al. On-board planning for autonomous spacecraft. In Proceedings of
the Fourth International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-
SAIRAS), July 1997.

[Nayak99] P. Pandurang Nayak, et al. Validating the DS1 Remote Agent Experiment.
Proceedings of the 5th International Symposium on Artificial Intelligence, Robotics and

Automation in Space (iSAIRAS-99) .

[Pecheur00] Charles Pecheur. Verification and Validation of Autonomy Software at NASA. NASA/TM
2000-209602, August 2000.

[Pell98a] Barney Pell, et al. An Autonomous Spacecraft Agent Prototype. Autonomous Robots 5(1),
March, 1998.

[Pell98b] Barney Pell and Erann Gat. Smart Executives for Autonomous Spacecraft. IEEE Intelligent
Systems, October 1998.

[Ramsey02] Joseph Ramsey, et al. Automated Remote Sensing with Near Infrared Reflectance Spectra:
Carbonate Recognition. Data Mining and Knowledge Discovery 6 (3): 277-293 (2002)

{Rouch03] Ted L. Roush, et al. Essential Autonomous Science Inference on Rovers (EASIR). Proc. of
IEEE Aeronautics (AERO-03), Big Sky, MT, IEEE Press, 2003.

[Simmons00] Reid Simmons and Charles Pecheur. Towards Automatic Verification of Autonomous
Systems. In Proceedings of the International Conference on Intelligent Robots and Systems . Takamatsu,
November 2000.

[Williams96] Brian C. Williams and P. Pandurang Nayak. A Model-based Approach to Reactive Self-
Configuring Systems. In Proceedings of AAAI-96.

