Space Interferometry Mission Overview

Renaud Goullioud
MAM Testbed Manager
Flight Combiner System Engineer

October 14, 2003

Outline

- SIM project
- Planet Detection
- Astrometry
- Architecture
- Status
- Technology plan
- Major testbeds
Project Background

- The foundation of SIM science objectives is tied to the 1991 National Research Council astrophysics decadal report chaired by Bahcall.
 - "Astrometry which is concerned with the measurements of the celestial sources ranks among the oldest and most fundamental branches of astronomy and now is on the verge of a technological revolution".
 - The Bahcall report recommended an Astrometric Interferometry Mission (AIM) as a high priority mission for the '90s with the following attributes:
 - "Measure positions of widely separated objects to a visual magnitude of 20 with precision of 30 micro arcseconds [μas];...a more challenging goal would be 3 micro arcseconds.
 - "...search for planets around stars as far away as 500-light years (150pc)
 - "...trigonometric determination of distances throughout the galaxy
 - "AIM would demonstrate the technology required for future interferometry missions."
- SIM re-confirmed in the 2000 NRC decadal report co-chaired by McKee and Taylor:
 - Strongly suggested a 10 μas maximum for Wide angle astrometry (rather than the 30 μas in the Bachall report).

Space Interferometry Mission

- **Salient Features**
 - 3 parallel Michelson Stellar Interferometers
 - 10 meter baseline
 - Visible wavelength
 - Launch Vehicle: Atlas V or Delta IV ELV
 - Earth-trailing solar orbit
 - 5 year mission life with 10 year goal
 - SIM is a JPL, Caltech, Lockheed Martin, KSC, NGST, and SIM Science Team partnership

- **Science Goals**
 - Perform a search for other planetary systems by surveying 2000 nearby stars for astrometric signatures of planetary companions.
 - Survey a sample of 200 nearby stars for orbiting planets down to terrestrial-type masses.
 - Improve best current catalog of star positions by >100x and extend to fainter stars to allow extension of stellar knowledge to include our entire galaxy.
 - Study dynamics and evolution of stars and star clusters in our galaxy to understand how our galaxy was formed and how it will evolve.
 - Calibrate luminosities of important stars and cosmological distance indicators to improve our understanding of stellar processes and to measure precise distance in the distant universe.
Planet Detection

- SIM astrometry complements other indirect methods of planet detection:
 - Determines the parameters of the orbit of a planet.
 - Determines mass, the most fundamental parameter of a planet.
- Focus on ~250 stars like the Sun (F, G, K) within 10 pc.
 - Sensitivity limit of ~3 M\(_{\text{Earth}}\) at 10 pc requires 1 \(\mu\)as accuracy.
 - Is more sensitive than Radial Velocity (3 vs 30 M\(_{\text{Earth}}\)) with no \(\sin(\text{inclination})\) ambiguity.
- SIM will determine the architecture of solar systems, telling us whether our solar system is rare or common.
 - Are planetary systems like our own common?
 - What is the distribution of planetary masses?
 - Are there low-mass planets in 'habitable zone'?
- SIM will also sample 2000 stars within ~25 pc at 4 \(\mu\)as accuracy.
- SIM targets stars within 25 pc that are suitable for follow-up by TPF.

SIM Complements and Paves the Way for TPF

- SIM will tell TPF what stars are likely to be hospitable to terrestrial planets.
 Presence of Jovian planets in the wrong orbits will preclude stable orbits in the habitable zone.
- SIM’s orbital information will determine when planets in eccentric/inclined orbits will be at an elongation suitable for direct detection.
- Combination of SIM masses with TPF spectroscopy of hundreds of planets will lead to new era in comparative planetology.
 For stars where SIM doesn’t detect a planet, and subsequently, TPF does detect a planet, SIM archival data can determine or constrain the mass of that planet with ~0.5 Earth mass accuracy.
Measurements with SIM (Interferometer Sensor)

- Measurements made by "chopping" between stars and determining the differential delay, \(d \), in OPD.
- Internal metrology gauges used to measure internal path delay.
- Many such measurements are solved simultaneously to obtain stellar positions and other instrument parameters.

\[\phi = \arccos\left(\frac{X}{B}\right) \]

external path delay, \(X \)
internal path delay

d = differential delay

Pathlength control to \(\pm 10 \) nm (J/50) required for high fringe visibility.

\(f \) = fringe position on detector

- The peak of the interference pattern occurs at zero OPD to star

SIM Building Blocks

- SIM operates in two distinct regimes: (1) real-time nanometer control and (2) picometer sensing
 - Real-time nanometer control is system-wide and does not depend upon picometer sensing (nm-level external metrology information is used in real-time control)
 - Picometer sensing runs on top of real-time nanometer control (i.e., picometer measurements are taken while the system is operating in the real-time nanometer control), with all data being sent to the ground for mission processing
- Interferometer and external-metrology picometer-sensors are separable and intersect only at fiducials (substantiated at SIMTACs -28 and -29)

Ext Met Sensor

Interferometer Sensor

RT = Real Time
pm = Picometer
nm = Nanometer
nm RT Control
SIM Instrument Configuration

- Science Interferometer Fields of View
- Guide Interferometer Fields of View
- External MET Beams
- Guide Corner Cube
- Guide Compressor
- Astrometric Beam Combiners (ABCs)
- Optical Delay Lines (ODLs)
- External MET Beam Launchers
- Science Compressors

Flight System Architecture (1)
Mission Status

- NASA Project Development Phases
 - Pre-Phase A: Advanced Concept Studies
 - Formulation:
 - Phase A: Mission Requirements Definition
 - Phase B: Preliminary Design
 - Implementation:
 - Phase C: Design & Development
 - Phase D: Integration & Test
 - Begins with "...the start of I&T of the full up system..."
 - Phase E: Mission Operations
 - SIM has just recently passed through the NASA development Phase A to B gate
 - A very significant milestone that we've been working towards for over two decades (with just under six of the last years of that time being in Phase A).
 - We are actively preparing for the System Requirement Review in November.
MAM testbed (Science/Guide interferometer)

- 24 picometers agreement between internal metrology and white light fringes in the Narrow Angle field of view.
- 280 picometers agreement in the Wide Angle field of view.

Kite testbed (external metrology truss)

- 8 picometers per metrology gauge agreement within the truss in the Narrow Angle field of view.
- 140 picometers agreement for Wide Angle.
Pathlength Feed-Forward demonstration:
Pathlength stabilization of the science interferometer fringes to 30 nanometers rms open loop, using only the guide interferometers.
80 dB rejection of the spacecraft attitude.

9-meter flight like structure
3 baseline interferometer

Flight System I&T Flow
Pasadena Cape Canaveral

Sunnyvale
Redondo Beach
SIM will observe about 250 stars like the Sun within 10 pc to
detect the presence of planets down to 3 Earth masses at 10 pc.

SIM will tell TPF what stars are likely to be hospitable to
terrestrial planets.

SIM's orbital information will determine when planets in
eccentric/inclined orbits will be at an elongation suitable for direct
detection.

SIM technology development is quite mature.

SIM has a stable design for the flight system.

SIM just entered phase B.

Scheduled launch is December 2009.