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ABSTRACT 

The presence of optical aberrations in the entrance pupil of a coronagraph causes the stellar light to scatter about the 
occulting spot, reducing the effective contrast achievable. Even if these aberrations are sufficiently corrected with a 
deformable mirror to enable planet detection, small drifts in the optical alignment of the telescope introduce additional 
low-order aberrations. The design parameters of the coronagraph itself (e.g. occulting spot size, Lyot stop diameter, etc.) 
affect how these aberrations impact the contrast in the focal plane. In this study, we examine the sensitivity of contrast 
to low-order optical errors for several coronagraph concepts over their respective design parameters. By combining 
these sensitivities with the telescope throughput, we show that for each coronagraph concept there is an optimum 
selection of the design parameters that provides efficient, high-contrast imaging at the inner working distance in the 
presence of alignment errors. 
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1. INTRODUCTION 

The Terrestrial Planet Finder (TPF) mission seeks to detect and characterize extra-solar terrestrial planets around 150 
nearby stars. The TPF project is currently in pre-phase A and is exploring two architectures: a structurally connected or 
free-flying infrared interferometer, and a visible coronagraph (http://planetquest.jpl.nasa.gov/TPF/tpf-index.html). The 
coronagraph detects starlight reflected from the planet; for an earth-like planet at 1 AU from its parent star, the planet 
brightness is - le-10 of its parent star. For many targets the planet will appear within 100 milli-arcseconds of the star, 
just a few resolution elements away from the image core for a 5-10 m class telescope. Thus the visible coronagraph 
must achieve extraordinary dynamic range very close to the diffraction-limited core of the stellar image. 

Achieving and maintaining the required sub-Angstrom level of wave front control is challenging to say the least. In 
particular, small drifts in the position and shape of the optics, especially the primary and secondary mirrors, will lead to 
low-order aberrations that scatter light in the neighborhood of the exo-planet image. In this paper, we address the 
sensitivity of several coronagraph designs to changes in the low-order aberrations. We show that there is trade between 
their efficiency (the fraction of exo-planet light that they transmit) and their aberration sensitivity. We then calculate 
optimal shapes that maximize the signal-to-noise ratio in the presence of time-variable aberrations. 

Our study includes several image-plane masks, described below. To date we have not studied the efficiency and 
aberration sensitivity of pupil plane masks (e.g. shaped pupil] and apodized pupilzs3), nor have we analyzed the four- 
quadrant phase mask4 or the newly-proposed pupil-reshaping apodi~ation~. We plan to address these in fbture work. 

2. CORONAGRAPH DESIGNS UNDER STUDY 

In this paper we consider four Lyot-Coronagraph concepts: radial-Gaussian (RG), radial-cosine (RC), linear-cosine 
(LC,) and a mask with sin(x) sin(y) transmission. The RG represents the case of band-unlimited function, the RC, LC 
represents radial, and linear forms of band-limited occulting functions, which have been shown be preferable for 
improved diffraction rejection at high throughput6. The sin(x) sin(y) occulting spot is really a coronagraph representation 
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for the visible-nuller (VN) concept’. Assuming a general functional form for occulting spot field transmission of 
o ( x , y )  = 1 - s ( x , y ) ,  the four occulting spot field absorption functions can be written as 

SRC ( x , y )  = !-+Leos[ 2 2  n-) 

sL.c ( x , y )  = -+-cos n- 
2 2  l 1  ( 3  

s,(x,y)=l-sin ( n- ?).( sin n- $). 
Kuchner pointed out that using sinusoidal occulting function of the form shown in equation (3) in a coronagraph is the 
analog to a nulling interferometer6. In this paper we explore the three possible ways of applying this analogy through the 
RC, LC and VN masks. These functions, of course, have the virtue of being band-limited. In a sense, these masks 
represent the limit to how band-limited a function can be made. The LC, RC and VN functions all contain energy along a 
fixed set of discrete points in their respective Fourier transforms (FT). 

In consideration of the methods that may employed in fabricating the occulting masks8 we wish to limit the spatial extent 
that these functions span. To limit the spatial extent of the periodic RC, LC and VN masks while maintaining that these 
functions remain band-limited, we multiply their respective spot functions with a positive band-limited 
function saPod ( x ,  y )  . In these cases, the occulter field transmission becomes 

For our studies we employ a radiaZ-sinc2 tapering to the periodic occulters of the functional form 

where o is the same as in eqs. (1)-(4). Figure 1 shows examples of the field transmissions that are provided by the four 
occulting masks under study. It should be noted that the VN equivalent mask has field locations with both positive and 
negative transmissions where the coronagraphs offers positive throughput. While we recognize the physical difficulties 
in fabricating an achromatic occulting mask of this type, we show this mathematical construction accomplishes the same 
pupil-shearing as the visible-nuller itself. 

Aside from the occulting mask at a telescope focus, a Lyot coronagraph requires there to be a stop at a pupil down- 
stream of the mask. To design an appropriate stop for a particular occulting mask, we first need to compute the pupil 
field after the occulter. We make the assumption that there exists an idealized, aberration-free exit-pupil, P,,,(u,v), that is 
solely defined by the limiting aperture of the telescope (i.e. the diameter of the primary mirror, D). As such, the field at 
the Lyot plane, PL,,(u ‘,v .),at a particular wavelength, h, is computed as 
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Figure 1: The occulters the under study are the radial-Gaussian (top-left), radial-cosine (top-right), linear-cosine (bottom-left) and 
visible-nuller equivalent (bottom-right) masks. The dashed region is later used for evaluating efficiency (Section 3) and contrast 
(Section 4). 

For the purposes of our study, we employed a fixed design rule for developing the appropriate hard-edged stop at the 
Lyot plane, SLy0,(u ’,v’), given a particular occulting mask. This rule is expressed as 

where L,, is a fixed threshold level that we set at about 

Figure 2 shows the real-part of the Lyot plane that is resultant from each of the four occulting masks. These fields can 
be generally thought of as Pe,it(u,v) minus a low-pass filtered version of Pair(U,v) with the filter kemel being defined by 
the FT of o(x,y). In the case of the RG occulter, this kemel is infinite in extent and thus there is substantial energy 
leakage into the interior of the field. The choice of Lto, thus has significant impact in the relative diameter D,,,, of the 
designed stop. For the other three occulters, the low-pass filter kemel is finite in extent and results in essentially perfect 
diffraction cancellation in the interior of their respective Lyot planes. In the case of the VN occulting mask, the pupil- 
shearing in the Lyot plane demonstrates that this design maintains a strong analogy to the visible-nuller-interferometer 
imager7. 

of the peak of /PLY& ’,v’)12. 
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Figure 2: The real components of the Lyot pupil field of the four occulting masks under study are shown above. One approach to 
constructing a hard-edged stop for this pupil is to threshold the field amplitude at a small fraction of the peak field intensity. Because 
the radial Gaussian occulter is not a band-limited function, the Lyot stop diameter here has a relatively strong dependency upon the 
choice of threshold. 

3. EFFICIENCY CONSIDERATIONS FOR CORONAGRAPHS 

While it is essential that a coronagraph be designed to provide sufficient contrast for exo-planet detection and 
characterization, the transmission efficiency through the coronagraph has strong implications for the stability 
requirement of TPF. With our fixed design rule for specifying a hard-edged stop at the Lyot plane, we can now explore 
the throughput characteristics of coronagraphs at their inner working angle as function of the occulting spot width 
parameter, 0. 

Figure 3 shows that at a fixed working angle there is some optimal choice of o that maximizes the transmission 
efficiency of the coronagraph. It is interesting to note that the optimally efficient o’s place the peak mask transmission 
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Figure 3: Using the threshold design rule for Lyot stops, the net intensity transmission at the field point is strongly coupled to the 
width parameter, (3, of the particular occulting spot. For a fixed field angle of interest, there is a particular choice of u that maximizes 
the coronagraph efficiency. With the radial Gaussian coronagraph, the choice of Lyot thresholds plays a more significant role in the 
overall efficiency but this efficiency comes at the cost of increasing the contrast noise floor. 

outside the field point. For instance, a-3 U D  places the peak mask transmission at 3h/D while the peak efficiency of 
the resulting coronagraph occurs at a-3.5 ND. The increased size of Lyot stop that is allowed with an increased 
occulting spot size makes up for the added mask transmission loss at 3h/D. For two circularly symmetric occulting 
masks, RG and RC, the efficiency that is plotted in Figure 3 is the averaged intensity efficiency within a field ring (such 
as was shown Figure 1). The LC and VN occulting masks do have a symmetry that facilitates such averaging. For these 
cases, we simply averaged intensity efficiency within a circular region bounded by the full-width half-max of the PSF 
core. We present formal definitions for these regions in the next section. 

4. LOW-ORDER ABERRATION SENSITIVITY CONSIDERATIONS FOR CORONAGRAPHS 

We now consider the case where the occulter exit-pupil is no longer aberration free. The aberrated pupil is written as 

P,.~ (u,v; t )  = a(u ,  v ; ~ )  . exp( i F $ ( u ,  v; t ) ) ,  (9) 

with the phase error function @(u.v;t) 



$(ut v; t )  = m 4m ( t )Z ,  (u, v; t )  + (u ,  v; t )  +@high (u,v; t )  + 4wfc (u,v; t c )  (10) 

In equation (10) we show that at any instantaneous time, t ,  the exit-pupil phase errors consist of a composition of low- 
order Zernike modes', {z,,,), mid-spatial frequency errors (that are correctable over some temporal bandwidth), high- 
spatial frequency errors (that are uncorrectable) and the wavefront control (WFC) correction to the systems that was 
applied at time t,. At any instantaneous moment, the errors are fixed and we can write the intensity at the far-field to the 
Lyot plane as 

(1 1) 

Equation (1 1) is the coronagraphic point-spread function (PSF). To compute the average contrast over some region of 
interest, we need to also compute the far-field intensity function, I,,,,, which the case where the occulting mask is 
perfectly transparent (i.e o(x,y)=l) but with the Lyot stop present. With these two intensity calculations, we can 
approximate the average contrast over some set of field points, x,, as 

As with our efficiency calculations, for the circularly symmetric occulting masks, we choose a region of interest 
consisting of a field-ring at a working angle, p,,. The set of all points contained with in such a field-ring can be written 
as 

For the other occulting masks, we select the region of interest as a field point located at (xn, y,). 

The set of field points contained in xo are simply the same as in equation (14) for the case that x, and yn are both at zero 
(i.e. about the optical axis). The integral over the unocculted PSF core in equation (12) normalizes the integrated energy 
in the coronagraphic PSF into contrast, with the smaller numbers being interpretable as lower residual speckle energy. 
The normalization by the integrated intensity transmission of the occulter accounts for the average throughput losses 
over the region of interest. 

As we mentioned earlier, small drifts in the alignment of the optic preceding the occulter along with deforming modes of 
the optics themselves include low-order optical errors in the exit-pupil. These errors will no doubt evolve during the 
integration time used for making planet detections. The growing aberration scatters starlight into the field, particularly at 
smaller inner working angles and, as we are about to show, the amount of aberration that is tolerable is dependent upon 
the coronagraph design. 

Figure 4 shows that for increasing levels of particular modes, there is an increase in the scattered light level (in this 
example at 3 AD). For certain modes of aberration, this level increases linearly with the variance of the aberration. It so 
happens that these modes also have the strongest impact on the system performance. Consider the plot for the RC 
coronagraph. Focus, coma and spherical errors all have a significant impact on the contrast floor at low levels of 
aberration while tilt, astigmatism and trefoil have much weaker effect. These weaker modes, have afourth-order impact 



on contrast and do not affect performance until the aberration is many nanometers in amplitude. We derive this fourth- 
order relationship for the focus error in the VN coronagraph in the appendix. 
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Figure 4: The increased contrast noise floor brought forth by the presence of low-order phase aberrations are shown for the four 
occulting masks. In each case, the particular mask has its u tuned to provide the optimum coronagraph efficiency at a working 
distance of 3 ?JD. 

Using standard sensitivity analysis, we can write the contrast for the modes having second-order sensitivity as a 
combination of low-order errors as 

where a, = dexn /d#f . The coefficient a, is the sensitivity of contrast to variance (in waves) of a particular Zernike 
mode m. In figure 5, we show the dominant low-order sensitivity coefficients for four coronagraph concepts at a 
working angle of 3 MD. In every case, the sensitivity decreases as the occulting spot width increases. So while the 
efficiency of the RC coronagraph is maximized at 0-3.5 UD, the contrast floor increase per unit variance of a low-order 
mode is reduced at larger widths. 
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Figure 5: The contrast sensitivity coefficients for working at 3 VD are shown above as a function of u. The sensitivities that are 
plotted in each case were chosen because they represent the low-order modes that have the strongest impact upon the contrast floor. 

5. SIGNAL-TO-NOISE RATIO OPTIMIZATION IN THE PRESENCE OF DYNAMIC ERRORS 

We have shown that the choice of mask width CJ affects both the optical efficiency E and the aberration sensitivity a. The 
signal-to-noise ratio (SNR) increases with E but decreases with a in the presence of time-variable aberrations. In this 
section, we derive the mask configuration for optimizing the SNR at a given point in the image plane. 

Consider a coronagraph that begins to observe a star immediately after measuring and controlling the wavefront. 
Ideally, the wavefront does not contribute noise to the measurement - all the diffracted and scattered starlight is rejected 
by the coronagraph. The only sources of noise are the shot noise of the exoplanet light, the exozodiacal light, and solar 
system zodiacal light. The required SNR is high enough that shot noise dominates detector read noise. 



Now consider what happens when the telescope and coronagraph optics inevitably drift from their initial state. 
Aberrations arise, and light leaks past the coronagraph into the image plane. Speckles of unknown intensity and position 
appear and form a background. The SNR is given by 

signal 

shotnoise + speckles 
SNR = 

If a planet is present in the image plane, it provides a signal of ~p photons/s, where p accounts for the source brightness, 
aperture diameter, optical reflections, and detector quantum efficiency, while E accounts for the fundamental efficiency 
of the coronagraph. Thus at a given time to, the integrated signal is s = E ~ c , .  The shot noise associated with both the 
planet photons p and background photons b is n, = ( E (  p + b)t,) . In the absence of speckles, the SNR increases as the 

0.5 

sqrt(t). 

The speckles arise quickly; if the wave front, @, changes linearly with time, e.g. @ = at, where w is a constant, then the 
scattered intensity is proportional to ?. The coronagraph filters part of the energy so that the instantaneous speckle 
intensity in the image plane is n, = aw2t2 where a is aberration sensitivity coefficient for some dominant mode that is 
evolving. After integrating for a period tu, the total energy of the speckles is 

2 3  n, = aw t u / 3  

While the shot noise-limited SNR increases as sqrt(t), the speckle energy accumulates as t3. Eventually the SNR 
decreases as f 2  and the speckles overwhelm the background. There exists an optimum uninterrupted integration time, 
top,, that maximizes the SNR for a given E, a. 

The total integration time, tro,, required to obtain a desired SNR is achieved by averaging together multiple ‘short’ 
exposures, each top, long. (Each one may be minutes to hours in length). After each exposure, the wave front is 
remeasured and controlled, a process that may take as long as the science exposure. Thus it is desirable to maximize the 
SNR of individual science exposures to minimize the wave front control overhead. This is where tupr comes in - it 
determines the maximum SNR for an unintempted exposure. It does not determine the maximum rate of SNR return in 
an exposure - that only occurs at very short exposures where the aberrations are negligible (and assuming detector read 
noise is negligible). But at such short exposures, the wave front control overhead can be prohibitive. What we offer here 
is an approach to maximizing SNR while minimizing the overhead. 

In what follows, we calculate tupr, and SNRopr, and then show how the SNR varies as a function of the mask width 0. We 
will study two cases: first, as discussed above, systematic drift of the optics causes the aberration to increase linearly 
with time. Second, random drifts cause the aberration to follow a random walk, @ = m& . In both these cases we make 
the assumption that one particular mode dominates the evolving wavefront error. 

Case 1 : Aberration arises linearly with time 

The SNR is readily optimized by minimizing its inverse, the Noise-to-Signal Ratio, NSR. From the discussion above, the 
NSR is given by 

4- + aw2t3 /3  (18) 
NSR = 

EPt 
We take the derivative of eq. (1 8) with respect to t and find that the minimum occurs at 



This is a very weak function of mask efficiency; the integration time favors masks that reduce sensitivity to aberrations 
at the expense of throughput. Substituting eq. (19) into eq. (16), the optimum SNR is determined to be 

We also point out that at time top,, the shot noise contribution ,/- is four times larger than the speckle energy 

a~*2r; ,  /3. This confirms our earlier assumption that the speckle shot noise is well below the signal and background 
shot noise. 

In figure 6, we plot the top, and SNRop, for a signal evaluated at 3Ud, for the four coronagraphs under consideration. In 
the case of RC occulter, the SNR is maximized at a = 4A.D. Even though the transmission efficiency (for a = 4A.D) of 
30.6% is a little below the peak transmission of 32.7% ((see Figure 3), the weak dependence of SNROp, on a shifts the 
peak away from maximum transmission in favor of reduced aberration. 
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Figure 6: This is a plot c 
assumptions that the dominant aberration increases linearly with time. Each line represents a particular coronagraph concept and the 
individual markers along the lines represent different choices of u, with u increasing from left to right. The points, which are 
demarked as (a) and (b), are referred to in the narrative below. 

he optimal integration time for each coronagraph design point against the resulting optimal S N R  un1-x the 

Ultimately, one wants to optimize the final SNR by choosing the best top, to maximize the SNR per unit time while 
minimizing wave front control overhead. By plotting SNR,, vs. top, (Figure 6), we demonstrate how the SNR per unit 
time varies with mask width. Given a point on the curve (e.g. (a) on the RC curve), the rate of improvement of SNR 
with time has a slope (on the log-log scale) of 0.5 in the shot-noise limit. In practice the slope will be somewhat less than 
0.5 due to the wavefront control overhead. Now moving from left to right along the curve (increasing top, and a f r o m  
point (a) to point (b)), the slope on the log-log scale is close to unity. This means that the larger masks have a higher 
SNR per unit time than the smaller masks used with multiple integrations. The slope at the point (b) on the RC curve, 



where ~ 3 . 5 ,  is approximately 0.5. Beyond this point, the larger mask has lower SNR per unit time than a smaller mask 
used with multiple shorter exposures. The exact choice of the optimum mask depends on the wavefront control 
overhead. 

Case 2:  aberration evolves in a random walk. 

For this case, the integrated speckle energy at time to is given by n, = a w 2 t 2 / 2 ,  and the NSR is expressed by 

, / = + a w 2 t 2 / 2  
NSR = . 

EPt 

Minimizing NSR with respect to t, we find 

top, =(e) x 

and the optimum SNR is 
a 

The solution leads to a speckle energy equal to one half the shot noise level, twice the value allowed in case 1. 
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Figure 7: With the assumption that the dominant aberration follows a random walk process, the range of achievable integration times 
and SNRs is greatly increased. Nevertheless, each coronagraph has essentially the same u that maximizes the integration time 
allowable before requiring a wavefront correction. 



In figure 7, we plot S N R ,  vs. top! for varying mask width 0. As with Case 1, the plot shows that the SNR per unit time 
is constant until the mask becomes so large (>4h/D) that the diminishing efficiency is not offset by reduced sensitivity to 
aberrations. The more slowly evolving aberration considered here not surprisingly allows longer integration times and 
higher SNR than the linearly evolving aberration. 

6. CLOSING REMARKS 

In this paper, we have shown that there are many trade-offs to be considered in the design of coronagraph masks. It is, of 
course, essential that a coronagraph provide the contrast necessary to achieve planet detections and their subsequent 
characterizations. The efficiency of the design along with its aberration sensitivity play a central role in determining the 
maximum uninterrupted integration time allowable that will still offer an improved contrast in the presence of evolving 
aberrations. The fixed costs of updating the wavefront correction coupled with its finite accuracy makes such an 
optimization of a coronagraph design that much more important. It remains to be seen how other occulting functions as 
well as pupil apodization and pupil shaping methods will compare to the simple hard-edged Lyot stop design approach 
employed in this paper. 

To be successful, the wavefront controls methods employed by TPF must be operationally efficient and highly accurate 
so that a substantial portion of the mission can be used for science. Even so, TPF will have to be an extraordinarily 
stable telescope that employs coronagraphs optimized for the particular telescope optical sensitivities weighted by their 
excitation characteristics. 
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APPENDIX: VISIBLE NULLER qTH ORDER SENSITIVITY TO FOCUS 

As with a band-limited mask, the Visible Nuller coronagraph aperture multiplies the image by a band-limited function, 
in this case two orthogonal sine waves. In pupil space, this is equivalent to convolving the pupil function with 4 delta 
functions, ~ (X-Q) , -~ (X+X~) ,  qy-yo), and -6(y+yo), where xo and yo depend on the spatial period of the sine waves. If the 
pupil function contains a focus term of amplitude a, we can express the pupil amplitude function as 

inside the aperture and P=O outside. The amplitude at the edge of the pupil, ax2, is << 1 radian. After convolving with 
the four delta functions, the field amplitude is given by 

( x - ~ , ) ~ + y ~ ) ) - e x p ( i a ( ( x + x ~ )  

Rearranging terms, we find that this is equivalent to 



(26) E a exp ia x2 + y2 + xf + yf - 4  sin(2axr,)sin(2uyyo) ( (  1) 
a2xoY,xy 

The field at the output pupil appears to be an astigmatism function whose amplitude is proportional to the square of the 
focus amplitude, a*. The intensity then varies as 

4 2 2  
XOY, (27) 

That is, it is proportional to the fourth power of the aberration and it increases as the ‘shear’ terms xo and yo increase. 
The latter result shows that the leakage increases as the sine wave frequency increases (that is, the mask width gets 
narrower). Small masks - those designed to allow planet searches close to the target star - increase sensitivity to 
aberration (in this case, as the 4Ih power of the shear!!) while wide masks by virtue of their small pupil shear, decrease 
aberration sensitivity, as first pointed out to us by M. Shao (private communication). 

Similar analysis reveals that the linear cosine mask behaves in a similar fashion with respect to one of the two Zemike 
astigmatism terms. We see (but have not performed the analytical derivation to verify) the same 4~ order behavior for 
both astigmatism and both trefoil terms with the radial cosine mask. 
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