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Abstract 

This work gives an algorithm for computing the degrees of freedom of estimators of Allan 
A consistent approach is used and Hadamard variances, including their modified versions. 

throughout . 

1 Introduction 
This work gives an algorithm by which one can compute error bars for measurements of frequency 
stability variances in the presence of power-law phase noises. These stability variances fall into two 
categories: unmodified variances, which use dth differences of phase samples for d = 2 (Allan) or 
3 (Hadamard), and modified variances, which use dth differences of averaged phase samples. The 
corresponding sampling functions that act on phase and frequency are shown in [l]. Each variance 
is defined as a scaling factor times the expected value of the squared differences. Unbiased estimates 
of this variance are computed from available phase data by taking time averages of the squared 
differences. The usual choices for the estimation stride (the time step) are the sample period 70 
and the averaging period 7, a multiple of 70. These give respectively the overlapped estimator 
(OE) and nonoverlapped estimator (NOE) of the stability variance (although “nonoverlapped” is 
a misnomer; there is always some overlap between summands). 

The new algorithm, which computes the equivalent degrees of freedom (edf) of a variance es- 
timator, can replace several ones currently in use with a single, complete, and consistent method. 
Specifically, this algorithm covers the OE and NOE of the unmodified and modified Allan and 
Hadamard variances for all common noise types (-4 5 a 5 2) at all applicable sample sizes and 
averaging factors. Previously, for the NOE of Allan and Hadamard variances, 1-sigma confidence 
limits were generally set by scaling the measured deviation by a noise-dependent factor K , / a ,  
where M is the number of summands [2]-[6]. For the OE of Allan variance, empirical edf approxi- 
mations [7] were generally used along with chi-squared statistics; non-empirical methods for both 
Allan variance estimators were also published [11]-[14]. Although an edf computation for the OE of 
modified Allan (and time) variance was first given in [15], the simpler approach of [16] was generally 
used; an alternative unpublished approach using the Hadamard edf formed the basis of the new 
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algorithm. As an example of the application of the new algorithm, the Stable32 program for fre- 
quency stability analysis [17] has adopted it (since Version 1.41) instead of the multiple algorithms 
previously used for setting confidence limits and error bars. 

We wish to maintain a clear distinction between a stability variance and its estimators; in 
particular, we treat both the OE and the NOE of each variance. Even though the OE usually has 
lower uncertainty than the NOE, the NOE is convenient when phase data are processed in real 
time or read sequentially from a file. In fact, the TSC 5110A Time Interval Analyzer [18], in its 
“averaging” mode, computes an NOE of modified Allan variance. 

The goal of the new algorithm is not closed formulas but fast numerical results whose accuracy is 
adequate for the purpose at hand. All the calculations are based on the same theoretical principles, 
with no empirical formulas. For each T ,  one must choose a dominant phasenoise power law, 
S, ( f )  N .fa-’ where a E {2,1,0, -1, -2, -3, -4) (white PM to random run FM); see [19] for a 
method of power-law identification. The phase noise is assumed to be approximately bandlimited 
to the Nyquist frequency 1/ (270). 

Not covered are effects of trend removal, drift removal for Allan variance in particular; the 
dth phase differences are assumed to have zero mean. One can use Hadamard variance to obtain 
stability results that are invariant to linear frequency drift. Special long-term stability statistics, 
such as total Allan variance [20], total Hadamard variance [19], and Theol [21], are not covered; 
these require their own treatments. 

2 Theory of operation 

Although the presentation of the algorithm is self-contained, a brief account of the theory behind 
it may be helpful. The algorithm’s output is the equivalent degrees of freedom (edf) of an unbiased 
estimator V of a stability variance u2 = EV. Define 

It has been observed empirically (but not systematically) that (v /u2)  V has approximately a xz 
distribution. Thus, having computed v and observed V, one can obtain confidence intervals of form 
vV/xz 5 cr2 5 v V / z ~  from x$ levels 21 < x2 [7]. 

The model for phase x ( t )  is the 70-difference of a pure power-law process: 

x ( t )  = ATOW ( t )  7 (2) 

where w ( t )  is a continuous-time process with spectral density for all f > 0, and A is the 
backward difference operator. Then S, ( f )  is asymptotically proportional to fa-’ as f --+ 0 and 
has approximate bandwidth 1/ (270); this is the first reason for using w ( t ) .  

Now let 
( t )  = A$A+ ( t )  , (3) 

d where E = TO or T .  For E = TO we have z ( t )  = A,z ( t ) ,  which leads to an unmodified variance. For 
E = 7 = m ~ 0  we observe from (2) that 

m- 1 m-1 

A,w ( t  -  TO) = 
n=O n=O 

A,w ( t )  = w ( t )  - w ( t  -  TO) = 2 (t  -   TO) = mE ( t )  , 

where 5 ( t )  is a discretetime average of m samples of x. In this case, z ( t )  = mA$ ( t ) ,  which 
leads to a modified variance [16]; this is the second reason for using w ( t ) .  In either case we 
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assume that z ( t )  is a stationary zero-mean Gaussian process with autocovariance (ACV) function 
S, ( t )  = Ez (U + t )  z (u). 

Ignoring the conventional scaling factors, we define the stability variance and its estimator by 

where the stride S is 70 for the OE and 7 for the NOE. The number of terms M depends on the 
estimator type and the number of data. We have EV = a2 = s, (0). Then cov [z2 ( t )  ,z2 (u)] = 
2s; (u - t ) ,  and 

The definition (1)) after substitution of ( 5 ) ,  simplifies to 

The ACV sz ( t )  is obtained from (3) by applying a difference operator of order 2d + 2 to the 
generalized autocovariance (GACV) s, ( t )  of the power-law process w (t) [13]: 

d 
sz ( t )  = (ATA-T) A,A-,s, ( t ) .  

The function s, ( t )  is given below [16] for each a. 

3 Algorithm for edf calculation 
Our purpose is to obtain practical numerical approximations of (6). We give two versions of the 
algorithm: the simplified version merely truncates the sum in the exact formula; the full version 
maintains the number of summation terms below a presassigned threshold and avoids catastrophic 
roundoff errors. They have the same inputs, output, function definitions, and initial step. Some 
explanation of the approximations is given in Appendix A. Because the results are invariant to 
time scaling, we may set 7 = 1, 70 = l/m. 

All arithmetic is to be carried out in double-precision floating point. Operations that give signed 
integers are the floor function 1x1 (greatest integer that is 5 x) and ceiling function r.1 = - 1-xJ 
(least integer that is 2 x). 

3.1 Inputs 

Q = frequency noise exponent 
a = 2,1 ,0 ,  -1, -2, -3, -4 
Noise type = WHPM, FLPM, WHFM, FLFM, RWFM, FWFM, RRFM 

d = 1: first-difference variance (included for completeness) 
d = 2: Allan variance 
d = 3: Hadamard variance 
Restriction: a + 2d > 1 

d = order of phase difference 

m = averaging factor 7/70,  positive integer 
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F = filter factor 
F = 1: modified variance 
F = m: unmodified variance 

S = stride factor (estimator stride = T / S )  
S = 1: nonoverlapped estimator 
S = m: overlapped estimator 

N = number of phase data with sample period TO 

3.2 Output 

edf = equivalent degrees of freedom of the variance estimator 

3.3 Constant and function definitions 

Set an integer constant J,, (used only in the full version); we suggest J,, = 100. 

of the main algorithm. 
The formal arguments of the following functions have the same names as the input arguments 

1. Define the function s, ( t ,  a )  as follows: 

( 7) 
a 2 1 0 -1 -2 -3 -4 

s, (t ,a) - ~tl t21n It1 lt13 -t4in ~tl - [ti5 t61n It1 lt17 . 
The entries with In It( must evaluate to 0 when t = 0. 
2. Define the function 

1 1 

s, ( t ,  00, a)  = s, ( t ,  a + 2) , -4 5 a 5 0. 

3. Define the function 

s, ( t ,  F , a ,  d )  = ( A I A - ~ ) ~ s ,  ( t ,  F ,a )  , d = 1 , 2 , 3 ;  

that is (with dependence on F and a suppressed on the right sides), 

sz ( t ,  F, a, 2) = 6sx  ( t )  - 4sZ ( t  - 1) - 4 s X  (t + 1) + S, (t  - 2) + sX (t + 2) , 

SZ ( t ,  F, Q, 3) = 2Osx ( t )  - 15sZ ( t  - 1) - 15sX (t  + 1) 
+ 6s, (t  - 2) + 6sX (t  + 2) - S, (t - 3) - S, ( t  + 3) 

4. Define the function 

BasicSum(J ,M,S ,F ,a ,d)=s; (O,F,a ,d)+ 1-- s, - ,F ,a ,d  ( 2 G  1 
J-1 

+ 2 (1 - &) s; ($ , F, a ,  d )  . 
j=l 

(9) 
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3.4 

1. Compute M ,  the number of summands in the estimator, as follows: 

Initial steps for both versions 

if N 2 L,  otherwise there are not enough data. 
2. Let 

J = min ( M ,  (d + 1) S) . 

3.5 Main procedure, simplified version 
This is just one step: 

BasicSum ( J ,  M ,  S ,  F ,  a ,  d )  . (13) 
1 

sz (0, F, a ,  d )  M 
- 1 

edf 
- _  

To check the effect of the truncation, one can also ,try a larger value of J ,  say min ( M ,  6s). 

3.6 Main procedure, full version 

Let r = -. M 
S 

There are four cases. The calculations use coefficients from three numerical tables. 

3.6.1 

This case also applies to unmodified variances when F = m = 1. 

Case 1. Modified variances: F = 1, all a 

If J 5 Jm, 

BasicSum (J, M ,  S, 1, a, d)  
1 

sz (0,1, a, d)  M 
- 

1 
edf 
_ -  

Else if J > J,, and r 2 d + 1, take ao,al from Table 1; then 

1 1  
edf r 

(not necessarily an integer); then Else let m' = - Jmax 

r 

BasicSum (J", Jmax, m', 1, a, d )  
1 

sz (0,1, a, d)  Jmm 
- 1 

edf 
_ -  

3.6.2 Case 2. Unmodified variances, WHFM to RRFM: F = m, a I 0 

If J I Jmax 
If m ( d  + 1) 5 J,, then let m' = m else let m' = 00. Then 

- BasicSum ( J ,  M ,  S ,  m', a ,  d )  
1 

sz (0, m', a ,  d )  M 
- - 1 

edf 
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Else if J > Jmax and T 2 d + 1, take aO,al from Table 2; then 

1 1  
edf r 

Jmax Else let m' = - (not necessarily an integer); then 
r 

BasicSum (Jmax, Jmax, m', 00, Q, d)  
1 

SP (O,OO,  a,  d)  Jm, 
- 1 

edf 
-- 

3.6.3 Case 3. Unmodified variances, FLPM: F = m, Q = 1 

If J 5 Jmax 

BasicSum (J, M ,  S, m, 1, d )  
I 

s? (0, m, 1, d )  M 
- 1 

edf 
_ -  

Remark: For this case, m must be less than about lo6 to avoid roundoff error. 
Else if J > Jmax and r 2 d + 1, take ao,al from Table 2 (Q = 1), bo, bl from Table 3; then 

Jmax (not necessarily an integer); then Else let m' = - 
r 

_ -  1 - 
edf 

1 
(bo + bl In m)' Jmax 

BasicSum (J", Jm,, m', m', 1, d)  

3.6.4 Case 4. Unmodified variances, WHPM: F = m, Q = 2 

This calculation is exact, and can be expressed in closed form. In these formulas, (3 denotes the 

binomial coefficient 

Let K = r.1. 
I f K S d  

n! 
IC! (n - I C ) ! .  

r 1 

Else 

where 

1 1 
edf M 

d 
a0 = - 

also given in Table 2 (a  = 2). 
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3.7 Tables 
Table 1. Coefficients for modified variances 

d = l  d = 2  d = 3  

1 1 I I - - - - 
3 

2 3  - 
1 0.840 0.345 0.997 0.616 1.141 0.843 

3 3 9 2 25 

0 1.079 0.368 1.033 0.607 1.184 0.848 
-1 1.048 0.534 1.180 0.816 
-2 1.302 0.535 1.175 0.777 
-3 1.194 0.703 
-4 1.489 0.702 

Table 2. Coefficients for unmodified variances 
d = l  d = 2  d = 3  

a0 a1 a0 a1 a0 a1 

z 
1 - 2 - - 7 - 

1 35 3 - 1 % - 2 2  z 18 

o $  B 3 3 9 2 

1 78.6 25.2 790. 410. 9950. 6520. 

-1 0.852 0.375 0.997 0.617 
-2 1.079 0.368 1.033 0.607 
-3 1.053 0.553 
-4 1.302 0.535 

1 1 

Table 3. Coefficients for logarithmic denominator, unmodified variances, FLFM (a  = 1) 

d = l  d = 2  d = 3  
bo bl bo bl bo bl 

6 4 15.23 12 47.8 40 

4 Examples 
First, we must point out that the new edf values differ somewhat from older ones because of our 
choice of phase noise model. Previously (for a < -1) the phase was generally assumed to have 
a pure f a - 2  spectrum; here the phase is modeled as the first difference of an process. For 
example, consider overlapped Allan variance, white FM, 1025 phase data. The old results are from 
[14] (close to those of [7]). 

7 / 7 0  1 2 4 8 16 32 64 128 256 512 
old edf 682 584 354 186.3 93.4 45.8 21.8 9.83 4.01 1 
new edf 800.8 553.7 314 170.0 88.5 44.4 21.8 9.83 4.00 1 

The old and new results are in practical agreement at the larger values of r ,  where the results 
matter more. By allowing this mild discrepancy, we were able to make the algorithm simpler and 
more uniform. 

Figures 1 and 2 (at the end of the paper) show examples of edf, computed by the new algorithm, 
as a function of noise type and of variance type with other parameters fixed. 
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5 Conclusion 

The stability variances considered here can all be put into the same form, namely, the mean- 
square average of the output of a finite-difference filter acting, not on the phase samples, but on 
their cumulative sums. With this insight, we have been able to make an algorithm for computing 
the equivalent degrees of freedom of variance measurements. It covers all the commonly used 
variances and estimators, and then some. There is now a single unified source for these uncertainty 
calculations instead of the many papers that each cover only one variance and perhaps only one 
estimator of it. Complete pseudocode for the new algorithm is given here; software is available on 
request [22]. 

A Appendix: explanat ion of approximations 

As is, ( 6 )  is unfit for numerical computation. We find empirically that sp ( t )  tends rapidly to zero 
as t increases beyond d. For the accuracy needed here (a few percent), there is no point in allowing 
j / S  to be more than d + 1. Indeed, for sufficiently large t the calculation of sp ( t )  blows up from 
roundoff error, even in double precision, because linear combinations of large sw values are taken 
to get small s, values. At the very least, one should truncate the sum at j = (d + 1) S ,  as in the 
simplified version of the algorithm. 

The full version of the algorithm uses the following general strategy. If J 5 J,,, we do the 
summation ( 6 ) .  When J > J,,, there are two cases. First, if A4 2 (d + 1) S then S = m 2 
J,,,/ (d + 1) >> 1. We truncate the sum at ( d  + 1) S and approximate it by an integral; this gives 

d+l  ( l - ; ) s : ( t ) d t  

edfvd r 0 

1 
r 

= - (ao - ?) , 
where 

These coefficients can be evaluated in advance. Second, if M < (d + 1) S then we do another 
summation in which J is reduced from M to Jmax and S is reduced proportionately from m. 

The extra term for j = J in BasicSum makes the sum a trapezoidal approximation to the 
integral, whether or not the sum is truncated. 

This method works straightforwardly for Case 1; indeed, in this setting the modified variances 
are simpler than the unmodified ones. In Case 2, when m is large we compute s, ( t )  using the 
limiting form s, ( t ,  m), which is actually -sL ( t ) .  This means that we are treating z ( t )  as w' ( t ) ,  
the process w ( t )  being differentiable in the mean-square sense. 

The most troublesome case is the overlapped estimators of the unmodified variances for flicker 
PM. As S = m + 00, s, ( t )  approaches a function with logarithmic singularities. The factor 
bo + bl lnm is an asymptotic form of s, (0). It would be possible (though inconvenient) to add 
another large-m subcase as in Case 2, but one does not expect flicker PM to be the dominant noise 
type when m is large. 

Case 4 is constructed by knowing that the phase samples are accurately uncorrelated when w ( t )  
is a Wiener process. The simplified computation (13) is correct but wasteful because s, ( t )  is a 
linear combination of hat-shaped peaks of width 2/m. 
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Overlapping ADEV EDF for N=lOO 
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Figure 1. Edf vs. averaging factor with power-law noise type as a parameter: Allan variance, 
overlapped estimator, 100 phase samples. 

Overlapping EDF for N=100 and W FM Noise 
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Figure 2. Edf vs. averaging factor for three stability variances: overlapped estimator, white FM, 

100 phase samples. 
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