Temporal Evolution of Atmospheric and Oceanic
Excitation of Earth Orientation Variations
During the Past 50 Years

Richard S. Gross, Ichiro Fukumori, and Dimitris Menemenlis

Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109-8099, USA

American Geophysical Union
2003 Fall Meeting

December 8-12, 2003
San Francisco, CA



Overview

 Investigate atmospheric and oceanic excitation of polar motion during 1949-2002
e Observed polar motion excitation from COMB2002 combined EOP series
o Extended back to 1949 using Hipparcos optical astrometric series
s Atmospheric Angular Momentum (AAM) from NCEP/NCAR reanalysis project
e Obtained from IERS Special Bureau for the Atmosphere
s Oceanic Angular Momentum (OAM) from JPL component of ECCO consortium
s New 50-year simulation spanning 1949-2002
s 20-year simulation spanning 1980-2001 (Gross et al., 2003a, 2003b)

¢ Data assimilative series spanning 1993-2001

e Intercompare ECCO/JPL. OAM series

s Evaluate by comparing with observed polar motion excitation series

o From which atmospheric effects have been removed

e Study average effect of atmosphere and oceans on polar motion during 1949-2002
* Markowitz wobble (decadal variations)

e Chandler wobble

e Study temporal evolution of atmospheric and oceanic excitation of polar motion

e Compare OAM with observed—AAM residual in non-overlapping 4-year-long segments
spanning 1950-2001



Oceanic Angular Momentum (20 Year)

e ECCO/JPL 20-year simulation

Spans 1980-2002.25 at daily intervals

Near global spatial domain

s 72.5°S to 72.5°N latitude with a variable

resolution of 1/3° at equator to 1° at poles

and a longitudinal resolution of 1°

* 46 vertical levels with thickness ranging
from 10 m at surface to 400 m at depth

Forced with NCEP/NCAR reanalysis
surface fluxes
* Twice daily wind stress

s Daily heat flux and evaporation-
precipitation fields (freshening only)

s Atmospheric surface pressure not used
No data assimilated
Series designator: ¢20010701

¢ Pre-processing

Correct for Boussinesq effects

Form 10-day averages to be
consistent with 50-year OAM series

Convert to equivalent LOD and
polar motion excitation functions
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Oceanic Angular Momentum (Constrained)

e ECCO/JPL data assimilative

Spans 1993-2001 at daily intervals
Near global spatial domain

s 72.5°S to 72.5°N latitude with a variable

resolution of 1/3° at equator to 1° at poles

and a longitudinal resolution of 1°

* 46 vertical levels with thickness ranging
from 10 m at surface to 400 m at depth

Forced with NCEP/NCAR reanalysis
surface fluxes

* Twice daily wind stress

¢ Daily heat flux and evaporation-
precipitation fields (freshening only)

¢ Atmospheric surface pressure not used
Assimilated altimetry and XBT data

Series designator: kf047a

* Pre-processing

.

Correct for Boussinesq effects

Form 10-day averages to be
consistent with 50-year OAM series

Convert to equivalent LOD and
polar motion excitation functions
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Oceanic Angular Momentum (50 Year)

* ECCO/JPL 50-year simulation

Spans 1949-2002 at 10-day intervals
Near global spatial domain
* 77.5°S to 79.5°N latitude with a variable

resolution of 1/3° at equator to 1° at poles
and a longitudinal resolution of 1°

* 46 vertical levels with thickness ranging
from 10 m at surface to 400 m at depth

* Bottom cells have been lopped to improve
representation of bottom topography

Forced with NCEP/NCAR reanalysis
surface fluxes

* Twice daily wind stress

* Daily heat flux and evaporation-
precipitation fields (freshening only)

* Atmospheric surface pressure not used
No data assimilated

Series designator: 50_year

* Pre-processing

Correct for Boussinesq effects
Equi-space values by linear interp.

Convert to equivalent LOD and
polar motion excitation functions
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Atmospheric Angular Momentum
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e Extend COMB2002 with Hipparcos EOP series

Earth Orientation Variations

COMB2002

¢ Kalman filter-based combination of optical astrometric, LLR,
SLR, VLBI, and GPS Earth orientation series spanning 1962-2002

at daily intervals (Gross, 2003)

o Kalman filter self-consistently estimates polar motion rate and
hence polar motion excitation function

Hipparcos

* Optical astrometric series spanning 1900-1991 at 5-day intervals
(UT1 since 1956; Vondrak et al., 1998)

o Enforce consistency with COMB2002 by: (1) correcting bias, rate,
& annual component; (2) adjusting uncertainties; and (3) deleting

40 outliers

¢ After adjustment, combine independent portion with COMB2002

Extended COMB2002 series

s Spans 1948-2002 at daily intervals (UT1 and LOD since 1956)

* Pre-processing

Remove effect of long-period ocean tides on both LOD
(Kantha er al., 1998) and polar motion (Gross, et al., 1997)

Form [0-day averages to be consistent with OAM series

o Centered average of 11 successive daily values using weights of

120, 1/10, ---, 1710, 1/20
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OAM Comparison (1980-2001)

e Evaluate OAM simulations
* ECCO/JPL 50-year and 20-year series

* During common time span of 19802001

* Compare to COMB2002 polar motion
excitation observations
s Remove atmospheric effects from observations

¢ Sum of NCEP/NCAR reanalysis AAM due to winds
and inverted barometer pressure

s  Compare sum of OAM current and bottom
pressure terms to observed residual

* Power spectra and coherence magnitude and phase

e Results

* Power spectra

¢ 50-year series in closer agreement with observed
residual at seasonal frequencies

o 350-year series has less power than 20-year series at
high frequencies

* Coherence magnitude and phase

* Both 50-year and 20-year series are similarly
coherent with observed residual
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OAM Comparison (1993-2001)

o Evaluate OAM series

ECCO/IPL. simulations and assimilative series

¢ During common time span of 1993-2001

e Compare to COMB2002 polar motion
excitation observations

Remove atmospheric effects from observations
¢ Sum of NCEP/NCAR reanalysis AAM due to winds

and inverted barometer pressure

Compare sum of OAM current and bottom
pressure terms 10 observed residual

¢ Power spectra and coherence magnitude and phase

e Results

Power spectra

¢ Data assimilative series in closest agreement with
observed residual except at seasonal frequencies

¢ 50-year series in closest agreement with observed
residual at seasonal frequencies

Coherence magnitude and phase

e At prograde frequencies, all series are similarly
coherent with observed residual

s At retrograde frequencies, data assimilative series is

most coherent with obs. residual (except at —1 cpy)

psd in db (mos?/cpy)

squared coherence
0.20 0.40 0.60 0.80

phase (degrees)

10.0 20.0

0.0

0.0 90.0

-90.0

POLAR MOTION EXCITATION

T - I ! LU L U I 1 I r T L

obs-atmos  50year 20year  assimilative

i Il —le ) | | I | — e 1 1 e

8.0 100 120

-120-100 -80 -60 —-40 -20 00 20 40 6.0
frequency (cycles/year)

50 year 20 year assimilative

) 1 I I | A 1 ] A L L
-12.0-10.0 -8.0 -6.0 -40 -20 00 20 40 6.0 8.0 100 120

frequency (cycles/year)

assimilative

50 year 20 year

1 1 1 L 1 1 1 1 I N
-12.0-100 -80 -60 —-40 -20 00 20 40 6.0

frequency (cycles/year)

bl
80 10.0 120

9%
95%



Atmospheric & Oceanic Excitation (1949-2002)

* Examine influence of atmosphere and POLAR MOTION EXCITATION
oceans on polar motion ' ' — .

* Compare AAM and OAM to observed polar
motion excitation

* Extended COMB2002 polar motion excitation series
* NCEP/NCAR reanalysis AAM series :

observed  atmosphere atmosphere+ocean .
* ECCO/JPL 50-year OAM series ' ' ' L '
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Temporal Evolution of Excitation

e Compare OAM to observations

Remove atmospheric effects from
observed polar motion excitation

* NCEP/NCAR reanalysis AAM series

Compute correlation and variance
explained within 4-year segments

* Remove trend from each segment

» With and without seasonal component

e Results

Little agreement prior to 1980

50-year and 20-year OAM series
agree equally well with obs. residual

Data assimilative series agrees best

¢ Particularly for nonseasonal excitation

e Why does agreement improve?

Space geodetic measurements are
more accurate than optical astrometric

Satellite era of global weather
observing system started 1979

e TOVS temperature soundings became
available then
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Summary

New 50-year OAM series

¢ Comparable to previously available 20-year series

¢ During their common time interval of 19802001
e Extends available OAM series back to 1949

* Will soon be available through IERS Special Bureau for the Oceans web site at <http://euler.jpl.nasa.gov/sbo>
Decadal polar motion variations (Markowitz wobble)

* AAM has enhanced low-frequency power

* Butitis not as great nor is it coherent with observed polar motion excitation

¢ Adding OAM increases power but not coherence

Chandler wobble

s  AAM alone does not have enough power and is not coherent with observed excitation

* Adding OAM increases power to that observed, coherence becomes significant, and
phase becomes closer to zero

Temporal evolution of atmospheric and oceanic excitation

o Agreement of OAM with observed—AAM residual dramatically improves after 1980

* Space geodetic measurements, which are substantially more accurate than optical astrometric, started in 1976

* Atmospheric fields, including AAM, improved with start of TOVS temperature soundings in 1979
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Overview

* Investigate atmospheric and oceanic excitation of polar motion during 19492002

* Observed polar motion excitation from COMB2002 combined EOP series
¢ Extended back to 1949 using Hipparcos optical astrometric series

* Atmospheric Angular Momentum (AAM) from NCEP/NCAR reanalysis project
* Obtained from IERS Special Bureau for the Atmosphere

s Oceanic Angular Momentum (OAM) from JPL component of ECCO consortium
¢ New 50-year simulation spanning 1949-2002
o 20-year simulation spanning 1980-2001 (Gross et al., 2003a, 2003b)

o Data assimilative series spanning 1993-2001

* Intercompare ECCO/JPL OAM series

* LEvaluate by comparing with observed polar motion excitation series
¢ From which atmospheric effects have been removed
* Study average effect of atmosphere and oceans on polar motion during 1949-2002
* Markowitz wobble (decadal variations)
* Chandler wobble
* Study temporal evolution of atmospheric and oceanic excitation of polar motion

o Compare OAM with observed—AAM residual in non-overlapping 4-year-long segments
spanning 1950-2001



Oceanic Angular Momentum (20 Year)

* ECCO/JPL 20-year simulation Oceanic Angular Momentum (20 Year)
* Spans 1980-2002.25 at daily intervals B A I I ‘

* Near global spatial domain 20

o 72.5°S to 72.5°N latitude with a variable
resolution of 1/3° at equator to 1° at poles
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Oceanic Angular Momentum (Constrained)

* ECCO/JPL data assimilative

Spans 1993-2001 at daily intervals
Near global spatial domain

* 72.5°S to 72.5°N latitude with a variable
resolution of 1/3° at equator to 1° at poles
and a longitudinal resolution of 1°

* 46 vertical levels with thickness ranging
from 10 m at surface to 400 m at depth

Forced with NCEP/NCAR reanalysis
surface fluxes

* Twice daily wind stress

* Daily heat flux and evaporation-
precipitation fields (freshening only)

* Atmospheric surface pressure not used
Assimilated altimetry and XBT data
Series designator: kf047a

* Pre-processing

Correct for Boussinesq effects

Form 10-day averages to be
consistent with 50-year OAM series

Convert to equivalent LOD and
polar motion excitation functions

Currents Z (ms)

Currents X (mas)

Currents Y (mas)

20

o

|
o
o
Y]

|
o
(=]
i

Oceanic Angular Momentum (Constrained)

L A
1994

1
1996

1 L 1
1998 2000 2002

T

W

L
1994

1
1996

] 2 1 L
1998 2000 2002

1994

1
1996

re Il 1
1998 2000 2002

40

[
[=] Q
T T

Pressure X (mas)

|
N
o

T

T

I
8

1994

1
1996

1
1998

1
2000

L
2002

&

N
[~
T

Pressure Y (mas)

T

1

—40 L
1994

1996

1998

2000

d
2002

0.04 T

)

o
o
]

Pressure Z (ms!

1994

1996

1998

2000

2002



Oceanic Angular Momentum (50 Year)

* ECCO/JPL 50-year simulation Oceanic Angular Momentum (50 Year)
e Spans 1949-2002 at 10-day intervals 40 T T 40 ' ; '
* Near global spatial domain 7 O g 20
£ £
o 77.5°S to 79.5°N latitude with a variable < o} PR
resolution of 1/3° at equator to 1° at poles H 3
and a longitudinal resolution of 1° 3-20} & 20
o 46 vertical levels with thickness ranging o o L . ‘ 1
from 10 m at surface to 400 m at depth -0 1960 1980 2000 -0 1960 1980 2000
* Bottom cells have been lopped to improve © T T ' “ T T
representation of bottom topography R ol
e Forced with NCEP/NCAR reanalysis £ £
surface fluxes = e OF
£ g
e Twice daily wind stress 3 &-20
* Daily heat flux and evaporation- —40 40
precipitation fields (freshening only)
¢ Atmospheric surface pressure not used oo oot
* No data assimilated 7 02r T
e Series designator: 50_year s of s o}
g 2
3 002} a
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* Pre-processing

* Correct for Boussinesq effects o0t 1960 1980 w00 oo 1860 1980 2000

o Equi-space values by linear interp.

o Convert to equivalent LOD and
polar motion excitation functions



Atmospheric Angular Momentum

NCEP/NCAR Reanalysis NCEP/NCAR Reanalysis AAM
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Pre-processing

* Average over diurnal cycle

Wind Y (mas)
IB Pressure Y (mas)
o

s Centered average of 5 successive
6-hour values using weights of
1/8,1/4, 1/4, 1/4, 1/8

¢ Form 10-day averages to be
consistent with OAM series
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e Extend COMB2002 with Hipparcos EOP series

Earth Orientation Variations

COMB2002

» Kalman filter-based combination of optical astrometric, LLR,
SLR, VLBI, and GPS Earth orientation series spanning 1962-2002

at daily intervals (Gross, 2003)

e Kalman filter self-consistently estimates polar motion rate and
hence polar motion excitation function

Hipparcos

» Optical astrometric series spanning 1900-1991 at 5-day intervals
(UT1 since 1956; Vondrak et al., 1998)

» Enforce consistency with COMB2002 by: (1) correcting bias, rate,
& annual component; (2) adjusting uncertainties; and (3) deleting

40 outliers

s After adjustment, combine independent portion with COMB2002

Extended COMB2002 series

o Spans 1948-2002 at daily intervals (UT1 and LOD since 1956)

* Pre-processing

Remove effect of long-period ocean tides on both LOD
(Kantha er al., 1998) and polar motion (Gross, et al., 1997)

Form 10-day averages to be consistent with OAM series

» Centered average of 11 successive daily values using weights of

1/20, 1/10, ---, 1/10, 1/20
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OAM Comparison (1980-2001)

e Evaluate OAM simulations

ECCO/IPL. 50-year and 20-year series
* During common time span of 1980-2001

e Compare to COMB2002 polar motion
excitation observations

Remove atmospheric effects from observations

o Sum of NCEP/NCAR reanalysis AAM due to winds
and inverted barometer pressure

Compare sum of OAM current and bottom
pressure terms to observed residual

o Power spectra and coherence magnitude and phase

e Results

Power spectra

e 50-year series in closer agreement with observed
residual at seasonal frequencies

e 50-year series has less power than 20-year series at
high frequencies

Coherence magnitude and phase

 Both 50-year and 20-year series are similarly
coherent with observed residual
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OAM Comparison (1993-2001)

e Evaluate OAM series

ECCO/JPL. simulations and assimilative series

¢ During common time span of 1993-2001

¢ Compare to COMB2002 polar motion
excitation observations

Remove atmospheric effects from observations
¢ Sum of NCEP/NCAR reanalysis AAM due to winds

and inverted barometer pressure

Compare sum of OAM current and bottom
pressure terms to observed residual

s Power spectra and coherence magnitude and phase

e Results

Power spectra

¢ Data assimilative series in closest agreement with
observed residual except at seasonal frequencies

s 50-year series in closest agreement with observed
residual at seasonal frequencies

Coherence magnitude and phase

s At prograde frequencies, all series are similarly
coherent with observed residual

s Atretrograde frequencies, data assimilative series is
most coherent with obs. residual (except at —1 cpy)
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Atmospheric & Oceanic Excitation (1949-2002)

e Examine influence of atmosphere and POLAR MOTION EXCITATION
oceans on polar motion ' ' ' - —

¢ Compare AAM and OAM to observed polar
motion excitation

* Extended COMB2002 polar motion excitation series
* NCEP/NCAR reanalysis AAM series
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Temporal Evolution of Excitation

* Compare OAM to observations

* Remove atmospheric effects from
observed polar motion excitation
* NCEP/NCAR reanalysis AAM series
* Compute correlation and variance
explained within 4-year segments
s Remove trend from each segment
* With and without seasonal component
* Results
* Little agreement prior to 1980
¢ 50-year and 20-year OAM series
agree equally well with obs. residual
¢ Data assimilative series agrees best

* Particularly for nonseasonal excitation

* Why does agreement improve?

Space geodetic measurements are
more accurate than optical astrometric

Satellite era of global weather
observing system started 1979

* TOVS temperature soundings became
available then
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Summary

New 50-year OAM series
¢ Comparable to previously available 20-year series
¢ During their common time interval of 1980-2001

¢ Extends available OAM series back to 1949
* Will soon be available through IERS Special Bureau for the Oceans web site at <http://euler. jpl.nasa.gov/sbo>

Decadal polar motion variations (Markowitz wobble)

¢  AAM has enhanced low-frequency power

* Butit is not as great nor is it coherent with observed polar motion excitation

¢ Adding OAM increases power but not coherence

Chandler wobble

¢ AAM alone does not have enough power and is not coherent with observed excitation

» Adding OAM increases power to that observed, coherence becomes significant, and
phase becomes closer to zero

Temporal evolution of atmospheric and oceanic excitation

¢ Agreement of OAM with observed—AAM residual dramatically improves after 1980

* Space geodetic measurements, which are substantially more accurate than optical astrometric, started in 1976

* Atmospheric fields, including AAM, improved with start of TOVS temperature soundings in 1979


http://euIer.jpl.nasa.gov/sbo
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