
SpaceOps 2004 - Conference

Method for Enhancing the Process of Software Tool Evaluation
and Selection: COTS, Heritage, and Custom Software Reviewed

D. J. Equils

Jet Propulsion Laboratory, Pasadena, CA, U.S.A.

For many organizations today, software evaluation and selection to meet the computing

needs of that organization is critical. In recent years, the role of software has become essential to

the integration of hardware systems of greater and greater complexity. As a result, the choice to

purchase Commercial Off-The-Shelf software (COTS), adapt existing heritage or legacy Software,

or to develop custom software can mean literally 'the success or failure of project. Yet frequently

this decision is delegated to an individual who is not in alignment with the system or organization

as a whole. Decisions are too often based solely on personal preference, familiarity and

experience with one product with little regard for peripheral information. So how does a project

effectively evaluate the software available? What are the factors and criteria that a decision

maker should focus on and understand to make the most logical and strategic choice for software

solutions? These fundamental challenges can be found throughout organizations of any

business in nearly every industry. As software becomes increasingly complex with

advancements in Information Technology, the need for accurate tools, which will help decision-

makers faced with this decision, also increases. Additionally, as standardization becomes more

mainstream, companies in all industries are looking to COTS systems to cut costs, meet

demanding schedule needs, and increase robustness. These espoused capab

software can give organizations a competitive advantage but only if implemented in the

appropriate way, at the appropriate time and with the appropriate resources. However, if a

software selection and implementation strategy is executed without proper understanding of the

project as a system, then any software decision can lead to cost overruns, delays in the schedule

and even project failure. In today's competitive market place, this risk is unacceptable.

Through interviews with software decision-makers and managers, this paper has captured

both successful empirical methods and lessons-learned from previous software selection

processes. This paper concludes with a cost-effective and strategic approach via template for

establishing accurate software selection criteria. With this template, decision-makers will be

better prepared to make informed and comprehensive software decisions for specific systems,

subsystems, and interfaces. Ultimately, by adopting this methodology, organizations will be able

to achieve a Return-On-investment (ROI) through accurate and effective software selection

processes.

Montreal, Canada - May 17 - 21 2004 1

SpaceOps 2004 - Conference

Introduction

At JPL, all projects have one thing in common; computing needs for both the Flight System,

which designs, assembles, and tests the Spacecraft, and the Mission System, which operates the

spacecraft to meet its science objectives. These computing needs can be met in one of at least

two fundamental ways; Build or Buy. Projects can build software applications and scripts from

scratch, designing capabilities to exactly meet the system level requirements. Alternatively,

projects can decide to buy or inherit and then adapt an existing piece of software, which can be

modified in an attempt to meet the same requirements. The existing piece of software will come

in one of two forms: COTS or Heritage.

Each method has pros and cons and this decision can be one of the most critical in a Projects

Life Cycle. Additionally, each COTS option must be weighed against each other, comparing

strengths and weaknesses. Historically, however, this decision is often made based on two to

three criteria and the personal experience and preference of the Project Manager, Mission

Operations Manager, and Mission Operations Systems Engineer. As this paper will show, there

are scores of issues, which must be thoroughly examined and considered before a decision of

this importance can be made. Through examining projects that have used both custom software

and adapted COTS and heritage software, the results of those projects will be compared, looking

at the software selection process, cost and schedule impacts, software performance, and lessons

learned from the decision makers. This paper will attempt to analyze the decision making

process through interviews of the managers involved. Where possible, independent verifications

will be made of claims from decision-makers and secondary sources, such as documentation and

project databases, will be checked.

Finally, with the collected information and lessons learned from the interviews, I have concluded

with a template that decision-makers can use to more accurately and effectively evaluate the

issues surrounding software selection. This template will include recommendations on ways to

make informed and comprehensive software decisions for Custom or Customizable COTS

software for specific subsystems.

To begin the software selection and evaluation process, one must answer the following

questions. What are the criteria that Projects must consider and understand before making the

COTS vs. heritage vs. Custom decision? Which aspects of a Project must a manager examine to

understand the advantages of one method over another? What are the characteristics of the

software options that need to be analyzed to reveal the “best” fit into the project system? When

and under what conditions is it appropriate to inherit existing software from older projects? In

Montreal, Canada - May 17 - 21 2004 2

SpaceOps 2004 - Conference

which situations is a custom approach more suited for the needs of the project? In the current

paradigm of Software Evaluation and Selection, these and other questions are simply not

explored to sufficient detail. However, with the template provided by this paper, projects can

address these questions that should be considered when making the selection between COTS,

Custom, and Heritage software. This list is based on several sources including the information

gathered during the interview process, the successes of those processes and my personal

experience in software selection.

Of course, this is not an exhaustive list of the factors to consider when making the

COTS/Custom/heritage decision nor are all criteria in the template applicable to all missions. For

example, there can be external political factors, which drive the decision to adopt a particular

software paradigm. This list only attempts to establish the more important issues for a manager

to consider when making the software decision. Ultimately, the decision template will serve as a

tool for Projects who are faced with the decision to adapt and implement existing COTS or

heritage software or build a custom software system. It will be discussed in more detail in section

Literature Search

The first phase of the literature search was conducted using the Pepperdine Electronic Library

resource, the IEEE website, the Software Quality Insurance group at JPL, as well as the Google

and Yahoo search engines. The purpose of this search was to collect information and lessons

learned from organizations in Industry and understand what methodologies and philosophies are

the underpinning of this process.

This search clearly showed that there was no one methodology or accepted theory for selecting

COTS over Custom software or vise versa. The bulk of the literature search turned up only

discussions of the COTS vs. Custom decision and the possible considerations for each choice,

typically with COTS or Custom biases. Articles did mentioned potential pitfalls with both

approaches and benefits of each that seemed to correspond more with the author’s bias. Overall,

the results were very inconsistent. Several articles [I 3, 181 mentioned COTS as the better choice

and other articles [17, 121 cited that Custom options could help a project avoid many common

pitfalls associated with COTS. Additionally, there were no comprehensive templates or tools to

speak of concerning the decision making process of choosing between custom and COTS

software or for comparing COTS to other COTS options. In general, I found only high-level

discussions on the pros and cons of each of the approaches.

Montreal, Canada - May 17 - 21 2004 3

SpaceOps 2004 - Conference

In theory, COTS vs. Custom is an issue of “Faster and Cheaper” vs. “Better” and Software

Evaluation seeks to identify which component will provide the best results, in the least time, with

the lowest chance of failure. The articles reviewed here though, call into question whether or not

COTS is really Cheaper or Faster. If COTS software is “compatible” with a Projects needs and

infrastructure, then savings might be achieved in budget and schedule. The question still remains

however, what qualifies as “compatible” so that a Project will be able to realize gains for the

sacrifices in performance? And what are the criteria that a project will have to consider in order to

determine the “compatibility” of a piece of software with the existing design. The next step of the

literature search examines the software selection methodology and classification of existing

software applications.

Scores of articles (Clarke [4], Hariri [8], Kitchenham [I I] , Morisio [14], and Paulet [15], and

Torchiano [I 91) discussed proper methods for software classification and focused on the technical

characteristics of software applications.

For example, Torchiano [I 91 lists the following as key components in the software decision

making process: Product Maturity, Market Share, Performance, SafetylSecurity, Reliability,

Hardware Requirements, Product Support, Documentation, Usability, Learnability, Modifiability,

Change Frequency, License Type, Cost of Use, Software Requirements, Conformance, and

Domain Specificity. A poll of industry experts points to Cost of Use and Usability as the two most

important from this list. [19].

Bertoa [2] lists Functionality, Reliability, Usability, Efficiency, Maintainability, and Portability. Each

of these is broken down further into specific attributes that one can evaluate quantitatively. In his

article, Bertoa does mention that issues such as technical support and license conditions, while

not directly related to quality, are important considerations. Bertoa, as with most research

focuses on software quality exclusively.

Schneidewind [I61 groups all attributes into 3 main categories: Reliability, Maintainability, and

Availability. He concludes “The decision to employ COTS on mission critical systems should not

be based on development cost alone. Rather, costs should be evaluated on a total life cycle

basis and RMA should be evaluated in a system context.” [16]. I agree completely.

Hariri [8] lays out what he believes to be the seven key characteristics for understanding the

“quality” of the software tool: Ease of Programming, Debugging Support, Customization, Error

Handling, Run-Time Interface, Integration with other software subsystems, and Portability. He

stresses that Operational Usability should be one of the key factors in evaluating options,

reasoning that if it is difficult to interface with the tool, its strengths will not be realized.

Montreal, Canada - May 17 - 21 2004 4

SpaceOps 2004 - Conference

The bulk of the literature discussed characterizing the software and the process for testing the

application within the system; outlining metrics for evaluation. Nevertheless, this is believed to be

a major deficiency of the current mentality as it fails to take into account factors that will likely

drive comprehensive decisions on selecting the correct software tool. Factors such as budget

and schedule constraints, strength of the software team on the project, the state of project

requirements, and political climate surrounding the organization were not discussed. A few

articles did mention but do not explore the costs associated with software maintenance or the

evaluation of the history and robustness of COTS tools. It is this papers contention that these

aspects of the decision must be considered and are as important if not more so that the technical

aspects of the software tools in question.

Interviews

The interviews were conducted to understand the tacit approach decision makers took during the

software selection process. The results were both revealing and confounding. At the same time,

it became clearer that the process for software selection was not clear and that software selection

decisions were largely ad hoc. The interviewees were marred with issues during the project life

cycle that prevented the development of a software selection process and projects continue to

follow the labs inertia on software selection. Decisions were largely delegated to the Mission

Operations Manager or the Mission Operations System Engineer who consulted with the project

personnel to gather the required feedback. Several people confessed that there were

insurmountable constraints and requirements on the software selection process from budget [32,

371 to time [38] to capability [39]. In other words, one criterion was given so much weight that the

software selectors had no choice. The decision was made for them.

So what were the trends and observations that I have made from those at JPL who went through

the process of software selection? There were five:

1. There is an “ad hoc” process for software selection

2. Little documentation of the selection process was created

3. Only subset of proposed criteria in Appendix A were examined

4. Inadequate examination of all available COTSIheritage options

5. No follow-up to evaluation the process for software selection

As hypothesized, there were no comprehensive or detailed processes for the selection of

software tools at JPL. Managers largely made decisions based on a restricted number of criteria

Montreal, Canada - May 17 - 21 2004 5

SpaceOps 2004 - Conference

and personal preference. However, it did appear that in several cases [30, 37, 381 that there was

little to no choice on the criteria to examine. In Interviewee Number Eight‘s case, cost mandated

not only that an existing system be low cost, but also that the system must be integrated at the

lowest cost. In Number Nine’s case, the software requirements for flexibility due to the evolving

project requirements mandated that the project implement a custom system.

The second trend witnessed, supports the observation that there appears to be no such process.

I could find no reference to the process for software selection in any of the documentation

databases: neither the process for software selection, the results of the software selection

process, nor follow-ups to determine if the “process” was successful. The only inference to the

software selection process was in Preliminary Design Review presentations, whicb mandated that

the choice of software be mentioned. This is a clear indication that the priority placed on software

selection is not high and the decision is largely trusted to System Engineers. Documentation of

this process, however, should not be viewed as only for the people making the decision. Rather,

the document is a method of “Knowledge Transfer” within the organization. It is a mechanism by

which others can learn from the efforts of people on the lab.

Based on the interviewees and the existing “process”, only a subset of the suggested criteria was

examined. Typically, the tool that could meet the needs of the project at the lowest cost was

selected. [30, 31, 32, 341 However, this method fails to take into account those scores of issues

that could ultimately lead to greater costs beyond those initially anticipated. Upon analysis of the

data, there were several key factors that were over looked by the interviewees, such as software

team experience, subsystem complexity, potential change for the project systems, historical

perspective of COTS options, and type and quantity of experience of the software development

company or team. Where possible, following up with the interviewees, I asked them about these

criteria and some freely admitted that with hindsight, more could have been done to investigate

the ideal software selection. This narrow scope approach of evaluation lead to at least one

failure in the Mars Climate Orbiter (MCO) when the past experiences of the contractor (Lockheed

Martin) was not taken into account thus resulting in a miscommunication over the software units.

MCO entered the Martian atmosphere below the acceptable threshold during Orbit Insertion and

the mission was lost.

Fourth, almost all of the interviewees admitted that all of the COTS options had not been pursued

aggressively. In fact most of the interviewees did not look beyond the software available from

JPL directly. [30, 33, 37, 381 Without investigation, well-suited and inexpensive software could

have been missed which had the potential to increase robustness and decrease the costs from

the missions reviewed.

Montreal, Canada - May 17 - 21 2004 6

SpaceOps 2004 - Conference

And finally, there was no follow-up after the missions to evaluate the “process” for software

selection. Essentially, once a decision was made, the alternate options were “taken off the table”

and the process was never again discussed. None of the projects had a process to examine the

software evaluation steps that were taken and capture a “lessons learned” for future missions.

This sort of knowledge transfer is critical for the improvement of this process and was clearly not

a priority for those missions who were finishing. As part of JPL’s strategy for knowledge transfer,

projects should be required to convert the final mission data into knowledge about what was

learned and how the processes used during the mission could be improved. Without this step,

only those on the project will come away with that experience and the true benefit of knowledge

transfer is not realized.

It was clear from the interviews that the emphasis was limited exclusively to the projects with no

visibility into the Lab wide strategy of process improvement on a long-term broad-based strategic

sense. Had there been, decisions would take into account a wider array of issues surrounding

software selection such as establishing strategic relationships with software providers and more

importantly moving towards standardization. But at the core of the problem is the belief that all

projects are unique and don’t fit within the JPL strategy, what ever it might be.

Section D contains the final results of this paper. It is a collection of criteria and issues examined

by decision makers inside JPL as well as suggestions from several industry papers. The issues

can be broken down into 6 key categories:

1. State of the Project - These questions surround the needs and the state of the
project that is making the software decision. Understanding the state of the project is
one of the most often overlooked issues surrounding the software decision. Far too
often, only technical considerations are made without insight into the impact on the
entire project.

2. System Impacts - Issues such as cost, risk, and schedule impacts are critical to the
compete evaluation of software options. People tend to examine these issues at the
exclusion of other important issues.

3. Subsystem Interface - Specifics such as the interface requirements and software
flexibility; issues that always need to be addressed.

4. Team Strength- These questions revolve around the strength of the members on the
team that will be involved in the software adaptation or custom software
development. It also includes the strength and experience of the COTS vendor if
applicable. This sensitive area must be considered however, if a project hopes to be
successful in software selection and integration or development.

5. Support - This is perhaps one of the most critical areas and is ironically often
overlooked by many decision makers until the project is in a crisis situation.
Essentially, these criteria bring into question the vendor and the support from the
vendor both through documentation and physical support for the software being
adapted. Issues such as software updates, technical support, vendor availability,
and license issues can lead to severe cost overruns if a project is forced to react to
problems that could have been avoided.

6. Lab Strategy - Finally, an issue that is infrequently looked at, whether the software
selection strategy for the project is in alignment with the Laboratory’s strategy. In

Montreal, Canada - May 17 - 21 2004 7

SpaceOps 2004 - Conference

other words, there are issues beyond the project, which must be considered as well.
For example, perhaps working with a certain vendor will allow greater leverage for
future negotiations with other software vendors. These issues can be addressed
during the software selection process with help from laboratory management who
have insight into the key strategic goals for the lab.

Projects asked to use this template, will be able to raise issues that might not otherwise be

considered. Simply by following using this tool and asking the tough and sometimes obscure

questions, decision makers will be falling back on the scores of experiences of other decision

makers that have been faced with the same issues. It is these issues that will point in the

direction of the software tool that will give the fewest or least sever problems. And in so doing,

NASNJPL will be taking its first steps towards a more effective and efficient software selection

process and will become better suited for exploring Earth, our Universe and beyond.

Results - Software Selection Criteria Table

Montreal, Canada - May 17 - 21 2004 8

SpaceOps 2004 - Conference

Impacts
Integration

Integration
Integration
Integration

Integration

Integration

Integration
Integration
I n teg rat ion
Integration
Integration
Integration

Team

Team

Team
Team

Team
support

support

support

support

support
support

Lab
Strategy
Lab
Strategy
Lab
Strategy

analysis vs. Command and Control software)
What is the relative robustness of the COTSIHeritage software option available?
Are there compatibility issues with the COTSIHeritage Software and the subsystem
or system design?
What other projects has the software been used on?
How similar were the requirements of those projects to this project?
How flexible is each software option in its function? Can it be modified during
operations to satisfy another function? Do you have access to the source code?
How similar were those COTSIHeritage applications to the present software options
being considered?
Can the COTSIHeritage Software be integrated into the existing infrastructure
during the design phase of the project life cycle?
How complex are the requirements for the specific location receiving the software?

~~

How likely are the requirements on the subsystem to change?
How many interfaces are there with the software?
How complex are the interfaces to/from the subsystem that requires software?
How flexible are the interfaces toIfrom the subsystem that requires software?
What is the scope of custom integration needed to meet the System Interface
Specifications (SIS) and Operational Interface Agreements (OIA)?
If custom option is chdsen, how much experience does the team have in developing
Custom Software?
How much experience does the team have with adapting and integrating other
COTSIHeritage software packages?
How familiar is the software team with the available COTSIHeritage software?
What similar experiences have the software teams managers had on other
projects? How similar were those experiences to the project under consideration?
Is software development a core competence for your organization?
What is the track record of the company or organization that designing the
COTSHeritage Software?
What information is known about the people involved in the development? Is this
information relevant?
Is the support provided with the COTSIHeritage software acceptable? For example,
will the company be able to provide customer support if needed? At what cost and
freauencv?
What is the frequency that the company will be providing upgrades? At what cost?-
What is the impact of this upgrade to the license?
What kind of documentation is provided with the COTSlHeritage option?
What is the resDonse time for modifications to the software? Does this meet the
needs of the project?
By outsourcing software development, does the organization loose this core
competence?
What are the implications for the organization if the Project fails to meet its science
requirements, on time and within budget?
Does the contract with the software company serve the future needs of the
organization? In other words, are there strategic advantages to establishing
relationshiDs with outside comDanies?

Montreal, Canada - May 17 - 21 2004 9

SpaceOps 2004 - Conference

References
[I] Bennatan, E. M.: “On Time, Within Budget: Software Project Management Practices and
Techniques”, McGraw-Hill International (UK) Limited, Library of Congress Catalog Number 92-
14357,1992
[2] Bertoa, Manuel F., “Quality Attributes for COTS Components”, Department de Lenguajes y
Ciencias de la Computacion, 2002
[3] Brown, Alan W., et. al.: “A framework for Systematic Evaluation of Software Technologies”,
Software Engineering Institute, Carnegie Melon University, I EEE Software, September 1996
[4] Clarke, S.J.: “Selecting the correct tools and methods for software systems development”; The
Institution of Electrical Engineers; London, UK: 1995.
[5] Collier, K., et. al.: “A methodology for Evaluating and Selecting Data Mining Software”, 32”d
Hawaii International Conference on System Sciences, 1999.
[6] Dean, John C , et. al: ”COTS Software Evaluation Techniques”, National Research Council
Canada, Software Engineering Group, NRC Report #43625,1998
[7] Hansen, W. J.: “A Generic Process and Terminology for Evaluating COTS Software”, Software
Engineering Institute, Carnegie Melon University, 1999
[8] Hariri, S. , et. al.: “Software Tool Evaluation Methodology”, Northeast Parallel Architecture
Center (NPAC), IEEE, 1995.
[9] HRS/IS Office, “Build vs. Buy Considerations”, University of Texas, September 2001
(http://www . utexas.edu/hr/is/pubs/buy-v-build. html)
[IO] Kandt, R. K., et. al: “A Survey of Software Tools and Practices in Use at the Jet Propulsion
Laboratory”, SQI Report R-I, JPL Document D-24868, Oct. 2002.
[I I] Kitchenham, B., et. al.: “A methodology for evaluating software engineering methods and
tools”, Computing and Controlling Engineering Journal, June 1997.
[I21 Kohl, R. J., “COTS based systems: Benefits, Potential Risks, and Mitigation Techniques”,
Titan Systems Inc.
[I 31 Morgan, R., “Designing Deployed Systems with COTS”, Acme Embedded Solutions, Rick
Pacelle, Sky Computers Inc.
[I41 Morisio, M. et. al.: “IusWare: a methodology for the evaluation and selection of software
products”, IEE Proc.-Software Engineering, Vol. 144, No. 3, June 1997.
[I 51 Paulet, M. C.: “CAD Tool Evaluation: Methodology, Criteria, Benchmarks, and Results”,
Institute National Polytechnique de Grenobla, France, 1990.
[I61 Schneidewind, N.: “Methods from Assessing COTS Reliability, Maintainability, and
Availability”, U.S. Government, Naval Postgraduate School, 1999.
[I71 Sciortino, Michael Anton, “COTS, Open Source, and Custom Software: Which Path to
Follow”, October 2001, University of Buffalo
[I81 Seacord, Robert C., Kurt Wallnau, Scott Hissam. “Custom vs. Vendor Integrated COTS”,
Institute for Information Technology, National Research Council of Canada.
[I 91 Torchiano, M., et. al.: “COTS Products Characterization”, Department of Computer and
Information Science (IDI), SEKE ’02 July 15-19, 2002
[20] Vigder, M. R., http://wwwsel. iit.nrc.ca/projects/cots/COTSpg. html
[21] JPL Software Development Process Description, D-I 5378
[22] Engineer Mission Operations Systems, Rev. 1, D-57172

Interviews Referenced
[30] Number One - Software Implementation Manager
[3 11 Number Two - Ground System Manager
[32] Number Three - President of Software Development Company
[33] Number Four - Multi-mission Software Developer and Researcher
[34] Number Five - Multi-mission Manager
[35] Number Six - Multi-mission Software Development Manager
[36] Number Seven - Multi-mission Software Engineer
[37] Number Eight - Project Scientist
[38] Number Nine - Mission Operations Manager
[39] Number Ten - Division Software Development Manager

Montreal, Canada - May 17 - 21 2004 10

http://www
http://wwwsel

