
Intelligent Resource Discovery using Ontology-Based Resource Profiles

19th International CODATA Conference
7-10 November 2004, Berlin, Germany

J. Steven Hughes(1), Dan Crichton(1), Sean Kelly(1), Jerry Crichton(1), Thuy Tran(1)

(1)Jet Propulsion Laboratory
4800 Oak Grove Drive

Pasadena, California 91109
 USA

{steve.hughes@jpl.nasa.gov, dan.crichton@jpl.nasa.gov, sean.kelly@jpl.nasa.gov,
gerald.crichton@jpl.nasa.gov, thuy.tran@jpl.nasa.gov}

ABSTRACT

Successful resource discovery across heterogeneous repositories is strongly dependent on the semantic and
syntactic homogeneity of the associated resource descriptions. Ideally, resource descriptions are easily
extracted from pre-existing standardized sources, expressed using standard syntactic and semantic
structures, and managed and accessed within a distributed, flexible, and scaleable software framework. The
Object Oriented Data Technology task has developed a standard resource description scheme that can be
used across domains to describe any resource. It uses a small set of generally accepted, broad scope
descriptors while also providing a mechanism for the inclusion of domain specific descriptors. In addition
this standard description scheme can be used to capture hierarchical, relational, and recursive relationships
between resources. In this paper we will present a intelligent resource discovery framework that consists of
separate data and technology architectures, the standard resource description scheme, and illustrate the
concept using a case study.

INTRODUCTION

The Object Oriented Data Techonolgy task was funded in 1998 by NASA’s Office of Space Science to
develop a national software framework for sharing data across heterogeneous, distributed data repositories.
The resulting framework consists of separate but complementary data and software architectures that
enable data sharing across multiple science and engineering disciplines.

The software architecture provides reusable software components with common interfaces, allows new
components to be easily integrated into the framework, and provides a mechanism to wrap legacy data
system components with minimal impact. The complementary data architecture is domain dependent and
can be used either within a single domain or across different domains. Its effectiveness is primarily
dependent on the maturity of the data model provided for the target domains. The framework also supports
location independence in that the user describes what they want, not how or where to get what they want.
The framework can also be scaled to meet increases in the number of interconnected repositories.

As part of the data architecture, the design and development of a standard resource description has enabled
intelligent resource discovery across distributed heterogeneous resource repositories. This paper focuses on
this capability and describes the data architecture, summarizes the supporting technology architecture, and
provides an example case study.

DATA ARCHITECTURE

Architecture is a term applied to both the process and the outcome of thinking out and specifying the
overall structure, logical components, and the logical interrelationships of a computer system. We define
data architecture to be the application of this concept to the data components involved in a computer
system.

A key assumption in the development of a data architecture is that the data components to some degree
model a specific problem domain. For example, in the space science domain, an image collected by a
spacecraft instrument is modeled as a 2-dimensional structure of lines and line_samples that was collected
within a context defined by the states of the instrument and spacecraft at the time the image was collected.
To capture this model and specify the overall structure, logical components, and logical interrelationships
within the domain, we need a formal mechanism. For this discussion we will focus on ontologies.

An ontology is a set of concepts - such as things, events, and relations - that are specified in some way in
order to create an agreed-upon vocabulary for exchanging information within a domain. Historically there
are many methodologies for defining and collecting various aspects of domain concepts into a domain
model. For example the Entity-Relationship (E-R) model is a widely accepted data modeling technique that
focuses on the definition of domain entities and their relationships. It defines an entity as something that
exists either in concept or in actuality. Entities are defined using properties, often called attributes, and
relationships that relate two or more entities. Subsequently an E-R model is typically used to implement a
database application using a specific record level methodology such as the Relational Model. Other
methodologies involve the creation of taxonomies and controlled vocabularies. For this discussion we
assert that ontologies subsume the domain concept information collected by any of these methodologies,
specifically that which is necessary for intelligent resource discovery. However in the following we will
often use familiar technique such as the E-R model in explaining specific aspects of a domain model. In
addition, an ontology allows the creation of a knowledge base through the ingestion of instances of the
domain concepts being described. A knowledge base is an important extension since it allows a more
complete description of the domain, helps validate the model or schema, can be used to develop domain
classifiers that classify new instances, as well as supporting more advance search.

As examples, the image, instrument, and spacecraft mentioned earlier are all considered entities in the
space science domain. The image entity is defined using attributes that describe its logical structure, namely
the 2-d structure of lines and line_samples and attributes that describe the context within which the image
was collected, such as instrument_id, filter_name, and exposure_duration. The spacecraft and instrument
entities also help provide context through their relationship to the image entity. For example the
filter_name and exposure_duration are actually attributes of the instrument but are associated with the
image through the relationship “<instrument> produces <image>” in the data model.

DATA DICTIONARY

A data dictionary or controlled vocabulary is a basic component of a data architecture and is the key
mechanism for defining entity attributes. It is a list of terms, their definitions, permissible values, and other
characteristics that together are called a data element. For example, the attribute exposure_duration
mentioned earlier is a data element in the planetary science data dictionary and is defined as the period of
time over which data is collected by an instrument. It takes on a floating point value and is measured in
units of milliseconds.

At the element level, special attributes are needed to define data elements. These attributes address such
characteristics as the “name”, “definition”, and “permissible values” of an element. Also called meta-
attributes, these attributes are used to formally collect element attributes and create a domain data
dictionary.

As part of the information architecture, we have chosen the ISO/IEC 11179 standard framework for the
specification and standardization of data elements [6]. It provides an accepted base set of attributes needed

to describe data elements. As an international standard it also provides a global basis for data element
definition and classification and supports data dictionary interoperability. The specification classifies the
base set of attributes into four categories namely identifying, definitional, representational, and
administrative as briefly summarized in Figures 1 and 2.

Figure 1 - ISO/IEC 11179 Attributes

Figure 2 - ISO/IEC 11179 Attributes (cont)

The “identifying” category is used for the identification of a data element. For example, exposure_duration
would be the value of the attribute “name”. The “definitional” category is used to describe the semantic
aspects of a data element and consists of a textual description that communicates knowledge about the data
element that typically is not captured by any of the basic attributes. The “relational” category describes
associations among data elements and/or associations between data elements and classification schemes,
data element concepts, objects, or entities. For example relating exposure_duration to an instrument entity
provides critical information about how exposure_duration is to be interpreted. The “representational”
category describes representational aspects of data element such the list of permissible data values and their
type. For example, exposure_duration would be typed as floating point. Finally the “administrative”
category provides management and control information.

COMMON DATA ELEMENTS

With the advent of the web and the resulting explosion of electronic resources available for online access,
there was a compelling need for standard attributes for electronic resources. Since the information
contained in these electronic resources span the breadth of human knowledge, the set of standard attributes
that span all electronic resources would be necessarily limited in number and each attribute would be very
broad in scope.

The Dublin Core initiative specifically addressed this issue and developed the 15 data elements or attributes
briefly summarized in Figure 3 below. They were defined using the ISO/IEC 11179 framework and their
complete definitions are available on the web.

Figure 3 - Dublin Core Elements

As mentioned previously, the Dublin Core (DC) attributes are by definition very general and when used as
search constraints do not always produce precise results. They were developed as common attributes to
describe Internet electronic resources across all possible domains and this generality limits their ability to
partition the search space into easily managed subsets. For example a search for electronic resources that
have a Format of value “image/jpeg” will typically result in a large number of images from almost any
repository. The addition of additional DC attributes as search constraints help to further partition the search
space, however their effectiveness is strongly dependent on the mapping of DC attributes to the specific
domains and the adherence to this mapping during repository ingestion. The solution to this problem as
suggested by the DC Subject attribute is the addition of concepts from the specific domains. This
presupposes the existence of domain models at least in the form of taxonomies if not complete domain
ontologies.

The existence of a domain model, say at the level of an E-R diagram, works well for resource discovery in
the simple cases where only a few resource types exist. For example, the search for specific images from
among the approximately 49,000 Viking images of the planet Mars is easily accomplished by designing a
relational table for the Viking image attributes and loading 49,000 records. However, other Mars missions
such as Mars Global Surveyor, Mars Odyssey, and the Mars rover missions, are providing thousands more
Mars images that should be available for searching in a single session. In all cases however, additional
image attributes have been added to capture new information that was not available in prior missions.
Traditional design approaches suggest that either separate mission databases be created or that single
database be created that spanned all missions. The former results in additional management overhead while
the second results in a database that is sparsely populated. In reality, missions to Mars will continue and in
fact, several thousand product types exist in the planetary science archive. Neither approach is a general
solution for the simple or correlative search across the entire archive. The solution to this problem is a
single resource description sufficient for describing all resource types. In the following we will describe
this resource description and describe efforts to implement a search capability based on this construct.

GENERALIZED RESOURCE DESCRIPTION – RESOURCE PROFILE

In the data architecture, an electronic resource will be described by a profile, an XML document that uses
both domain specific attributes and the Dublin Core attributes to concisely define a resource. A profile has
three sections: the profile attributes, the resource attributes, and domain specific attributes called the profile
element section. The first section, the profile attributes, simply describe the profile using attributes such as
identifier, type, and status. The identifier attribute is typically implementation dependent and could be an
Object Identifier (OID), Universal Resource Identifier (URI), or sequence numbers. The type attribute is
typically ‘profile’ but ‘data dictionary’ has been used when the XML document was used to simply capture
data element information.

The second section, the resource attributes, generically describes the resource using the Dublin Core (DC)
attribute set. All DC attributes are allowed but only Identifier is required. For the data architecture, three
additional resource attributes have been added to identify the resource's local domain (resContext),
classification (resClass) , and location (resLocation). The valid values assigned to the DC attributes are
typically taken from selected domain specific attributes. For example, the DC attribute Title, a “label” for
the resource, could take values from a domain specific resource identifier.

Finally, the profile element section encodes domain specific attributes associated with the resource. These
attributes are extracted from a formal domain data model. The XML DTD for the profile is provided in
Figure 4 below.

Figure 4 - Profile Schema - DTD

For example, if a profile were used to describe the planetary science image mentioned above, the profile
element section would encode the attribute names, instrument_id, filter_name, and exposure_duration, and
their values to ensure a precise characterization of the image. Figure 5 below illustrates this concept.

Figure 5 - Data Product Profile - Example

TECHNOLOGY ARCHITECTURE

The Object Oriented Data Technology (OODT) framework that supports the data architecture previously
described consists of a set of cooperating, distributed peer software components. The major components of
the OODT framework implement a metadata (profile) and data (product) model using profile servers and
product servers. In addition, a query service directs queries by traversing a network of connected profile
and product servers, providing the veneer of a peer-to-peer network. The distributed services provide for
the location and description of resources (profile queries) and retrieval of resources (product queries)
leveraging the profile metadata model. In the following we briefly describe the OODT framework. A detail
description of the framework is provided in [1, 2, 3, 4].

DISTRIBUTED FRAMEWORK COMMUNICATION

OODT is a distributed system, wherein components may be dispersed geographically across a standard
TCP/IP network, such as the Internet. Connectivity between components utilizes a standards based
distributed systems implementation such as Java Remote Method Invocation (RMI) or the Internet Inter-
ORB Protocol (IIOP) for CORBA-based communication.

The OODT components support plug-ins that extends the implementation by performing the work of
querying both the metadata catalogs and the data repositories themselves. In this way, the OODT software
is a framework in that application programmers extend and implement prescribed software objects and
interfaces that directly integrate into the framework. This is in contrast to normal software implementation
efforts that may not specify ubiquitous interfaces. More work necessarily falls upon the developers of the
framework to support the prescriptive interfaces.

OODT's framework provides three major components:

• Profile servers serve scientific metadata and can tell whether a particular resource can provide an
answer to a query.

• Product servers serve data products in a system-independent format.

• Query servers accept profile and product queries and traverse the network of profile and product

servers, collecting results. It is possible to access the query service through direct interfaces with
the distributed computing interfaces (such as RMI and CORBA invocations), or through an HTTP
interface.

As described earlier, profiles are metadata descriptions of resources; that is, they "profile" a resource by
describing its inception and composition using the common data elements of the data architecture. Profile
servers enable discovery of resources by providing the ability to search resource collections. Profile servers
answer the question, "Where can I go to find out about X?"

A profile server's primary responsibility is to provide a way to run a query against the server's set of
profiles. Although users may access a profile server directly via its remote interface, it is far more common
for queries to enter the system through the query server, which directs them transparently to and along
graphs of appropriate profile servers (when a profile describes another profile server).

Upon receiving a query, the profile server's backend interprets the query passed in a way appropriate to the
implementation. For example, a backend that stores information in a relational database may convert parts
of the query into a database SQL query. For each matching profile, the backend constructs a list of
matching profiles and returns them.

Product Servers

Product servers exist to provide a way to retrieve specific data products. Product servers accept the same
query structure as profile servers, but instead of returning a list of matching profiles, they return matching
products. Data products in this sense can be individual data granules, datasets, or collections of datasets,
depending on the backend implementation in the product server and the way it handles queries and results.

When constructing a query, the user may indicate preferred MIME types. For example, a user wanting PNG
images may list image/png as the only acceptable MIME type. A user preferring PNG images but willing to
have JPEG images would list image/png, image/jpeg in that order. A user preferring PNG images but
willing to accept any image type would list image/png, image/*. If the user doesn't specify a MIME type
when creating the query, the software generates a default list of acceptable MIME types, namely */*,
meaning that any type is acceptable. Sophisticated product servers can convert between data types. One
mechanism for handling interoperability of legacy data systems is to deploy product servers that convert

between file formats that are native to the local data system and the common data formats supported by the
larger data grid system.

Query Servers

Query servers manage queries across distributed resources and are the point of entry into an OODT
framework installation. Query servers contain the algorithms necessary to traverse the logical P2P model,
executing queries at appropriate servers and gathering results. Query servers also simplify the interaction
with the user, who is freed from the knowledge of accessing the remote interfaces of profile servers and
product servers. Users instead call upon a query server for all profile and product interaction.
The OODT implementation supports several different interfaces to the query service to ensure that it
supports both cross platform and cross language interoperability. This includes not only interfaces for
programming languages such as Java, but interfaces using the web standard HTTP.

The OODT framework components in a network architecture are illustrated in Figure 6 below.

Figure 6 - Framework Component Architecture

CASE STUDY – NASA’S PLANETARY DATA SYSTEM

The Planetary Data System (PDS) is the official science data archive for NASAs planetary science
community. As such, it contains several terabytes of data collected from over thirty years of solar system
exploration. At its inception in the late 1980’s, the PDS developed an ontology that guides the capture of
the information necessary to describe the data and ensure that the data remain scientifically useful for
future scientists. Collected and validated using the ontology, this information and the science data was
submitted to peer review and then distributed to funded scientists in the planetary science community on
CD and DVD media.

The combination of several factors including the advent of the Internet, requests to support correlative
search across instruments, and huge increases in the volume of data returned from missions necessitated the
development of an online system that supports search and retrieval of data products from across the
distributed heterogeneous data repositories of the PDS. In October of 2002, the PDS released the first
version of its online distribution system in support the 2001 Mars Odyssey mission. Using the OODT
framework and product servers at each distributed data repository, data products were available to planetary
scientists as soon as they were released from the mission. The distribution system has since been
augmented to include the majority of all data products in the PDS archive. The current system implements
a two level search. First the set of collections of products (data sets) is searched, and then products within
the collection are searched. Development is now focused on global product level search capability using a
hierarchy of OODT resource profiles and profile servers.

The key to the success of the PDS search capability is the fact that each data product in the archive has a
header that provides identification, descriptive, and contextual information. This information has been
validated against the PDS data model and relates data products to the other entities of the model such as
targets, instruments, spacecraft, and missions. In other words, the data product headers contain the
information necessary to support data product search.

The global product search capability is designed to have a single point-of-entry interface and a search scope
that encompasses the entire geographically distributed PDS archive and its thousands of product types and
millions of data products. To implement this search, a hierarchy of resource profiles has been designed. At
the leaf nodes of the hierarchy, each data product is represented by a single resource profile created from
data product labels. For example, Figure 5 above illustrated a portion of a profile for a Galileo, Solid State
Imaging System (SSI) image product where the domain attributes, target_name, filter_name, and
exposure_duration have been encoded into the profile elements section. The resource attributes Identifier
and Title have been set to the value of the concatenated domain attributes data_set_id and image_id, and
the profile Identifier has been set to a unique object id, generated by the system.

All data products collected within a single data set are represented by a single product type and therefore
have the same set of data elements in their product headers. This allows for the creation of data set profiles
by aggregating the leaf node data product profiles. For the PDS this results in several thousand data set or
level two profiles. (For this discussion we assume that data sets have only one product type. However this
is not actually the case with many data sets having multiple product types.) The permissible value allowed
the data elements are summarized as in a data dictionary. For example, a range of values bounded by
minimum and maximum values is used for numeric valued data elements such as exposure_duration. Data
elements with discrete values such as target_name are typically enumerated. Figure 7 below illustrates a
portion of the Galileo image data set profile that contains the imaging data product mentioned above.

Figure 7 - Data Set Profile Example

Data set profiles are in turn aggregated to create higher level profiles. This process continues until a single
all-inclusive root profile is generated. This root profile is the starting point for searches initiated from the
single-point of entry user interface. The root profile in Figure 8 below illustrates values for target_name
and instrument_id taken from data sets in addition to the Galileo image data set.

Figure 8 - Root Profile Example

Each resource profile includes a resource location that provides a link to the resource. A resource location
in a data product profile will typically provide a URI for a data product, typically a link to a data product
server that will retrieve the product when invoked. A resource location for a data set profile provides a link
to the profile server that serves the associated data product profiles. Similarly all higher level aggregated
profiles provide links to profile servers that serve their associated lower level profiles. For the initial PDS
prototype, the root profile and all data set profiles are managed by a single profile server of profile servers.
Product level profile servers are managed by a two or three product level profile servers. These were
configured based on performance and maintenance requirements.

This hierarchy of profiles provides a map of all profile servers and product servers in the framework and
characterizes each server in terms of the attributes that it can handle. For example, a query presented
through the single-point-of-entry interface is first handled by the root profile server. The root profile server

finds all resource profiles that match the query constraints and returns them to the interface client. The
client is then able to determine where to broadcast the original query to continue the search. Ultimately data
product profiles are returned allowing the client to decide what products should be retrieved based on a
perusal of the data product information in the profiles.

This hierarchy of profiles also provides a means to create dynamic user interfaces. For example, the root
profile provides the information necessary to create a single-point-of-entry interface since all global data
elements and their value ranges or enumerated values are provided. This root interface is presented to the
user and the user selects one or more attributes as query constraints. The user then has the option of either
having the system return all matching profiles or the user can request that the system refine the interface
based on the matching profiles. In the latter case, the user can iteratively refine the interface until sufficient
attributes have been identified to constrain the query. Ultimately the user is provided with data product
profiles.

For example, the root profile for the PDS archive contains Galileo as a value of Mission_Name. The
selection of “Galileo” in the root interface would match on all Galileo data set profiles in the root profile
server. If the user had asked for a refinement of the user interface, the resulting interface would include the
Galileo image attribute Filter_Name and its permissible values, including RED. A subsequent selection of
RED for Filter_Name and a request to return all profiles would return all Galileo imaging data products that
were taken through the RED filter.

CONCLUSION

The Object Oriented Data Technology (OODT) task has developed a standard resource description scheme
that can be used across domains to describe any resource. It uses a small set of generally accepted, broad
scope descriptors while also providing a mechanism for the inclusion of domain specific descriptors. The
use of this resource description scheme in an OODT technology framework of profile and product servers
provides a powerful, flexible, and scaleable resource discovery capability across distributed resource
repositories. Intelligent resource discovery is provided by the addition of domain ontologies and
semantically homogeneous resource descriptions. The Planetary Data System (PDS) has been able to
implement intelligent resource discovery across its distributed data repositories and its thousands of data
product types and millions of individual data products.

REFERENCES

[1] Crichton D, Hughes, J.S., Kelly, S. A Science Data System Architecture for Information Retrieval.
Clustering and Information Retrieval. Kluwer Academic Publishers. June 2003. - Book Chapter on
OODT

[2] Crichton D, Hughes, J.S., Kelly, S, Rameriz, P. A Component Framework Supporting Peer Services
for Space Data Management. 2002 IEEE Aerospace Conference. Big Sky, Montana. March 2002.

[3] Crichton D, Downing G, Hughes J. S, Kincaid H, Srivistava S. An Interoperable Data Architecture for
Data Exchange in a Biomedical Research Network. 14th IEEE Symposium on Computer-Based Medical
Systems. July 2001.

[4] Crichton, D., Hughes J. S, Kelly S, Hyon J. Science Search and Retrieval using XML. Second
National Conference on Scientific and Technical Data, Washington D.C., National Academy of Sciences.
March 2000.

[5] DCMI, "Dublin Core Metadata Element Set, Version 1.1: Reference Description," Dublin Core
Metadata Initiative, 1999.

[6] ISO/IEC, "Framework for the Specification and Standardization of Data Elements 11179-1,"
Specification and Standardization of Data Elements 11179, International Organization for Standardization,
Geneva, 1999.

