
 1

Infusing Software Assurance Research Techniques
into Use

Thomas Pressburger

NASA Ames Research Center
Moffett Field, CA 94303

650-604-4878
Tom.Pressburger@nasa.gov

Ben Di Vito
NASA Langley Research Center

Hampton, VA 23681
757-864-4833

B.DiVito@nasa.gov

Martin S. Feather
California Institute of Technology

4800 Oak Grove Dr
Pasadena, CA 91109

818-354-1194
Martin.S.Feather@jpl.jnasa.gov

Michael Hinchey
NASA Goddard Space Flight

Center
Greenbelt, MD 20771

301-286-9057
Michael.G.Hinchey@nasa.gov

Lawrence Markosian
QSS Group, Inc.

NASA Ames Research Center
Moffett Field, CA 94035

650-604-6207
lzmarkosian@email.arc.nasa.gov

Luis C. Trevino
2L Research Corp.

Huntsville, AL
256-509-0196

Trevino@hiwaay.net

Abstract1,2,3— Research in the software engineering
community continues to lead to new development
techniques that encompass processes, methods and
tools. However, a number of obstacles impede their
infusion into software development practices. These
are the recurring obstacles common to many forms of
research. Practitioners cannot readily identify the
emerging techniques that may benefit them, and
cannot afford to risk time and effort evaluating and
trying one out while there remains uncertainty about
whether it will work for them. Researchers cannot
readily identify the practitioners whose problems
would be amenable to their techniques, and, lacking
feedback from practical applications, are hard-
pressed to gauge the where and in what ways to
evolve their techniques to make them more likely to
be successful. This paper describes an ongoing effort
conducted by a software engineering research
infusion team established by NASA’s Software
Engineering Initiative to overcome these obstacles.

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. INFORMATION GATHERING 2
3. INFORMATION DISSEMINATION............................ 4
4. BROKERING COLLABORATIONS............................ 5
5. COLLABORATIONS 2004 - 2005 6
6. EXTRACTING LESSONS LEARNED 7

1
 0-7803-9546-8/06/$20.00© 2006 IEEE

2
 IEEE Aerospace Conference paper #1506, V-1, Sep 26, 2005

3
 Luis Trevino contributed to this work while at NASA Marshall

Space Flight Center

7. DISCUSSION AND CONCLUSIONS........................... 7
ACKNOWLEDGEMENTS... 8
REFERENCES... 8
BIOGRAPHY... 9

1. INTRODUCTION

Technology infusion – the maturation and transfer of
research results into practical use – has long been a
desirable yet challenging goal [1]. NASA, like many
organizations, can benefit from successful technology
infusion. However, technology infusion is often
difficult. [2] outlines some of the obstacles to
technology infusion within NASA’s setting, and
proposes some remedies, using microelectronics
technologies as examples.

Software engineering is a technology area that is
subject to these infusion obstacles. [3] observed this a
decade ago (also in a NASA setting). Recognition of
the growing prominence of software within the
development and operation of NASA spacecraft has
led to the establishment of the NASA Software
Working Group, the purpose of which is:

 “...to develop and oversee the formulation and
implementation of an Agency wide plan to work
toward continuous, sustained software
engineering process and produce improvements
in NASA; and to ensure appropriate visibility of
software issues within the Agency”
[http://software.nasa.gov/about/index.cfm].

 2

One of the strategies of this group is to “Improve
NASA’s software engineering practices through
research”.

This paper is authored by recent and current members
of the team responsible for conducting this strategy, a
key element of which is to “Implement and transfer
mature software engineering research results and new
technologies to operational use within NASA”. The
infusion team’s approach to this is the focus herein.

Obstacles to software engineering infusion

There are many obstacles to software engineering
technology infusion, such as the gap between
researchers’ and practitioners’ concepts of adequate
maturity; inadequacy of the NASA Technology
Readiness Level (TRL) scale for quantifying the size
of this gap; the risk-averse nature of the software
developers; and the differing motivation structures
for researchers and developers. Rarely are there
return-on-investment (RoI) models, competitive
analyses or other evidence to show a research
product’s value in specific development
environments. There are many software engineering
research products and it’s difficult for practitioners to
identify, evaluate and track those that may be
appropriate for them. The practitioner community is
also somewhat fragmented, with many contractors—
who develop the majority of NASA-funded
software—unaware of NASA-funded software
engineering research.

The net result of these obstacles is a low rate of
infusion of software engineering research results into
software development practice. Many research efforts
culminate in pilot studies that show promise, but
thereafter the technique goes unused, and the
researcher switches attention to another avenue of
research.

Our approach to overcoming these obstacles

The paper is organized into the following sections
explaining the approach that our team follows to try
to overcome these obstacles to research infusion.

Section 2, Information Gathering: We identify and
assess software engineering research that is of
relevance to NASA’s software development
activities. Included in this is research performed both
within and outside of NASA.

Section 3, Information Dissemination: We identify
the channels to reach the NASA software
practitioners who might benefit from the research

techniques. We use these channels to publicize the
research techniques among NASA and its
contractors’ software development teams.

Section 4, Brokering Collaborations: We identify and
encourage promising collaborations between
researchers and NASA software engineering
practitioners. This is helped by the availability of
funds specifically devoted to support such
collaborations. Our infusion team helps recommend
the allocation of this funding to worthy
collaborations.

Section 5, Collaborations 2004-2005: We summarize
the research collaborations conducted to date.

Section 6: Extracting Lessons Learned: Our team
tracks the progress of the funded collaborations, and
extracts lessons learned from the aggregation of these
experiences. These lessons learned help identify
challenges to and success factors for technology
transfer in NASA, and help refine our team’s
approach.

2. INFORMATION GATHERING

Our information gathering efforts aim to identify
software engineering research taking place that is
relevant to NASA’s software development activities.
Since our effort was chartered in 2002, we have
considered both research performed within NASA,
research from outside NASA, and commercial
products. Our team consists of members of the
software engineering research community from
several of the NASA centers and JPL. Their
experience and activity within the software
engineering milieu give the team a broad awareness
of ongoing developments in that arena.

To do this across the entire field of software
engineering and the entire range of NASA software
development needs would be a large-scale task.
However, the team’s members spend only part of
their time on research infusion; overall, for each of
the last three years, our team members’ efforts have
totaled to approximately 1.5 full-time-equivalents per
year. Thus coverage of the entire field of software
engineering is significantly beyond our scope.
Instead, we have narrowed our focus to software
engineering research results that:

(1) Have particular relevance to software assurance.

(2) Can be incorporated into existing software
development practices with a minimum of
disruption.

 3

(3) Are mid- to high-TRL (Technology Readiness
Level) research, demonstrating success on a real
project, and ready for use more or less as-is.

(4) Are NASA-funded or related technologies or
have been suggested by software developers.

We discuss each of these in more detail:

Software assurance focus

We focus on software engineering techniques that
have particular relevance to software assurance. This
choice of focus is driven by two factors: availability
of funding to support collaboration studies in this
area, and the nature of NASA’s software challenges.
We have been able to support collaborations with
funding provided by NASA’s Software Assurance
Research Program4. As its name suggests, it has a
focus on assurance-related techniques, and is a source
of promising research results. NASA’s missions
impose a particularly stringent need for reliable
software, coupled with very limited opportunity to
field-test such software in advance, as a result of
which everyday software assurance practices are not
necessarily sufficient–hence the impetus within
NASA to conduct and infuse research in this area.

Evolutionary not revolutionary

We limit our attention to research techniques that can
be incorporated with a minimum of disruption into
existing software development practices. For
example, we include methods that improve the
effectiveness of reviews, inspections, code
walkthroughs and the like – these are practices
generally part of current software development
practice at NASA. By way of contrast, we exclude
from our consideration research techniques that
would require a radical shift in existing practices
(e.g., a formal methods approach that requires formal
specification of the entire software system, or a new
programming language that is incompatible with
existing platforms and personnel skills). Our narrow
focus is motivated by the modest level of effort we
are able to bring to bear on research infusion, and
should not be construed as a lack of interest by
NASA in other software engineering research.
Indeed, formal methods continues to be studied
within NASA—for example, the Robust Software
Engineering Group, headed by Michael Lowry at
NASA Ames Research Center (see
http://ti.arc.nasa.gov/ase/index.html) ; the JPL
Laboratory for Reliable Software, headed by Gerard
Holzmann (see http://eis.jpl.nasa.gov/lars/); the

4
 http://www.ivv.nasa.gov/forresearchers/osmasarp/osmasarp.php

Langley Formal Methods group, headed by Ricky
Butler (see http://ti.arc.nasa.gov/ase/index.html),
Goddard Space Flight Center's Software Engineering
Laboratory, headed by Michael Hinchey (see
http://sel.gsfc.nasa.gov/).

Our team uses the following criteria to assess
prospective techniques. Each technique is ranked
qualitatively (High, Medium, Low, or Unknown)
against the each of the criteria:

a) What is the range of applicability to NASA
projects?

b) Is this an enabler for software that would
otherwise be infeasible to develop without this
research product?

c) What is the expected improvement in
productivity over current techniques?

d) What is the projected cost of installing and
applying the research product?

e) What is the risk of failure for technical reasons?

f) How easily can the research product(s) be
integrated into a software development project?

g) How much training is required to use the
research product?

h) Does the research product depend on widespread
utilization within the project/mission/enterprise
to fulfill its potential?

i) Does the research product have a good user
interface (both for input and output)?

j) Is the research product’s development
organization (or some other organization) able to
provide the required level of support to users of
the product?

k) Is the value of the research product clearly
apparent to the users during (or shortly after) its
application?

l) Is anything about the research product likely to
cause resistance among users?

Mid- to High-TRL level

We also limit our attention to just mid- to high-TRL
(Technology Readiness Level) [4] research products.
We use a definition of TRL specialized to software
engineering, and look for techniques that are TRL 6
or higher on this scale. The key maturity
requirements are that the research products have been
applied to real—usually NASA--problems, and are
ready for use as-is (or nearly so–for example, we
anticipate that the technology providers may well
need to assist the practitioners make use of their
products in lieu of there being a complete set of user
manuals, training materials, etc). Again, this focus is

 4

dictated by our modest level of effort (we cannot
afford the time to look at everything), coupled with
the nature of the funding to support collaborations
(which is in modest amounts, sufficient to fund a
collaboration study, but not sufficient to support
further research). We also consider leading edge
COTS tools, for example, those whose development
has been funded in part by NASA or other
government agencies to address software
development issues similar to NASA’s.

The combination of these factors that narrow our
focus make our task feasible within the level of effort
available to us. They also help circumvent some of
the concerns that have been expressed (e.g., [5], [6])
on relying solely on TRL measures as a means to
assess readiness for technology infusion. For example
(from [5]): “...TRLs leave out such considerations as
the degree to which the technology is critical to the
overall success of the systems...”; our assessment’s
questions such as “b) Is this an enabler...” and “c)
What is the expected improvement...” address this
issue.

3. INFORMATION DISSEMINATION

The next step in software research infusion is to
disseminate information about those research
techniques to potential beneficiaries – NASA
software practitioners. We follow both passive and
active means to disseminate information. Passive
means are based on web pages that make information
available to whoever cares to read it. Active means
include following specific pathways that lead to
identification of likely practitioners, personal
contacts, and annual NASA-wide videoconferences.

Passive dissemination of information

Information on the research techniques that we have
identified is posted at the research infusion web site,
http://ti.arc.nasa.gov/researchinfusion .

The research product descriptions are organized into
levels of increasing detail: groupings of techniques
by life cycle activity (for example, requirements
specification and analysis), one-page summaries,
three page summaries, and pointers to more extensive
material, typically technical papers that the
researchers have posted on their own websites. The
intent is to help guide the reader to efficiently home
in on the techniques that are likely be a good match.
Furthermore, the 1- and 3-page summaries uniformly
address what the research product is (for example, a
tool to detect coding defects without runtime testing),
the product’s features, its benefits, the successes it’s

had (where appropriate, focusing on NASA
applications), the contexts in which it is best applied,
a comparison with alternative products, and a brief
discussion of how a successful collaboration should
be structured from the perspective of the technology
provider.

These are publicly accessible web pages, and so may
be located by practitioners within NASA and its
contractors by search, or by following links to these
pages from various other NASA web pages (for
example, the NASA Software Working Group’s
pages).

Active dissemination of information

Our team members have contacts with NASA
software practitioners at their respective centers and
with contractors as well. Presumably other NASA
software engineering researchers have similar
contacts with software practitioners, and might be
expected to pursue these to locate likely would-be
users of their own techniques, and to serendipitously
make connections between practitioners and other
research of which they are aware. Our infusion team,
through its involvement in gathering information on
suitable techniques, has at its fingertips deeper and
broader knowledge of those techniques, and so is
better able to recognize potential connections. In
addition, specific site visits have been conducted to
NASA Centers and contractors.

In addition, we have used the NASA Software
Working Group (SWG) to spread awareness of its
research technologies. The SWG is composed of
members from each of the NASA centers, and is in
close contact with Software Engineering Process
Groups at the centers. This is the kind of channel that
few of the NASA software engineering researchers
(and even fewer of the non-NASA software
engineering researchers) are aware of.

Finally, we hold annual NASA-wide video
teleconferences in which we describe the research
infusion effort, highlight a crop of promising
techniques, and announce a “call for collaboration
proposals” (more on this item in the next section).
These are aimed at the NASA software practitioner
community. Announcements of these are spread
through our aforementioned channels, and via various
bulletin boards and e-mail lists. Attendance is
voluntary, and must therefore compete with the many
other demands on software practitioners’ time. Thus
there is some “self-filtering” by the attendees
themselves, to the people who are more likely to be
interested/curious/driven to seek improvements, and

 5

hence representative of “early adopters” of new
ideas. We follow up on their attendance to get their
feedback on their level of interest in the showcased
technologies, suggestions for new technologies, and
software development issues of particular interest.
Interested software developers who can’t attend the
video teleconferences can access online videos;
DVDs are also available.

Advantages of our approach

Our efforts serve to increase practitioners’ awareness
of emerging research techniques. The main advantage
our approach has over the status quo derives from our
widespread awareness within the research and
practitioner communities, and active engagement as
brokers between these two communities. In the
normal course of events software practitioners have
little time to spare to peruse the software research
literature, attend research conferences, etc. Similarly,
the software researchers themselves are focused
primarily on performing their research and keeping
abreast of developments at the cutting-edge of
research within their fields, and have little time to
spare to extensively search for practitioners who
would be potential users of their results. While
researchers often base their studies on practitioner
problems, and may be involved in pilot studies with
practitioners, they are generally limited to their small
circle of immediate contacts. Thus we are well-
placed to recognize fruitful connections that would
otherwise go overlooked.

4. BROKERING COLLABORATIONS

On some occasions the connections we identified
have been the springboard for immediate adoption of
research techniques by practitioners. More
commonly, however, merely making the connection
is insufficient. Barriers remain that impede the
adoption of a research technique. On the software
practitioner side, the technique is often insufficiently
mature to be a guaranteed match with their needs. In
other words, practitioners should not, and will not,
assume successful use of the technique as part of
their critical development path. Furthermore, they are
reluctant to devote their (very limited) time and effort
to trying the technique. On the researcher side,
typical research grants will cover the research itself
of course, and perhaps a pilot study of its application
(usually performed by the researchers themselves on
representative data). However, they stop short of
funding further maturation of the technique that
would be more indicative of its usability (e.g., case
studies where someone other than the researchers
themselves apply the technique) and that would

prepare it for third-party use (e.g., a well-rounded
user interface, training material). To address these
concerns our approach has utilized a pool of funding
allocated specifically to support deployment of
research techniques on projects. A primary goal is
that a successful funded collaboration will lead to
adoption of the technique by the software
development organization.

Practitioner-led funding proposals

The research infusion team conducts an annual call
for research collaboration proposals, distributing
word of this through the channels discussed in
section 4.

Proposals for such funding must be submitted by a
software practitioner (not the technology provider),
and must be for application of the technique to actual
project use (not for further research).

Unlike other research programs, Research Infusion
optimizes the likelihood of a successful collaboration
by communicating with each proposal team
(wherever possible) prior to the proposal due date to
ensure, initially, that there is a good match of
technique and requirements, that the proposed
collaboration is well-designed, and finally that the
nominal outcome of the project will be a success by
our standards (see “Success Criteria and Progress
Metrics” below).

Proposal Selection criteria & process

Research Infusion established the following
evaluation criteria for submitted proposals. The
proposal template includes sections crafted to gather
information on each of these criteria:

a) Feasibility: Is the proposed collaboration
feasible? Are the skills of the participants
relevant, the funding adequate, the management
plan sound?

b) Impact on NASA: What will be the impact on
NASA? Is the technique being applied to an
important project?

c) Likelihood that, if successful, the technique will
be adopted as part of the development team’s
practice: What is the likelihood that the
technique, if successful in the proposed
collaboration, will be adopted as part of the
development team’s practice?

d) Adequate feedback provided to researchers: Is
adequate feedback provided to the researchers
during the collaboration? For example, bugs,
metrics data, final report.

 6

e) Good use of NASA funds: Is the proposed
collaboration a good use of NASA funds? The
proposal’s budget section addresses this question
directly by stating how the funds will be used.
We also ask that the proposer indicate what the
impact will be on the development project if the
proposal is not implemented.

When a collaboration proposal is received, each
member of the Research Infusion team individually
evaluates the proposal on each criterion (1 – 5 points
for each criterion) and provided comments. These
evaluations are then reviewed in a team meeting. In
contrast to common proposal evaluation process, the
team develops questions for the proposal teams and
contacts them to obtain informal clarifications or
even proposal revisions. The research infusion team’s
purpose in the extended communication is to enhance
the proposed collaborations’ prospects for success.
The final group ranking, recommended funding level,
and rationale is provided to the Software Assurance
Research Program, which makes the final funding
decisions.

Collaboration management

Following awards, we oversee the collaborations to
ensure that practitioners and researchers are
communicating, planning, and working toward their
goals, keeping in mind the success criteria, and to
report to the Research Infusion team lead the project
status and particularly any issues, as they arise, that
threaten success. Oversight requires facilitation of
communication and feedback to both practitioners
and researchers. This includes obtaining the
researchers’ perspective on the collaboration team’s
performance. The oversight team is familiar with
other applications of the same or similar research,
and has experience in evaluating software
engineering research and its applications. The
oversight team ensures collaboration start-up—
transfer of funds, project planning, training, etc.;
evaluates and advises on experiment design and
identifies other NASA sources for assistance for the
collaboration – for example, individuals who have
some experience with the technique; advises on
defining collaboration-specific success criteria as
well as the overall research Infusion success criteria;
helps track success criteria.

Success Criteria and Progress Metrics

Our primary success criterion is that the research
products used in the collaborations are adopted for
future software development by the teams (or
organization). However, this is unrealistic for mid
TRL-level research products that may lack
productization, and it may be unrealistic for high

TRL or even for commercial products (for example,
the license fee may be too high for a single team to
bear). Thus we have identified several
complementary success criteria:

a. The success criteria of the collaboration projects
funded under this proposal are met. This includes
a positive rating for each product on the
collaboration’s evaluation criteria metric(s).

b. The research product is adopted by the
collaborating software development team for
current use.

c. The research product is included in a list of
recommended development practices at a NASA
Center or by contractor.

d. The software development team using the
product provides feedback, including
performance data, to the research team to guide
future development of the product.

e. Six months after the funded collaboration period,
the research product is still being used by the
development project or by a successor
development project.

f. Independent of the success of the collaborations,
“lessons learned” regarding the challenges and
success factors for software development
technology infusion within NASA.

5. COLLABORATIONS 2004 - 2005

Our effort was chartered in 2002. We held NASA-
wide videoconferences in August of 2003, May of
2004 and March 2005. At each of these we featured
seven or more promising assurance techniques (in the
second and third events, repeating some of the ones
from previous years as well as new ones), and
announced a “call for collaboration proposals”.
Following the selection process described earlier, this
lead to funding for a selection of Research Infusion
collaborations.

Ten such collaborations were initiated during 2004 –
2005. The technologies included a technique for
conducting more efficient formal inspections;
software defect classification for process
improvement; requirements analyzers; code
analyzers; and tools and a method for design
rationale capture. The target application projects
included spacecraft flight software, a ground antenna
controller, International Space Station payloads,

 7

Space Shuttle software, and a mission design activity.
An additional four collaborations have been approved
for 2006.

To date, six collaborations have completed, all of
them achieving a “penetration factor” of 9 (as
measured on the NASA Software Assurance
Research Program’s scale of 1 – 9)—the results of
applying the technology were actually used on the
project. In the historical context, this level of
penetration of new software engineering technologies
is rare. One collaboration resulted in success criteria
(e) – technology is still in use 6 months after the end
of the collaboration – and (c) – the technology is in
the center’s list of recommended development
practices; two other collaborations are planning to
adopt (and so would lead to (e)); and yet two more
are investigating adoption in their context.

6. EXTRACTING LESSONS LEARNED

Lessons learned address questions such as: What
additional guidance can collaborators be given to
improve their success rate in the future? Why is
technology transition difficult within NASA? What
are the success factors for a research product to be
adopted? What communication channels between
researchers and practitioners within NASA can
improve adoption?

In the remainder of this section we report some
lessons learned based on the initial set of Research
Infusion collaborations.

Some developers are not proficient at research-
oriented activities and need guidance and oversight.
These teams are likely to benefit from more detailed
pro forma documentation or templates (kick-off
meeting agenda, project plan, final report). For
specific categories of tools (such as static analysis
tools) we can provide very detailed templates. They
also require frequent oversight (a) to be sure
communication is occurring between developers and
researchers, and (b) to verify that the schedule is
being followed. Not all the projects require this level
of support but such support is likely to benefit
Research Infusion by promoting uniform, higher-
quality collaboration practice.

There are various answers to the question “What is
the next step” – from research infusion to technology
transfer. A general solution is unlikely. Some
technologies are readily integrated and generalized
into a parent organization’s existing processes – they
are modifications to existing processes. Various other

technology-specific approaches may be appropriate
within the NASA context.

Tighter qualification of technology / project
combination may be needed. One of the static
analysis tools used had previously been successfully
applied to NASA software, but that software had
different technical features. The tool did not
transition well to software that did not have these
features. Also, the appropriate lifecycle context and
purpose for the tool (in this case) may not have been
clear to the development teams.

Collaborations’ project plans should explicitly
include an iterative approach to technology
application, scaling up with each iteration.

To succeed, training and continued support are
needed. For example, one of the static analysis tools
lacked training, and minimal support was provided.
The technology vendor did not visit the development
team to train and consult on the tool’s application. In
contrast, another development team received onsite
training on applying the technology it selected to its
own application. This reduced risk and cost as well,
since part of the target application was used in the
training session. “The most successful way to do tech
transfer is to put a member of the [technology vendor
team] on the development team” – Matt Barry, JPL,
(paraphrased) communication to the authors.

Overall, Research Infusion’s first set of completed
collaborations supports the hypothesis that with
selection of appropriate technologies, careful
matching of technology with software development
team, and guidance and oversight, infusion of new
software engineering technologies can be performed
successfully on a minimal budget.

7. DISCUSSION AND CONCLUSIONS

Research Infusion has demonstrated an inexpensive
and effective process for brokering matches between
software engineering researchers and practitioners
that can be incorporated into NASA’s overall
strategies for infusion of software engineering
research products, and specifically for research
products that can improve software safety and
mission assurance.

As our procedures are codified and the research
infusion team has gained experience, our approach is
likely to scale to a greater range of software
engineering technologies (not just those addressing
software assurance) and to larger numbers of

 8

collaborations. Expansion of scope to more
“revolutionary” technologies—technologies requiring
a more significant change to an existing software
development process model, or to the required
infrastructure—is likely to require adaptations in the
Research Infusion business model.

ACKNOWLEDGEMENTS

The research described in this paper was carried out
at NASA Ames Research Center, Langley Research
Center, Marshall Space Flight Center, and Goddard
Space Flight Center, and at the Jet Propulsion
Laboratory, California Institute of Technology, under
a contract with the National Aeronautics and Space
Administration.

We wish to acknowledge the contributions of the
following individuals and institutions. John Kelly, in
the NASA Office of the Chief Engineer, leads the
NASA intercenter Software Working Group and has
provided support for the research infusion effort as
part of the NASA Software Engineering Initiative.
This Initiative was the basis for a software
engineering research infusion effort. Pat Schuler of
NASA Langley suggested our basic approach.
Martha Wetherholt, in the NASA Office of Mission
Assurance, is head of the NASA Software Assurance
Research Program, which is administered by Kenneth
McGill at the NASA IV&V Facility. Both have
helped our infusion effort by providing collaboration
funding, direction, and advice. Tim Menzies,
formerly of West Virginia University and the IV&V
Facility, now at Portland State University, was an
early member of the team and helped give us our
start. Wes Deadrick of the IV&V facility has also
advised us and has been a reviewer of collaboration
proposals. The Research Infusion team also wishes to
acknowledge the many researchers who have lent
their support and the software developers who have
submitted collaboration proposals.

REFERENCES

[1] E. Rogers, Diffusion of Innovation, The Free Press,
New York, 1983.

[2] A.A. Shapiro. “Technology Infusion for Space-
Flight Program,” 2004 IEEE Aerospace
Conference Proceedings, Volume 1 Pages 662-
667, March 6-13, 2004.

[3] M.V. Zelkowitz. “Software engineering technology
infusion within NASA”, IEEE Transactions on
Engineering Management, 43(3) , pp. 250-261,
August 1996.

[4] J.C. Mankins. “Technology Readiness Levels”,
White Paper, Advanced Concepts Office, Office of
Space Access and Technology, NASA, April 1995,
available from
http://www.hq.nasa.gov/office/codeq/trl/trl.pdf

 [5] J.D. Smith II. “An Alternative to Technology
Readiness Levels for Non-Developmental Item
(NDI) Software”, Proceedings of the 38th Hawaii
International Conference on System Sciences,
2005.

[6] R. Mackey, R. Some & A. Aljabri. “Readiness
Levels for Spacecraft Information Technologies”,
2003 IEEE Aerospace Conference Proceedings,
Volume 1 Pages 391- 398, March 8-15, 2003.

 9

BIOGRAPHY

Tom Pressburger is in
the Robust Software
Engineering group led
by Dr. Michael Lowry
at NASA Ames. He
serves on the Ames
Engineering Process
group and is the
alternate Ames
representative to the
Software Working
Group. He led the
software engineering
research infusion

subgroup described in this paper. Lately, he has
been working on projects related to reuse of software
for NASA's Exploration mission. His expertise is in
the area of program synthesis which was applied to
Java model checking, state estimation, statistical
algorithms, solar system geometry, and, when he was
at the Kestrel Institute, algorithm design. He also
worked at Reasoning Systems in the area of software
reengineering. He holds a B.S. in Mathematics from
CalTech and an M.S. in Computer Science from
Stanford.

Ben Di Vito is a
senior research
engineer in the
Airborne Systems
Competency at NASA
Langley Research
Center, where he
applies formal
methods to problems
in fault-tolerant
computing and flight-
critical avionics. He
has extensive

experience with deduction tools and techniques,
especially the PVS theorem prover for higher order
logic. A recent research project initiated by Ben
concerns the establishment of a mathematical
database service called Hypatheon. Ben holds a
Ph.D. in computer science from the University of
Texas at Austin

Michael Hinchey
is Director of the
NASA Software

Engineering
Laboratory,

located at Goddard
Space Flight
Center. He has
held academic
positions at the
level of Full
Professor in the
USA, UK, Ireland,

Sweden and Australia. He is the author of move than
200 technical papers, and 15 books. His current
research interests are in the areas of formal methods,
system correctness, and agent-based technologies.
Dr. Hinchey is a Senior Member of the IEEE, a
Fellow of the IEE and the British Computer Society.
He is currently Chair of the IEEE Technical
Committee on Complexity in Computing, and is the
IEEE Computer Society’s voting representative to
IFIP TC1 for which he has been elected Chair for
2006 to 2008. He received the Ph.D. in Computer
Science from University of Cambridge, UK

Martin S.
Feather is a
Principal in the
Software Quality
Assurance group
at JPL. He
works on

developing
research ideas
and maturing
them into
practice, with

particular interests in the areas of early phase
requirements engineering and risk management and
of software validation (analysis, test automation,
V&V techniques). He obtained his BA and MA
degrees in mathematics and computer science from
Cambridge University, England, and his PhD degree
in artificial intelligence from the University of
Edinburgh, Scotland. For further details, see
http://eis.jpl.nasa.gov/~mfeather

 10

Lawrence Markosian is
a Computer Scientist
with QSS Group, Inc. at
NASA Ames Research
Center, where he led a
team developing model
checking tools based on
Java PathFinder. He is a
member of the NASA
Software Engineering
Initiative’s Research
Infusion team. Prior to
joining NASA, he was a

founder of Reasoning Systems., where as VP of
Applications Development he managed technology
transfer of advanced software engineering tools.
Markosian has an undergraduate degree in
mathematics from Brown University and has done
graduate work at Stanford University in logic and
artificial intelligence.

Luis Trevino is Chief
Scientist and
contributing partner
with 2L Research

Corporation,
designing and
developing advanced
software algorithms
for the Department of
Defense. Prior to
joining 2L Research,
he was involved with
cutting edge NASA

programs for over 16 Years. He has worked and led
projects in the Advanced Sensors & Health
Management Systems Branch, Spacecraft & Vehicle
Systems Department of the Engineering Directorate
at Marshall Space Flight Center. He received his
BSEE from Texas A&M University and his MS and
Ph.D. in Electrical Engineering from the University
of Alabama in Huntsville.

