Defect Measurement and Analysis of JPL Software: A Case Study

John D. Powell & John N. Spagnuolo Jr.

Southern California ISPA Workshop
03/05/2003

Agenda

• Introduction

• Models and Data

• Defect Metrics Case Study on a JPL Project

• Conclusion
Introduction

• Purpose
 – Predictable software quality via the development of Defect Prediction Models
 • Predict defects early in project’s life cycle
 • Applicable across projects throughout JPL
 – Flight
 – Ground
 – Instrument

High Level Goals

• Make use of JPL defect data to:
 – Support Analysis to:
 • Determine Trends
 • Determine Exceptions to Trends
 – Find Explanations (i.e. Critical Discriminators) of Exceptions
 – Support Decision Making by:
 • Enhancing predictive capability
 – Prediction tools for Managers
 – Guidance by SQI Personnel
 • Determining appropriate Corrective Actions to resolve delta’s
 – delta = predictions - actuals
 • Process Improvement
Defect Prediction Models

![Diagram showing Defect Prediction Models]

- **Defects by Size**
 - \# defects = \(f(\text{KSLOC}, \text{Critical Discriminators}) \)

- **Defects by Criticality by Size**
 - \# defects = \(f(\text{KSLOC}, \text{Critical Discriminators}, \text{Criticality}) \)

- **Defects by Test Type by Size**
 - \# defects = \(f(\text{KSLOC}, \text{Critical Discriminators}, \text{Test Type}) \)

Terminology - 1

- **Software Development Set (SDS)**
 - Logical portions of the software system used for segregation of SQI M&B metrics data

- **Defect Collection and Categorization**
 - Individual Defects must be analyzed during collection
 - Defects must be categorized by SDS
 - Defect must be categorized by characteristics of SQI M&B
 - Defect Prediction models
 - Size
 - Criticality
 - Test type
 - Defect Data Repository must be analyzed for trends
Terminology - 2

- Definition of “Repair Hours” per PFR
 - Fix
 - Find and Write up Problem
 - Analyze Problem
 - Determine Solution
 - Code Solution
 - Unit Test
 - Large Scale Testing
 - Integration
 - Regression
 - Documentation
 - Additions
 - Corrections

Classification Hierarchy
Project 12
High Level Statistics

- Project 12 illustrates the advantages of consistent & conscientious defect metrics collection.
- Number of PFR’s - Test 453, Operations 127
- Defect density is 1.2 / LKSLOC
- Average Hours to repair - Test 12.3 hrs, Ops 18.6 hrs

11/13/2003
John D. Powell & John N. Spagnuolo Jr.

Project 12
High Level Observations

- On Average: OPS PFR’s cost more to fix than TEST PFR’s
- Number of PFR’s per SDS not proportional to Number of Work Hours per SDS
- Trend Breakers
 - Personnel Turnover and Code Breakage
 - Highly Interconnected SDS’s
- Trends don’t necessarily carry over from TEST to OPS

11/13/2003
John D. Powell & John N. Spagnuolo Jr.
On Average: OPS PFR's cost more to fix than TEST PFR's

TEST / OPS Work Hours's

<table>
<thead>
<tr>
<th>Hours to fix</th>
<th>FrequencyOPS</th>
<th>FrequencyTEST</th>
<th>Cumulative%OPS</th>
<th>Cumulative%TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>20</td>
<td>30</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>20</td>
<td>20%</td>
<td>30%</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>15</td>
<td>30%</td>
<td>40%</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>12</td>
<td>40%</td>
<td>50%</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>6</td>
<td>50%</td>
<td>60%</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>2</td>
<td>60%</td>
<td>70%</td>
</tr>
<tr>
<td>240 More</td>
<td></td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

11/13/2003

John D. Powell & John N. Spagnuolo Jr.

Personnel Turnover and Code Breakage
Increase Defect Density - TEST

LKLOC vs. # of pfr's

<table>
<thead>
<tr>
<th>LKLOC</th>
<th># of pfr's</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM</td>
<td>9,006</td>
</tr>
<tr>
<td>TOG</td>
<td>4,382</td>
</tr>
<tr>
<td>Terminal</td>
<td>107,354</td>
</tr>
<tr>
<td>FTP Server</td>
<td>7,656</td>
</tr>
<tr>
<td>CCM</td>
<td>20,553</td>
</tr>
<tr>
<td>Common Software</td>
<td>19,798</td>
</tr>
<tr>
<td>Data Terminal System</td>
<td>1,737</td>
</tr>
<tr>
<td>UL Class</td>
<td>37,752</td>
</tr>
<tr>
<td>UI Server</td>
<td>21,322</td>
</tr>
<tr>
<td>Telnet</td>
<td>172,354</td>
</tr>
</tbody>
</table>

11/13/2003

John D. Powell & John N. Spagnuolo Jr.
Determination of CDs for Work

Hours per PFR

- Expected Reason for outliers
 - High Interconnectivity
- Confirmed Expectation with Project 12 personnel
- Empirical justification of outliers
 - Interconnectivity ratings from Project 12 personnel
 - Used clustering algorithm for empirical confirmation

Empirical Data supporting Outlier Status

\[V_i = \{ \log(LKSLOC), \log(\text{Average PFR fix time for SDSi}), \log(\text{Coupling measure SDSi}) \} \]
OPS and TEST: Differences and Similarities

Number of PFR’s vs LKSLOC

<table>
<thead>
<tr>
<th>Feature</th>
<th>OPS</th>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TDG</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>TVS</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>FTP Server</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>COM</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Common Software</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Earth Terminal</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>UI Client</td>
<td>37</td>
<td>8</td>
</tr>
<tr>
<td>UI Server</td>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>Telemetry</td>
<td>12</td>
<td>22</td>
</tr>
</tbody>
</table>

11/13/2003

John D. Powell & John N. Spagnuolo Jr.

Average Number of Work Hours vs LKSLOC

<table>
<thead>
<tr>
<th>Feature</th>
<th>OPS</th>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TDG</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>TVS</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>FTP Server</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>COM</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Common Software</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Earth Terminal</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>UI Client</td>
<td>37</td>
<td>8</td>
</tr>
<tr>
<td>UI Server</td>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>Telemetry</td>
<td>12</td>
<td>22</td>
</tr>
</tbody>
</table>

11/13/2003

John D. Powell & John N. Spagnuolo Jr.
Prediction of Work Hours Spent on Selected SW Operations

- Use:
 - Estimated Work Hours per SDS
 - Complexity Estimates of SW Operations in SDS
 - Control Operations
 - Computational Operations
 - Device Dependent Operations
 - Data Management Operations
 - UI Management Operations
 - Interconnectivity Operations
 - LKSLOC of SDS’s

Chart for Work Hours Spent on Selected SW Operations - TEST

| LKSLOC | 1.8 | 4 | 8 | 9 | 20 | 21 | 27.8 | 37 | 103 | 173 | 1.8 | 4 | 8 | 9 | 20 | 21 | 28 | 37 | 103 | 173 |
|---------|-----|----|----|----|----|----|------|----|-----|-----|-----|----|----|----|----|----|----|----|----|-----|-----|
| Control Operations - WH | 0.3 | 0 | 5 | 4 | 18 | 14.5 | 53 | 24 | 13 | 7 | 22 | 22 | 22 | 30 | 211 |
| Computational Operations - WH | 0.3 | 0 | 5 | 4 | 18 | 14.5 | 53 | 24 | 13 | 7 | 22 | 22 | 22 | 30 | 211 |
| Device Dependent Operations - WH | 0.3 | 0 | 5 | 4 | 18 | 14.5 | 53 | 24 | 13 | 7 | 22 | 22 | 22 | 30 | 211 |
| Data Management Operations - WH | 0.3 | 0 | 5 | 18 | 22 | 21.8 | 30 | 181 | 0.3 | 5 | 5 | 53 | 18 | 66 | 18 | 66 |
| UI Management Operations - WH | 0.3 | 0 | 5 | 4 | 18 | 21.8 | 30 | 181 | 0.3 | 5 | 5 | 53 | 18 | 66 | 18 | 66 |
| Interconnectivity Operations - WH | 0.3 | 0 | 5 | 4 | 18 | 21.8 | 30 | 181 | 0.3 | 5 | 5 | 53 | 18 | 66 | 18 | 66 |

Conclusions

- Desired defect data recording techniques
 - Requires little additional effort
 - Work Hours to Fix a defect
 - Consistency in filling PFR fields
 - Significantly increases power of analysis
 - Enhancing predictive capability
 - Determining appropriate Corrective Actions to resolve delta’s (predicted – actual)
 - Process Improvement for subsequent projects
Desired Defect Data

- Relationships
 - Density (by Size)
 - Complexity Correlation
 - Interconnectivity Correlation

- Individual Defect Characteristics
 - Criticality
 - Test Phase of Discovery
 - Development Phase Introduction/Cause
 - Effort to Repair

- Groupings
 - SDS
 - Version

Progress Metrics

- **2886 Defects** Analyzed and Categorized
- **12 Projects** for which Defect have been Analyzed and Categorized
- **28 SDS's** for which Defect have been Analyzed and Categorized
- Total Effort Working Defect = **11.9 work months**
- 1.13 M&B FTE = < **0.7** Defect FTE