
Using Java For Flight Implementations

Peer Review Report

November 19,1999

Dave Nichols

On November 5, a peer review was held addressing the issue of Java use for flight
implementations. This document summarizes the results of the review.

Summary of Conclusions

The panel was in general agreement that Java provides a number of significant
advantages over conventional (Ada, C and Ctt-) flight software implementation
languages and that the presenters understood the technical risks associated with Java and
had a reasonable strategy for introducing this language technology into JPL practice. All
reviewers, except one, would recommend that the Mission Data System Project proceed
cautiously with implementations of low risk modules requiring no real-time features.

Background

The choice of programming language for software applications has far-reaching
implications related to programmer productivity, system reliability, system performance,
and the ability to support a given software architectural model. Within the past 10-15
years, Object-Oriented (00) designs, 00 languages, and 00 distributed system services
have evolved as the industry best-practice for developing complex distributed systems,
and is gaining acceptance as a best-practice in embedded real-time systems as well. Flight
software and mission-critical ground software, developed with conventional procedural
paradigms have been developed in Ada, and C, with real-time extensions to support time-
deterministic behaviors. The addition of 00 constructs to C resulted in the C++
programming language. However, in making these additions, C++ retained much of the
idiomatic nature and weak typing which leads to poor software productivity and software
defects. C++ allows 00 programming but does not enforce it.

Recognizing the limitations of C++, and incorporating the latest thinking and research in
language design, Sun Microsystems set about, in the early 1990s, to develop the Java
language. This new language would both support and enforce the 00 model and would
also be capable of running on a variety of processor architectures without modification.
These two characteristics are key to software reusability, which is a high leverage factor
in software productivity and, in turn, our ability to build and launch missions faster and
cheaper. The Java technology has now matured to a level where it is reasonable to use it
to develop large applications. Given the broad mandate of MDS to maximize reuse and to

incorporate industry best-practice into the mission-critical flight and ground software at
JPL, it is only fitting that MDS take the lead in attempting to exploit this capability.

Motivation for the Review

After a period of evaluation, the JPL Mission Data System (MDS) Project is currently
planning to use Java in some of its non-real time, flight applications. Java is felt to have
a number of key characteristics that ultimately will make it very attractive for mission-
critical use and, in fact, is now being used successfully for mission-critical ground
applications at JPL and GSFC. Because of the relative newness of Java, and the fact that
there are no known spacecraft applications of Java in the aerospace industry, the adoption
of Java is felt to carry with it a certain amount of risk, as compared to alternative
approaches. In addition, a decision by MDS to proceed with Java for flight applications
would establish a precedent. Other flight projects might make a decision to adopt this
language technology based on that precedent, without a full understanding of the
potential risks. Therefore, the primary motivations for this review were to: 1) review the
material upon which the MDS Project made their decision; and 2) establish a precedent of
sorts at JPL for the process of assessing and approving the adoption of a new
programming language for critical applications.

Disclaimers

There was no intent at this review to assess the project implementation issues (cost and
schedule) associated with the use of Java nor was there an attempt to assess the wisdom
of the decision to adopt an Object-oriented paradigm. The review focused primarily on
the identification and mitigation of technical risks associated with Java. Since it was
understood that Java could not satisfy all MDS requirements, it was assumed that the use
of Java would necessitate a mixed-language environment.

Note: there are no known NASA or JPL policies or procedures governing the process by
which a new programming language is adopted.

Review Panel Members

The review panel was constituted primarily by individuals experienced either in Java
programming or in real-time embedded software systems for spaceflight applications.
Since there is no currently recognized standard Java real-time implementation, it was
difficult (impossible?) to find an individual with real-time Java implementation
experience.

We were fortunate to be able to have two individuals on the panel from outside JPL.
Klaus Havelund is from the NASA Ames Research Center and is investigating
technologies for Java verification. Nedim Fresko is from the Java language group at Sun

Microsystems, the company which developed Java and maintains the Java standards. The
panel members and their affiliations were:

Paul Backes
Daniel Crichton
Nedim Fresko
Mike Girard
Klaus Havelund
John Kelly
Issa Nesnas
Dave Nichols

345
389
Sun Microsystems
388
Ames Research Center
506
345
738 Chairman

Review Objectives

The stated objectives of the review were to:

Assess the technical risk evaluation done by the Java evaluation team.

Assess the strategy being taken by MDS to understand and mitigate risk prior to
wholesale adoption; and,

Determine the extent to which significant additional risks may be present and
recommend a strategy for addressing the risks.

Summary of Answers to Questions

The review panel was asked to answer five questions at the end of the review. The
questions, along with a summary of the answers, follows.

I) Do you agree with the arguments espousing Java’s positive attributes?

The panel all agreed that Java has a very compelling set of attributes that warrant its
serious consideration for flight sohare . These attributes are:

a) Significant reduction in development time vs. C or C++
b) Significant reduction in software defects vs. C or C++
c) Dynamic class loading and the Java compilation model can greatly simplifl

software updates during a mission.
d) Direct support for the 00 paradigm.
e) A high level of portability from one Instruction Set Architecture (processor

family) to another.

f) Improved ability to recruit and retain software engineering personnel at both
the college grad and journeyman level.

g) Enhanced opportunities and lowered costs for re-use.

However, some of the advantages can be compromised when Java is used in a mixed-
language environment. For example, interactions between C++ and Java memory
management models could exhibit behaviors that would be difficult to debug with current
tools.

2) Have the presenters demonstrated that they understand all of the major risks
associated with the use of Java for Jlight softwave?

While it is unlikely that all risks have been characterized, the panel was in agreement that
the presenters did an excellent job demonstrating that they understood the major risks that
could be understood at this time. These major risks can be characterized as:

a) Multi-language development environment

The use of the Java Native Interface (JNI) as a mechanism to interface Java
with code generated in other programming languages can pose memory
management risks, particularly in association with garbage collection
schemes. Robust debugging tools that directly support a C++/Java/JNI
language environment do not exist. Multi-language debugging requires that
programmers be fluent in multiple languages and interfaces. A multi-
language environment also implies the necessity to integrate and maintain
more vendor-supplied components.

b) Real-time

The Real-time Java specification has not been finalized. Extensive use of Java
for flight applications depends on a robust Real-time specification and
complete adoption by various vendors. Also, it is likely that Real-time
implementations may not fully support the Java compilation model, possibly
negating some of Java’s positive attributes.

c) Performance

Initial experience with Java shows that it can be much slower than C or C++.
This is certainly the case when compiled C/C++ code is compared to
interpreted Java (which is the “ normal” compilation model). However, Java
is supported by other compilation models which can result in much improved
performance, often comparable to C/C++. The ability to use these alternative
compilation models in a time-critical, mixed-language environment has not
been thoroughly demonstrated. It was also pointed out that Java does not
support the numerical precision that may be necessary for some applications.

d) Maturity

Java is a relatively new language. As a result, debugging tools, compiler
designs and garbage collection techniques have yet to reach the level of
maturity that will ultimately be achieved and may at this point be somewhat
buggy themselves. Because of the huge industry commitment being made to
Java and the fact that Java is now the language of choice for study in
academic computer science departments, this is expected to be only a short-
term risk.

3) Has the analysis and evaluation addressed the major concerns?

The nature of this question has to do with whether or not the analysis performed
and described in the evaluation report was complete enough to fully characterize
the identified risk.

There was a sense among the panel members that the performance issues had not
been adequately characterized to really understand the risk. In particular, it was
suggested by more than one panel member that the performance assessment
should be extended to include a comparison of data-structure heavy programs and
00 features of the language (e.g. complex hierarchies, polymorphism). In
addition, the benchmarks should reflect different styles of programming (e.g.
floating point, allocation-intensive, networking, and I/O intensive).

Other areas that were identified as needing further assessment included:

Debugging of multi-language applications

o Use of RhapsodyAJML (particularly automatically-generated code) in
a multi-language environment

Potential concurrency errors (deadlocks, thread starvation) in the Java
multi-threading model and the JVM scheduler.

4) Where, in your opinion, is MDS most likely to run into problems with the use of Java?

The answers to this question generally parallel the identified risk areas. It was felt
that if MDS were to adopt Java at this point in time (for non-real time
applications), the problems they would most likely face would be related to:

a) Lack of performance
b) Difficulty in debugging

c) Assembling a development team. with adequate fluency in Java

5) Do you see any reason why MDS should NOT proceed with their plans to use Java?

All panel members, except one, felt that the risks identified should not deter the MDS
Project from proceeding with their plans to implement some carefully selected low-risk
components in Java. Associated with this approach, however, was the suggestion that the
Project: 1) undertake an effort to establish, validate, and assess the performance of the
multi-language development environment; and 2) develop contingency plans in case the
Java implementation runs into difficulties that would have an adverse effect on schedule.

The panel member who recommends against the use of Java (as compared to C++)
expressed concerns about : 1) performance; 2) language power and flexibility; 3)
mathematical expressions; 4) difficulties in implementing certain constructs; and 5) lack
of maturity.

Summary of Recommendations

More work is needed on characterizing performance.

Assess the impacts of a mixed-language implementation on the Rhapsody modeling
approach.

Provide parallel implementations in C++ for any early Java implementations. Besides
providing a backup, this will allow a direct comparison of the two approaches.

Collect and publish (on the web) the lessons-learned as this pioneering activity proceeds.

Establish a formal, recurring reporting activity (to the stakeholder projects) on the key
risk areas, particularly performance.

An initial Java team of one person is inadequate. Critical mass is at least three or four
people. This is necessary for the team to develop a fluency in key areas such as testing,
concurrency, determinism, memory management, etc.

Initial efforts should require minimal or confined use of JNI.

Aggressively participate in the public response to the Real Time Specification for Java.

MDS should look for ways to do dynamic class loading as hardware capabilities increase.

Before proceeding, MDS (or any Project considering the use of Java) should identify
candidate modules for Java implementation and review the decision relative to the risks.

MDS should proceed as soon as possible to develop and validate a mixed-language
development environment.

Participants

Name

1 Kirk Reinholtz
I Dan Crichton
Issa Nesnas
Mike Girard
John Kelly
Rick Grammier
Frank Kuykendall
Wallace Tai
A1 Sacks
Dan Erickson
Glenn Reeves

1 Klaus Havelund

Anne Elson
Chris Jones
Peter Gluck
Dave Eisenman
Vicki Shipkowitz
Nedim Fresko

Email I
David.A.Nichols@j pl.nasa.gov
Paul.G.Backes@jpl.nasa.gov
Kirk.Reinholtz@jpl.nasa.gov
Dan. Crichton@j pl.nasa. gov
Issa.A.Nesnas@jpl.nasa.gov
Michael.A.Girard@j pl .nasa.gov
J0hn.C .Kelly@ p 1.nasa.gov
Richard. S .Grammier@j pl.nasa.gov
Frank.Kuykendall@j pl.nasa.gov
Wallace. S .Tai@jpl.nasa.gov
Al1an.L. Sacks@ pl .nasa. gov
Daniel.E.Erickson@jpl.nasa.gov
Glenn.E.Reeves@jpl.nasa.gov
Havelund@ptolemy .arc .nasa.gov
Jlai@j pl .nasa. gov
Abdullah. s.alj abri@j pl.nasa.gov
Anne.Elson@j pl .nasa.gov
Chris.P. Jones@ pl.nasa.gov
Peter .R. Gluck@j pl .nasa. gov
David. J.Eisenman@j pl.nasa. gov
Vicki. S hipkowitz@Eng . Sun.COM
Nedim.Fresko@Eng . Sun. COM

http://pl.nasa.gov
mailto:Paul.G.Backes@jpl.nasa.gov
mailto:Kirk.Reinholtz@jpl.nasa.gov
mailto:Issa.A.Nesnas@jpl.nasa.gov
http://nasa.gov
http://1.nasa.gov
http://pl.nasa.gov
http://pl.nasa.gov
mailto:Tai@jpl.nasa.gov
mailto:Daniel.E.Erickson@jpl.nasa.gov
mailto:Glenn.E.Reeves@jpl.nasa.gov
http://nasa.gov
http://pl.nasa.gov
http://nasa.gov
http://pl.nasa.gov

