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EVALUATION OF AN ENERGY-CUTOFF ALGORITHM 
FOR THE SATURN ORBIT INSERTION BURN OF THE 

CASSINI-HUYGENS MISSION 

Troy Goodson' 

The Cassini-Huygens spacecraft was launched on October 15, 1997 as 
a joint NASA/ESA mission to explore Saturn. After a 7-year cruise 
the spacecraft will enter orbit around Saturn on July 1, 2004 for a 
4-year investigation of the Saturnian system. This paper describes 
the navigation-related aspects and analysis of the cut-off algorithm 
for the orbit-insertion burn. The algorithm is designed to achieve 
the desired orbital period even after the burn has been restarted due 
to possible burn interruptions. 

The cut-off algorithm uses an approximation to the change in orbital 
energy due to the maneuver. The targeted change in orbital energy 
is chosen so that a nominal burn will achieve the desired orbital 
period. In the case of an interrupted and restarted burn, achieving 
the target gives only small errors in the final orbital period. The 
analysis performed breaks down the algorithm's targeting error and 
demonstrat,es that the cut-off algorithm is suitable for a wide range 
of interruption durations. 

INTRODUCTION 

The Cassini-Huygens spacecraft was launched on October 15,1997 as a joint NASA/ESA 
mission to explore Saturn. After a 7-year cruise the spacecraft will enter orbit around 
Saturn on July I, 2004 for a 4-year investigation of the Saturnian system. This paper 
describes the navigation-related aspects and analysis of the cut-off algorithm for the 
orbit-insertion burn. The algorithm is designed to achieve the desired orbital period 
even after the burn has been restarted due to possible burn interruptions. 

There are a series of approximations that have been made in designing the cut-off 
algorithm from the perspective of navigation. The most significant approximation is 
linearization, which for reasonable single-interruption cases, results in about 2 m/s 
error. Other approximations are the use of a two-body conic orbit to represent the 
trajectory relative to Saturn, use of an on-board algorithm to  compute that conic, a 
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small timing difference between attitude and acceleration measurements, and the use 
of Euler integration. The error resulting from these latter approximations is shown 
to be much smaller than 2 m/s. 

An algorithm was presented previously [l] which was referred to as Smart B u m ,  
but the algorithm presented here is more compatible with the current implementation 
of flight software. It is able to handle variable burn-interruption durations. And, it 
has the feature that the nominal burn is treated identically to failure cases, simplifying 
the associated design of flight software. 

NOMINAL DESIGN 

The Saturn-Orbit Insertion (SOT) maneuver is arguably the most important in the 
Cassini-Huygens mission as the opportunity to  achieve an elliptical orbit around Sat- 
urn passes in a matter of hours. The spacecraft approaches Saturn with a V, of 5.2 
km/s. The inclination of the Saturn-relative orbit with respect to Saturn's equator 
is about 17". The spacecraft approaches from the southern hemisphere of Saturn. 
At a distance of about 158,500 km, Cassini-Huygens makes an ascending ring-plane 
crossing on July 1, 2004 at about 00:47 UTC. The spacecraft traverses the ring-plane 
with the high-gain antenna (HGA) in the velocity direction to help protect against 
debris impacts. Following this ascending ring plane crossing (ARPC) , thc spacecraft 
will rotate to follow the constant-rate turn for the maneuver. Throughout the burn, 
the spacecraft will rotate at about 0.008" per second. On July 1, 2004 at 01:12 UTC, 
the SO1 maneuver begins. Pericrone is reached at about 2:38 UTC and the burn nom- 
inally ends at 2:48 UTC (duration of 96 min.). Burn termination, even for nominal 
execution, is governed by the Energy-Cutoff Burn (ECB) algorithm. For the nominal 
burn duration, the spacecraft will have rotated by about 46". Some science activity 
is planned for the period following SOI. A descending ring plane crossing (DRPC) 
occurs at a distance of about 158,500 km roughly July 1, 2004 04:34 UTC. 

With a nominal cost of 626 m/s, the maneuver slows the spacecraft. Following 
termination, the Saturn-relative orbit has a period of 116 days (Later, the Periapsis- 
Raise IManeuver increases that period to 124 days.) SO1 primarily alters the semi- 
major axis of the Saturn-relative orbit; therefore, the burn is best executed nearly 
parallel to the spacecrafts Saturn-relative velocity. At the start, the acceleration 
vector lags the anti-velocity vector by about 7". At the nominal end, the acceleration 
vector still lags by about 2". 

The cut-off algorithm for SO1 and the control of the burn direction are two inde- 
pendent algorithms. These two algorithms both rely on a third component, call the 
Inertial Vector Propagator (IVP). N P  propagates, among other things, position and 
velocity on a conic orbit. A conic orbit is used to model the velocity as a function of 
time during SO1 execution for the cut-off algorithm. This state of this orbit at any 
given time is referred to as the Cassini-Saturn vector. A second, circular orbit is used 
to  model the burn direction as a function of time relative to the position of the space- 
craft. The burn direction at a given time is referred to as the CRITICAL-INERT 
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Figure 1: Saturn-relative (cronocentric) trajectory near SOI.9. 

vector. 
The parameters that constitute a design for SO1 are the IVP definition for the 

Cassini-Saturn vector, the IVP definition for the CRITICAL-INERT vector, the tar- 
geted change in energy, the min/max burn cut-off parameters, and some min/max 
times. The latter two min/max items are beyond the scope of this paper. 

SO1 is designed first in CATO [2], where the maneuver is chosen to minimize total 
mission deterministic AV. In CATO, SO1 is modeled by polynomials of spherical 
coordinates2 of the Earth Mean Equator and Equinox of J2000.0 (EME2000) coordi- 
nate system. The AV is 625.4 m/s. The acceleration vector starts with a declination 
of -1.446' and a right ascension of 237.69", which then increase by 0.00157"/s and 
0.00707"/s, respectively. 

The SO1 design is refined using the DPTRAJ [3] software set, SEPV in particular. 
DPTRAJ's capabilities for modeling thrust direction differ slightly from the space- 
craft's onboard flight software's capabilities. Although DPTRA J can model maneuver 
thrust directions in a variety of ways, the method most appropriate for SO1 is polyno- 
mials of spherical coordinates. The maneuver's right ascension and declination may 
each be polynomial functions of time. The maneuver magnitude as well as bias terms 
(0th order terms) in the polynomials for right ascension and declination (a total of 3 
parameters) may be targeted to  3 trajectory parameters. However, the orientation of 
the coordinate system in which the spherical coordinates are expressed may not be 
targeted. For SOI, a coordinate system called VIEW2 [3] is used, where the Yview2 
axis is along the velocity direction at the start of SOI, the axis is along the 
Saturn-relative orbital angular momentum vector, and the Xview2 axis compeletes the 
right-handed system. The polynomial for right ascension has a bias and first-order 

'the coordinates are referred to as magnitude, right ascension, and declination 
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term (262.96", 0.008"/sec), while the polynomial for declination has only a bias term 
(0.05128", its first-order term is zero). As a result, the SO1 maneuver, as targeted, 
tracks arcs of constant declination in VIEW2. 

The main goal for the SO1 burn is achieve a given orbital period. As orbtial 
period for a two-body conic orbit is equivalent to orbital energy, the ECB algorithm 
is designed on the basis of achieving a certain target for the change to orbital energy. 

The ECB algorithm continues execution of the SO1 maneuver until the computed 
change in energy matches the specified target. The computed change in energy ac- 
counts for the measured acceleration and, therefore, any periods during which the 
maneuver is interrupted, viz. while the spacecraft recovers from a fault. For single- 
interruption cases, Figure 2 shows the AV magnitude of SO1 as modeled and com- 
puted with DPTRAJ. 

duration of delay (minutes) 

Figure 2: AV magnitude of SO1 for single-interruption cases. Contours labeled 
m/s. 

Table 1 contains updated parameters for the CRITICAL-INERT IVP vector def- 
inition and Table 2 contains updated parameters for the Cassini-Saturn vector. Note 
that the start and end times listed in the table are not recommendations from Navi- 
gation, they are based on considerations outside of navigation. The DEtarget is set at 
17.830 km2/s2. 

The IVP definition for the Cassini-Saturn vector was made by determining the 
position and velocity at pericrone of a trajectory without the SO1 maneuver. That 
statc was propagated to an earlier time consistent with the command in the spacecraft 
command sequence. The CRITICALJNERT vector, governed spacecraft onboard 
flight software capabilities, is modeled using a conic vector centered at the space- 
craft. For simplicity, CRITICALJNERT is represented with a circular orbit. This 
choice limits burn direction profiles to great circles as opposed to circles of constant 
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Head Object 
Base Object 
Grav Const; m3/s2 
Start time (UTC) 
End time (UTC) 

CRITICAL-INERT Pos X, m -6.410046131e+02 
Cassini Pos Y ,  m -7.633099118e+02 

1.936308242e +01 Pos Z, m -8.044292668e+01 
2004-182T12:OO:OO Vel X, m / s  1.031146290e-01 
2004-183T06:00:00 Vel Y ,  m / s  -8.944132554e-02 

Vel Z, m/s 2.703155532e-02 

Table 2: Parameters for Cassini-Saturn vector. 
- 1.793558482e+09 
-1.82473762'7e+09 
-3.960285223e+08 

5.977503816e-tO3 
4.707756102e+03 
1.2931 18804e+03 

Head Object 
Base Object 
Grav Const, m3/s2 
Start time (UTC) 
End time (UTC) 

declination. To make a reasonable match between these two, the IVP definition 
CRITICAL-INERT was computed as follows: 

Cassini Pos x, m 
Saturn Pos Y, m 

3.793126773e+ 16 Pos Z, m 
2004-180T01:28:56 Vel X, m/s 
2004-186T07:10:00 Vel Y, m / s  

Vel Z, mls 

for 

ill = initial SO1 burn pointing direction, unit vector, EME2000 

732 = final SO1 burn pointing direction, unit vector, EME2000 

p" ?& x ?&/I731 x 7221 

r' = (1000772)ii1 

v'= W * F X  r' 

= l ~ l 3 ~ 2  

w = acos(ii1 . 732)/At 

Consider (p,r',v') to represent a two-body conic orbit at the SO1 burn start time, 
centered at the spacecraft. In particular, this conic is a circle. Propagate backwards 
(p ,  r', 5) as a simple two-body conic from the burn start time to the start time of the 
CRITICAL-INERT IVP definition. 

IVP VS. DPTRAJ BURN MODELING 

As discussed above, the DPTRAJ and IVP modeling for the burn pointing direction 
CRITICAL-INERT are different. The angle between the IVP and DPTRAJ pointing 
directions is plotted in Figure 3, below. The plot shows a maximum error during the 
nominal burn of about 0.4". For SO1 maneuvers with interruptions, burn execution 
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Figure 3: Angle between the DPTRAJ SO1 burn pointing direction from the 
reference trajectory and the IVP definition in Table 1. During the nominal 
SO1 burn, the maximum angular error is 0.4". 

will end later and the angular error will increase, but the duration should never be 
long enough to reach the maximum of about 9.2". In any case, this error has little 
effect on the achieved orbital energy as this quantity is second-order in pointing error. 

Furthermore, the IVP definition from Table 1 has been modeled in SEPV to see 
what deterministic error it incurs. These simulations are indentical to what produced 
the reference trajectory 030201 except that SOI's burn direction is from Table 1 and 
the SO1 clean-up maneuver was included. The SO1 clean-up maneuver is scheduled to 
be two days after SOI. Maneuvers after SO1 were retargted to the reference trajectory 
aimpoints. The maneuvers and targeting strategies have been described in an earlier 
paper [4]. 

Two different cases were run; the first with SO1 clean-up at SO1 + 2 days, the 
second with SO1 clean-up at SO1 + 16 days. The resulting AV for each maneuver 
from SO1 clean-up to Probe Targeting Maneuver (PTM) is listed in Table 3. The 
table shows that for the baselined clean-up at SO1 + 2 days, the clean-up is about 1.2 
m/s and the cost to downstream maneuvers is negligible. For the case of a clean-up 
at SO1 -t 16 days, the clean-up is about 3.1 m/s and the impact on downstream 
maneuvers is actually a savings of about 0.4 m/s. The AV cost associated with this 
pointing difference is clearly quite small. 

ERROR ANALYSIS 

The ECB algorithm involves several approximations, for most of which analyses ap- 
pear below. These analyses show that the largest error is due to the assumption of 
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Table 3: Deterministic AV Cost of Pointing Errors (m/s). Three cases are 
shown: SO1 pointing as in the reference trajectory, SO1 pointing with IVP and SO1 
clean-up at +2 days, and clean-up +16 days. 

391.7 391.3 

PTM 15.6 15.6 15.6 
OTM-006 

linearity with respect to burn AV. Other errors arise from the use of Euler’s method 
for numerical quadrature, use of a conic model for spacecraft state propagation, and 
timing differences in the spacecraft’s onboard flight software. 

LINEARIZATION 

Orbital energy for a two-body conic is E( t )  = -p / r ( t )  + (1/2)v(t) . v(t), where r ( t )  
is the spacecraft’s distance and p ( t )  is the spacecraft’s velocity. If an acceleration 
Zsol(t) is applied to the spacecraft, then, as may be found in many astrodynamics 
textbooks, the change in orbital energy may be computed with 

Assuming that the influence of ZSOI is small enough to  be linear, then variations in 
the spacecraft state may be written as 

Where &?((to) and & v ( t o )  represent variations in the initial position and velocity vec- 
tors: respectively. @(t,to) is the transition matrix from the initial time to time t .  If 
we partition the state transition matrix as 

and restrict our attention to the lis01 only, meaning K ( ( t 0 )  = 0 and Gp((to) = 0, then 
we can write an approximation to the spacecraft’s velocity as 
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+ 

where Vn0-so1(t) is the space~raf t~s  velocity time-history if SO1 is not executed. Sub- 
stituting this into Equation 1: above, gives 

second-order in ii; throw away 

Throwing out second-order terms gives 

This, then, is the change in energy, linearized by the assumption that the SO1 burn 
AV is small compared to  the spacecraft velocity. 

The interest here is how much of a difference it makes when the cut-off algorithm 
is based on Equation 1 versus 2. The singular difference between these two equa- 
tions is that the spacecraft's velocity in Equation l includes the effects of the SO1 
maneuver but Equation 2 uses pn0-so~(t), which does not include any effect due to 
SOI. Consequently, it is useful to note the differences between the planned spacecraft 
trajectory and one that doesn't account for SOI. 

These differences may be seen in Figures 4 and 5. Figure 4 shows the difference 
in speed in the anti-SO1 direction (roughly along track). This is (v(t) - qno-so~( t ) ) .  
a'so~(t)/la'soI(t)I. Although integral of the magnitude of the SO1 acceleration is 626 
m/s, the difference in along-track speed at pericrone is a little over 400 m/s, due to 
orbital mechanics. The plot shows a negative value because the trajectory with SO1 
is slower than the trajectory without it. 

Difference in Speed, no-SO1 vs. wISOI 

--0.15 

2 -025 
U 

20 30 40 50 60 70 80 90 
ne, minutes from start 

Figure 4: Speed Difference. The decrease in speed of the trajectory with SOI, 
along the anti-SO1 direction compared to the no-SO1 trajectory. 

Figure 5 shows position differences along two directions, the anti-SO1 direction 
and the nearly-radial direction which is perpendicular to the anti-SO1 direction yet 
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still nearly in-plane. This plot shows the SO1 trajectory falling behind the no-SO1 
trajectory by about 1,3005 km. As it falls behind, it also drops below, closer to Saturn 
by about 750 km. 

Difference in Position, no-SO1 vs. w/SOI 

m 

m 

- -500- 
E 
Y 
0 

- - 
-1000 - 

Figure 5: Position Difference. The trajectory with SO1 falls ”behind” and ’)below” 
the trajectory without SO1 

In order to  validate the assumption that SO1 is a small acceleration, simulations 
of the ECB algorithm (with and without this linearization) have been performed. 
The velocity time-history from the trajectory with SO1 was used with Equation 1 
to compute a AEtarget,s01. Then, several different fault times and delay durations 
were used in simulations with the SEPV software of DPTRAJ, resulting in SO1 burn 
durations such that the target energy was met in each case. 

The velocity time-history from the trajectory without SO1 was used with Equa- 
tion 2 to compute a AEtarget,no-~OI. The same set of fault times and delay durations 
were used to find SO1 burn durations such that the target energy was met. The 
velocity time-history was computed with DPTRAJ and stored in a file, but the ECB 
algorithm was simulated with MATLAB. 

The SO1 AV results from these two simulations were compared for each fault time 
and delay duration. A contour plot may be made of this difference in SO1 AV; such a 
plot is shown in Figure 6. This plot shows the difference in SO1 AV for an algorithm 
based on Equation 1 versus an algorithm based on Equation 2. 

The left-hand border of the plot consists of cases where the delay duration is 
zero, which is equivalent to absence of a fault; therefore, both algorithms give the 
same result along the left-hand border. The top border represents SO1 cases where 
the fault occurs just at the end of the nominal execution, so no further execution is 
needed; therefore, both algorithms also give the same result along the top border. 
The bottom border represents cases where the beginning of SO1 execution has been 
delayed. 

Reasonable delays may be considered to be up to two hours long. For such reason- 
able delays, the error due to  linearization (use of Equation 2) is no more than 2 m/s. 
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This error is small, about 0.3 % of SO1 AV magnitude, and clearly shows that SOI’s 
acceleration is within the linear range of this problcm. 

Error in Energy Cutoff (m/s, DPTRAJ V-no-SO1 vs V-w/SOI) 

10 30 50 70 90 110 130 150 170 
duration of delay (minutes) 

Figure 6: Contours of Errors due to Linearization. ”time delay starts” is the 
time when the burn interruption begins. “duration of delay” is the length of the 
interruption before the burn is restarted. The contours are the AV error due to 
linearization. 

USE OF A TWO-BODY CONIC 

Of interest is the cost of using a conic trajectory to obtain vno-s0~ as opposed to 
a DPTRAJ-generated, without-SO1 trajectory. However, the question immediately 
arises as to how to pick the conic. Although this might be best answered in a detailed 
study, a couple of simple approaches are evaluated. A first approach is to choose the 
osculating conic at the start time of SOI. The second is to choose the osculating conic 
at the pericrone of a trajectory as if SO1 were not executed (the no-SO1 pericrone). 
The latter is likely to be more accurate as the velocity error is least when velocity 
magnitude is greatest; however, results from both choices are presented. 

One way to get a feel for the error introduced is to  plot the error in velocity 
vectors in the along-track, cross-track, and out-of-plane directions. Such is plotted in 
Figure 7, for the conic osculating at the start of SOI, and in Figure 8, for the conic 
osculating at pericrone. Note that errors3 are typically smaller in the pericrone case, 
indicating that cut-off errors of the ECB algorithm will be smaller 

3particular attention should be paid to along-track errors as these are more indicative of‘ errors 
in V . 2  
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Figure 8: Error (km/s) in conic-propagated S/C velocity vs. DPTRAJ-propagated 
S/C velocity. Neither includes AVsor. The conic osculates the DPTRAJ trajectory 
at pericrone 

Equation 2 was integrated with the start-of-SO1 conic to compute a AEt,,g,t,st,,t-co,~, 
and then to simulate the cut-off algorithm for a variety of burn interruptions. This 
was repeated for the pericrone conic, producing a AEtarget,peri-conic and results for the 
same variety of burn interruptions. The resulting commanded AV in either simula- 
tion was compared to yet another simulation that was based off a DPTRAJ-generated 
trajectory. Figure 9 shows the error in commanded AV (cut-off AV) for a single in- 
terruption where the conic osculates at the start of SO1 (see Figure 7) versus the 
DPTRA,J-generated trajectory. The vertical axis marks when the interruption began 
(in minutes after the start of SOI) and the horizontal axis shows how long the in- 
terruption lasted (in minutes). Contours are labeled in meters per second. The only 
difference between this figure and Figure 10 is that the conic osculates the trajectory 
at pericrone, (see Figure 8). 

These contours both show AV errors that grow past 1 m/s for relatively long 
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Error in Energy Cutoff (mls, start-conic vs DPTRAJ V-noSOI) 

10 30 50 70 90 110 130 150 170 
duration of delay (minutes) 

Figure 9: AV,,,,, error (m/s) for a conic ECB, osculating at the start of SOI, vs. a 
DPTRAJ-no-SO1 ECB. Positive errors indicate that the conic ECB commanded too 
large a AV. 

delay durations. Furthermore, it is reasonable to expect, based on earlier plots and 
discussion, that the pericrone conic will typically outperform the start-of-SO1 conic. 
Even though the pericrone conic is unlikely to  be the optimal choice, it serves well. For 
delay durations of up to  two hours, the pericrone-conic results show only about 0.25 
m/s error in cutoff AV. This is only about 0.04% error and is certainly acceptable. 

USE OF IVP 

The ECB algorithm will use Cassini’s onboard Inertial Vector Propagator (IVP) [5]. 
The question arises as to what sort of errors IVP introduces. Here, this is investigated 
by evaluating the energy integral with an analytical conic propagation and comparing 
results to those obtained using IVP. 

In question is the error introduced by IVP’s conic propagation during the cvalu- 
ation of the energy integral, Equation 2. For computing vno-so~(~), the spacecraft 
does not have high precision trajectory propagation software on-board, but it does 
have the IVP software to propagate two-body conic trajectories. However, in order to 
expedite its calculations, IVP introduces some errors. One of these is that the conic is 
only recomputed ever RTI (Real-Time Interrupt) which for Cassini-Huygens is about 
every 1/8 second. These errors are acceptable in terms of what IVP was designed for, 
but it needs to be shown that the errors are small in terms of SOI’s ECB algorithm. 

A straightforward approach for settling the issue is to simulate two energy-based 
cut-off algorithms, each with different computations of ?@); one that uses an analytically- 
propagated conic4 and another that uses IVP simulation data. Note that for both 

4except that there is no avoiding an iterative solution to Kepler’s equation 
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Error in Energy Cutoff ( d s ,  conic vs DPTRAJ V-no-Sol) 

10 30 50 70 90 110 130 l$ 170 
duration of delay (minutes) 

Figure 10: AKvtoff error (m/s) for a conic ECB, osculating at pericrone, vs. a 
DPTRAJ-no-SO1 ECB. Positive errors indicate that the conic ECB commanded too 
large a AV. 

ECB simulations, appropriate targets are computed, AEturget,contc and AEturge , , IVP .  

The AV error is then the difference in cut-off AV computed by these algorithms for 
various single-interruption cases. 

The data shown in Figure 11 are calculated as follows. First, AEtaTget,lvp and 
AEt,rget,con,c are computed. Then, a conic-based cut-off algorithm is simulated for 
each point in the (start-of-interruption time, interruption duration) grid, giving both 
tend,conzc and AVC,,, at each grid point using tend,cmzc as the burn-termination time. 
Next, P~vp( t )  . Z( t )  is integrated to  compute a AE, call it AEl,  at each grid point. 

tend,contc(a) 
? ~ v p ( T )  . a'(7)dT s t f f l Z l ( ~ )  ~ 

AEl(2) lo V I V P ( 7 )  . Z(7)dT + 
t / a d ( 2 ) + t d e l a y ( 2 )  

where tfuzl is the start-of-delay time and tdelay is the interruption duration. Note that 
the start/end-times of both integrals have to  be rounded to  the next soonest RTI; 
this is the aforementioned 1-RTI discretization. The cut-off time of the IVP-based 
ECB algorithm is estimated with 

( A E l ( i )  - AEtUTget,lVP) 
t e n d , l V P ( i )  tend,conic(i) - - 

VIVP (tend,conic( 2)) . z ( tend ,conic( i ) )  

where i indexes all the points in the (start-of-interruption time, interruption duration) 
grid. The AV error was also estimated linearly, using 
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Error in Energy Cutoff (mls, IVP vs conic) 

10 20 30 40 50 60 70 80 90 
duration of delay (minutes) 

Figure 11: Contours of AV cutoff error (m/s) for an IVP-based algorithm vs. a conic- 
based algorithm. Positive errors indicate that the IVP-based algorithm commanded 
too large a AV. 

A ~ v P ( ~ )  AVconic(i) + ( tend , lVP( i )  - t e n d , c o n i c ( i ) )  Ia(tend,ccmic(i))I 

It is AV~vp(i)  - AVCmic(i) that is plotted in Figure 11. 
The error shown is about 30 mm/s. The size of this error is, in large part, due to 

multiple 1-RTI discretizations. Each such discretization could be up to 1/8 sec, with 
an acceleration of 0.1m/s2, that's about 12.5mmls per discretization. Clearly, these 
discretizations are a primary contributor to the IVP propagation error. At the same 
time, this AV error is on the order of mm/s which is clearly acceptable. 

EULER QUADRATURE ERROR 

The baseline plan for the energy-based ECB algorithm is to use a simple Euler quadra- 
ture. Intuitively, this error should be small. That intuition is justified with a couple 
of back-of-the-envelope calculations. 

With Euler quadrature one may approximate the integral of some function s," f ( t ) d t  
as a summation over fixed-length intervals E,"=, f( t i )  ( ( b  - u)  / N )  where ti = u + (i - 
l)(b-a)/N. An upper bound on the error due to that approximation is (1/2)Nh2fL,,, 
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where N is the number of intervals, h is ( b  - u ) / N ,  and fk,, is maximum of the func- 
tion's first derivative over the integration interval. Using Nh = b - a; this can be 
re-written as (1/2)(b - u)hfL,. ( b  - u)  is about 95.5 minutes and h is one RTI, or 
1/8 seconds. 

However, fk,, requires a little more discussion. For the ECB algorithm, f = V-a', 
which gives 

- 

1P1 is p / ~  which is a maximum at closest-approach, when T is 805,000 km. So lplma, 
is about 6 x 10-3km/s2. liilwLaz is F/mcmxn, giving about 1 x 10-4km/s2. lklwLaz is 
only about 2 x 10-8km/s3. Finally, Ivlmaz is about 3lkmls .  If all the vectors lined 
up, then f;,, would be about 

(6 x x (1 x + 31 x (2 x lo-') M 1 x 10-'km2/s4 

Of course, the vectors don't quite line up and upon closer examination, a better 
approximation for f;,, is about 3 x 10-7km2/s4. 

Putting all of this back together gives (1/2)(b - a)hfkaz  = (1/2) x (96min x 
60s/min) x (1/8s) x (3 x 10-7km2/s4) M 1 x 10-4km2/s2. Given that the nominal 
change in energy is about 17.8km2/s2 and the nominal AV is about 626m/s, a rough 
scaling, 626m/s x (1 x 10-4km2/s2)/(17.8km2/s2), says that this is about 4mm/s 
error in AV. This error is much smaller than those accepted, already. 

IVP/ATE TIMING 

The design of the ECB algorithm ignores the 1/2 RTI mistmatch between IVP ve- 
locity data and ATE5 accelerometer data. There is a mismatch because, while IVP 
computes updates to the state of Cassini relative to Saturn every RTI, the accelerom- 
eter data from ATE is actually an accumulation of acceleration over the past RTI. 
One interpretation of the ATE data is that it represents the average acceleration, 
occurring 1/2 RTI ago, implying a 1 /2  RTI offset between the ATE and IVP data. 

An error of this sort should give it's largest contribution if AEtarget is computed 
assuming no mismatch or offset but, during execution, such an offset indeed con- 
tributes to the AEestimate, as computed via Equation 2. The easiest case to judge 
errors from is the nominal, without any restart or delay. We are interested in 
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where AEtarget is computed without the 1/2 RTI offset, AEestzmate is computed for 
the nominal burn duration but includes the 1/2 RTI offset, At is the step size; ti 
are the time nodes, and both summations include the same number of time nodes. 
The riglit-most expression is the upper-bound on the error introduced by the 1/2 RTI 
offset. That expression for the upper-bound is convenient because it only involvcs the 
maximum difference in acceleration profiles. 

Across one RTI, the dominate change in a' is due to rotation; at  0.008'/s for 
one RTI, thc rotation angle is 0.001". The lcngth la'( is roughly 1 x lOW4km/s2, so 
[.'(ti + RT1/2) - .'(ti)[ is approximately sin(0.001 x n/180) t ( 1  x 10-4km/s2) M 

2 x 1 0 - 9 k 4 ~ 2 .  so 

Given that the nominal change in energy is about 17.8km2/s2 and the nominal 
AV is about 626m/s,  a rough scaling, 626m/s x (3.5 x 10-4km2/s2)/(17.8km2/s2), 
puts this at about 12mm/s  error in AV. This upper bound is fairly conservative, a 
simulation6 of the algorithm suggests this error might only be 2 m m l s .  

CONCLUSION 

Obviously, there are a myriad important details The cut-off error for SO1 incorpo- 
rates several approximations. These include linearization (assuming that AVsor is 
small relative to the cronocentric velocity), use of two-body conic propagation in- 
stead of numerical integration, using on-board algorithms for conic propagation, and 
Euler quadrature. Also, the algorithm absorbs errors due differences between flight 
and ground software's modeling of burn direction and a slight timing offset between 
accelerometer data and conic propagation. Out of all of this, the largest error is 
M 2 m / s ,  due to linearizing the energy integral. 

The criteria typically used to evaluate such AV error is to evaluate the magnitude 
of the SO1 clean-up maneuver that would fix said error. The nominal SO1 clean- 
up location is two days after SOI, at which point SO1 magnitude errors scale by 
approximately 4.7 into SO1 clean-up magnitude. The 2 m / s  error above then becomes 
almost 10m/s at the clean-up location. Recall that this penalty is only paid if the 
burn is interrupted. In any case, an SO1 clean-up maneuver of 10m/s is a small 
enough fraction of the 130 m/s mission AV margin (95%). 
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