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Free flying, precision controlled satellite formations can be used to create 
scientific instruments with resolution capabilities that cannot be matched 
by monolithic spacecraft. Sensing and communication limitations create 
challenges in the design of the autonomous coordination and control sys- 
tems for such formations. Our work focuses on deep space formations where 
the formation is defined in terms of relative spacecraft positions. This pa- 
per discusses control and communication topologies that asynchronously 
distribute the sensing, communication and computation tasks amongst the 
spacecraft in the formation. Our approach allows the dynamic reconfigura- 
tion of the measurement and communication topologies while maintaining 
the specified formation performance objectives. An illustrative simulation 
example is presented. 

INTRODUCTION 
Precisely controlled formations of spacecraft can be used to synthesize optical and radio instruments 
of greater utility than could otherwise be achieved with a single monolithic spaceborne instrument. 
Interferometric imaging systems are one particularly challenging example and will be used here as 
the motivating application. These systems are of current interest and several interferometric flight 
projects, based on formation flying, have been studied including Darwin [l], LISA [2], Terrestrial 
Planet Finder (TPF) [3] and Starlight (formerly ST-3) [4]. Early work on spaceborne interferometers 
can be found in [5, 6, 71. 

We describe the interferometric imaging application (illustrated conceptually in Figure 1) and use 
this example as a motivating basis for more general formation control problems. Each spacecraft 
acts as a collector, reflecting light from the imaging target to a combiner spacecraft. The light from 
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Figure 1: Interferometric imaging configuration using multiple spacecraft in formation. Spacecraft 
separations, and the equivalent apertures, are of the order of tens to  hundreds of meters. 

any two collectors is combined at a detector and, if the optical pathlengths are held fixed and equal, 
an interference pattern can be measured. Each measurement of the amplitude and phase of this 
pattern amounts to a sample of the spatial Fourier transform of the image. Multiple measurements, 
using either multiple collectors simultaneously or repositioning fewer collectors, allow reconstruction 
of the image. The effective imaging aperture is a function of the collector separation. Formation 
flying can give effective apertures of the order of kilometers, resulting in resolutions that cannot be 
matched by any monolithic spaceborne telescope. Multiple collectors can also be used to create nulls 
in the spatial response of the array thereby enabling the imaging of dim objects adjacent to bright 
ones [8]. This is a promising technology for searching for planetary objects in other solar systems. 
See [9] for illustrative examples of interferometric imaging. 

This work focuses on deep space missions, where the formation is in heliocentric orbit rather 
than planetary orbit. A significant consequence of this is that the spacecraft can sense their relative 
position and not their absolute positions. The spacecraft in the formation are free flying and their 
dynamics are coupled only through the application objectives and measurements of relative space- 
craft positions and velocities. To maintain the performance of the formation in deep space missions 
it is necessary only to maintain the relative positions and absolute orientations of the spacecraft. 
Actuation for control purposes is performed on the individual spacecraft. 

The stringent optical path length constraint-in the tens of nanometers-is achieved by hierar- 
chical actuation. Depending on the application this may include moveable platforms, optical delay 
lines, and precision piezoelectric actuators on the individual mirrors. The optical path length require- 
ments translate into spacecraft relative positioning requirements in the micrometer to centimeter 
range [l, 31. 

The range of operation, and the bandwidth, of each of these actuation systems varies widely. The 
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actuator allocation design will depend on the specific details of the configuration. In this paper we 
focus on the formation flying level of the hierarchy and consider only generic actuation. We assume 
that the control system is able to exert a force suitable for positioning in three dimensions. Our 
emphasis is on the control topology at  the level of communication between the spacecraft, rather 
than the nested actuation heirarchy within a spacecraft. 

There are many possible topologies for the sensing, control, and communication within the 
formation. Communication bandwidths, synchronization constraints, and sensor capabilities af- 
fect the performance of any chosen topology. These issues have been studied; see, for exam- 
ple, [lo, 11, 12, 13, 14, 15, 16, 17, 181 for work on leader/follower and other topologies, and [19] on 
estimation topologies. 

Centralized or decentralized topologies can be considered for both the control design and the 
implementation. A centralized-or global-control design topology is one in which the actuation 
is calculated from information or measurements of all formation variables. A decentralized design 
implies that the control actuation for each spacecraft depends only on a subset of the formation 
variables. Decentralization is a matter of degree, and can be used to trade-off between formation 
performance and controller/communcation complexity. See [20] and the references therein for a 
discussion of decentralized control and estimation in spacecraft formations. 

Centralized or decentralized topologies may also be considered in the implementation. In a cen- 
tralized implementation all measurements would be sent to a single spacecraft, the required actua- 
tion calculated, and then communicated back to the individual formation members. An equivalent 
controller can also be implemented by having each spacecraft maintain a copy of that part of the 
controller which generates its actuation. Measurement information is then transmitted through the 
formation for use by the individual controllers. Communication bandwidth and synchronization 
constraints make it advantageous to reduce the communication of time critical information required 
between spacecraft. 

A formation-wide optimal control design problem, based on relative position measurements, is 
posed and solved. This gives a global, centralized control algorithm for formation control. We then 
exploit the redundancy in relative position information to develop a family of partially decentralized 
controller implementations of the optimal centralized controller. This also allows individual space- 
craft to switch asynchronously between relative measurement options, and this can be exploited 
when line-of-sight measurements and communication are unavailable during a maneuver. The aerial 
formation control work described in [21] is similarly motivated but develops decentralized designs 
which are not suited to reconfiguration. 

FORMATION CONTROL TOPOLOGIES 
Formation definition and sensing 
We begin by considering a typical formation and defining the notation associated with the various 
local and relative position and absolute attitude variables. Consider a formation of N spacecraft. 
For simplicity it is sufficient to define on each spacecraft a reference attitude, +i, i = 1,. . . , N ,  with 
respect to an inertially fixed direction, +ref. Figure 2 illustrates these definitions. 

We define a local inertial frame within which each spacecraft is located at position pi = [xi, yi, ziIT 
(where denotes transpose). The origin of this frame is not critical for the application we consider 
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Figure 2: Spacecraft formation: the local and relative position variables are shown. 

here. The relative position between each two spacecraft is defined as, 

Naturally, r i j  = --rji, and in an N spacecraft formation there are N ( N  - 1)/2 relative three dimen- 
sional distances that can be defined modulo the opposite direction equivalences. 

In deep space an accurate measurement of (xi, yi, z i )  is not available. It may be possible to 
obtain range and direction information with respect to Earth, but this will be accurate only to the 
order of kilometers. The r i j  variables can be precisely measured using GPS-based approaches or 
laser metrology. 

In constrast to absolute position, spacecraft attitude can be measured to very high accuracy. 
On-board star trackers are typically used to provide attitude information for each spacecraft, and 
these have typical accuracies in the range f l  milliarcseconds (mas) to f 2 0 0  mas. 

We define the formation in terms of the variables that can be accurately measured: the relative 
spacecraft positions and the attitude of each spacecraft, 

rij : i , j  = 1, . . . , N ,  i # j  
q+ : i =  1, ..., N .  

This definition does not locate the formation in any inertial frame but this is not critical for deep- 
space applications. Note that there is some redundancy in the above as the N ( N  - 1)/2 relative 
positions are not independent. We will exploit this redundancy in looking for control topologies that 
do not require all relative positions to be measured. 
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Figure 3: Relative position control design problem for an N spacecraft formation. The reference 
relative position command vector is denoted by c, and would be provided by a supervisory system. 

Formation control problem 
In the deep space mission application, each spacecraft is assumed to have a local measurement of its 
attitude. This means that correcting attitude errors can be viewed as a strictly local control problem: 
only local measurements are required to determine the attitude error, and only local actuation is 
required to attentuate the attitude error. Control of 4i can therefore be treated as decentralized, 
both in terms of design and implementation. For this reason we drop control of 4i from further 
consideration and focus on the more difficult problem of the control of r i j .  Figure 3 illustrates the 
relative position tracking problem to be considered. 

Using this framework, we pose a relative position formation design problem as follows. Given the 
collected spacecraft dynamics3, 

r j k = P ( z , u i ) ,  j=1, . . . .  N - 1 ,  k = j + l ,  . . . .  N ,  k # j ,  a n d i = l ,  .... N ,  

design a stabilzing controller, ui = K(c,,rjk), to minimize a formation objective cost, J ( r j k ,  u,). 
This is a centralized, or “global”, control problem in that it is specified in terms of the overall 
formation objectives, rather than individual spacecraft objectives. Problems such as this are read- 
ily handled by existing optimal control theory and supported by analysis and synthesis software. 
For example, K above may have been designed to meeting an 7-t, or I&/LQG objective for the 
formation. 

Switched measurement topologies 
The full set of relative position measurements contain redundancies that can be expressed as algebraic 
constraints. For example, 

rij + r j k  + r k i  = 0, for all i, j ,  k and at  every time t .  

3For notational simplicity we do not explicitly express the time dependence. For example, I denotes the vector 
valued time signal, z(t ) .  
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For the formation to be well defined these constraints must also apply to the relative position 
commands, c,.. 

This constraint can be expressed in the form, 

- I  I 0 . . .  

r =  [ ::: ] 4[ ”: = 1; O .I. ‘ i ’  :I 1 ” .  
- I  I P N  . . .  T N - I , N  P N  

The matrix C E R3N(N-1) /2x3N,  and in a state-space representation may actually be a submatrix 
of the state to output matrix. It has rank 3(N - 1) which means that it has a 3(N - 1)(N - 2)/2 
dimensional null space. Therefore there exists a matrix, M E R3N(N-1) /2x3(N-1)(N-2) /2  satisfying, 

or equivalently, M T P ( z , u )  = 0 for all u. This is a convenient method of expressing the algebraic 
reduncancies in the relative position measurements and we will use this to define a class of transfor- 
mation matrices that have the effect of removing specified relative measurements from the controller. 
This class of transformation matrices is defined by, 

H = I - x M ~ ,  (2) 

Tedious algebra shows that H has the effect of expressing some of the relative positions as linear 
combinations of the others. The H matrix has the effect of removing one or more ~ i j  measurements 
from the controller input. H can be viewed as a “switching” matrix which selects the particular r i j  

variables to be used in the controller. 
We give a three spacecraft example to illustrate this point. In this case, 

Amongst three spacecraft there are only two independent relative positions, and this fact can ex- 
pressed as, 

T where M1 = [ I -I  I 3’ is one choice. Now select X1 = [ I 0 0 ] and note that MFX1 = I .  
The transformation matrix, H I ,  is given by, 

H l = I - X i M , T =  
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and this gives, 

T13 - T23 

Note that ~ 1 2  has explicitly been removed. This effect can be seen more clearly when we consider 
KH1 for some controller K designed to use all three relative measurements4, 

K11 K12 

K13 ] [ ::; ] K2l K22 K23 

K31 K32 K33 T23 

Define = KH1 and consider the control action generated, 

0 K11 + Kl2 -K11 + K13 

0 K2l + K22 -K21 + K23 

0 K31 + K32 -K31 + K33 

K11 + K12 -K11 + K13 

== [ K2l + K22 -K2l + K23 ] [ ;:: ] . 
K31 + K32 -K31 + K33 

The trans 'rmation HI has the effect of removing the measurement rI2 from the con - ,oiler. There are 
other obvious choices for X1 which would remove one of the other relative position measurements. 
The method is independent of the null space characterization, Mi. A different Mi would simply 
require a different Xi to achieve the same result. 

Equivalent formation control topologies 
Before proceeding we will extend our class of transformations. Partition the identity matrix into q 
block diagonal pieces via, 

4 

I = ~ E ~ .  (4) 
i=l 

Now define the transformed controller via, 

4 

K = E ~ K H ~ ,  (5) 
i= 1 

where the Hi are matrix transformations of the form, Hi = I-XiMT. This has the effect of grouping 
the controller outputs into q disjoint groups, and applying a different input transformation, Hi, to 
each. 

*Both this section and the next consider K to be only the part of the controller in the feedback loop. 
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We show in [22] that for all controllers K defined in this way, K P  = K P .  A further consequence 
of this is that the entire family of controllers defined by (5) achieve the same global optimal formation 
reference tracking stability and performance. Note that this is true even though P K  # P K  and 
k # K .  The family of controllers, I? differ from each other in the particular r,j measurements that 
they use to implement the control. 

One such I? represents a particularly interesting topology for formation flying. We define this 
topology as follows. 

Definition 1 A control topology in which all actuation signals depend only on relative measurements 
with respect to the actuation location is termed a local relative control topology. 

In our application this topology means that all control calculations can be performed locally, 
based only on local relative measurements. In other words, the calculation of the actuation, ui, 
depends only on rij, j = 1,. . . , N ,  j # i. It does not depend on rkj when IC # i and j # i. This 
topology can be implemented without any communication between the spacecraft. It is interesting 
to note that one consequence of this is that their always exists a local relative control topology that 
can achieve the global optimal objective. 

The local relative topology has practical implementation advantages. The most significant is that 
it does not require measurement or state information to be communicated between the spacecraft. 
This can remove the need to synchronize the spacecraft timing at the control implementation level, 
and can remove one of the potential bandwidth constraints in the formation control problem. Note 
that some communication will still be required for supervisory tasks. In some hardware implemen- 
tations the distinction between relative measurements and communications is not as unambiguous. 

It should be noted that this work addresses control topologies, and not estimation topologies. 
While the tracking response of each topology is equivalent, the noise response may not be. An 
estimator may derive additional benefit from non-local measurements. 

The local relative topology is best suited for implementation with a small number of spacecraft. 
At some point the cost and complexity of a large number of relative measurements outweighs the 
disadvantages of communicating measurements and state variables between spacecraft. 

Several situations may arise where the control topology must be reconfigured during operation. 
Examples of this include failure of a sensing system and failure of a communication link. In such 
cases one or more of the measurements, rij, is unavailable for control. A transformation matrix, 
H j ,  can be calculated and applied to the global controller to recalculate a new equivalent topology 
that does not use the unavailable measurement. The new topology will, in general, require some 
communication between the spacecraft. While Hj  is simple to  calculate “by hand”, the algebraic 
approach taken here allows for automatic recalculation in the case where multiple measurements are 
unavailable. Notice also that controller redesign is not required for this eventuality. 

Furthermore, since the reconfiguration is algebraic rather than dynamic, there are no transient 
dynamics associated with changing topologies. For example, given two topologies, calculated by, 

u l ( t )  = K H l r ( t )  and u2(t)  = KH2r( t ) ,  

the controller outputs u l ( t )  = 212(t) for all t .  As a result we can switch between controllers KH1 
and KH2 without a transient in u(t). 

Reconfiguration may be required as a result of the formation pattern itself. If both the communi- 
cation and relative sensing require line-of-sight contact, the local relative topology may be unfeasible 
during portions of a formation maneuver. The design example presented in this paper illustrates this 
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case, and shows how asynchronous switching between topologies maintains control of the formation 
during maneuvers. 

RELATIVE POSITION BASED CONTROL DESIGN 
Using relative sensing as the basis for control design allows flexibility in the choice of measure- 
ment and communication topologies. We now consider the problems that arise as a result of this 
architectural choice, and provide design methods for developing optimal formation control systems. 

We consider a linear, state-space description of the spacecraft dynamics, 

i = A x + B u ,  T = [  C O ] x .  

Because the spacecraft are not physically coupled, A and B have a sparse block structure. The 
output matrix, C, gives the relative position measurements, effectively coupling the spacecraft. 

State feedback 
The first obstacle to design is that the state, x ,  is not fully observable from the relative position 
measurements, T. Physically, the unobservability arises from the fact that the position and velocity 
of the formation centroid cannot be determined by relative position measurements. To obviate this 
complication we use a similarity transformation of the state, T x  = [ zT vT ] ', to give, 

where (C,,,A,) is observable. We note that the observable part of the dynamics, 

V = A , v  + B,u, T = C,V, 

can be used to design a formation controller using relative position measurements. Various control 
design methods can be applied at this point. We develop one based on Linear Matrix Inequality 
(LMI) optimization [23] for estimator and state-feedback design. 

The state-feedback design problem is formulated in terms of finding a controller that drives all 
states within an initial ellipsoid, VO = { v I vTV0w < 1, VO = VT > 0 }, to zero with a bounded cost 
given by, 

2 2  
Ilwv.ll; + llWuuI12 I 7,. 

Note that we have chosen to  independently penalize both the state error and the control action via 
the symmetric positive definite weighting matrices W, and W,, respectively. Finding the minimum y, 
gives the optimal controller for this metric. The controller is given by the following LMI optimization 
problem. 

min y, subject to: y, > 0, Q = QT > 0 ,  
YYVQ~Y 

0 w,-2 

-(QAZ + AVQ + YTB,T + BUY) 
YT 

Q 
and [ Q 
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The required state-feedback controller, u = Kv, is given by K = YQ-l. Note that the initial state 
ellipsoid Uo can be obtained by a transforming an ellipsoid in the original physical variables, and so 
the weighting matrices are directly associated with physically quantifiable objectives. 

The state, v, must be estimated from the relative position measurements, r. Our formulation 
guarantees the observability of v and we can use a completely analogous dual LMI problem to design 
an estimator gain matrix, L. For brevity we omit the details of this formulation. 

Reference tracking controller design 
We now construct a reference tracking controller from the above estimator/state-feedback design of 
L and K that exploits the redundancy in the relative position reference command. 

We begin by using a singular value decomposition (SVD) to determine a (non-unique) matrix M 
satisfying M T r  = 0. The SVD will give a representation for C,, of the form, 

and M = U, is one suitable choice. Given a commanded relative position, c,., we wish to find 
a matrix, N,., that gives a desired stationary state, v, = N,. c,., such that the system holds the 
commanded relative position vector (i.e. C,, v, = c,.). We exploit the fact that c,. must specify a 
valid formation, i.e. MTcr = 0. 

These requirements can be shown to be equivalent to the conditions, AUNT = 0 and C,,N,. = 
( I  - M M T ) .  Any N,. satisfying the equation, [ AT I - M M T  ] meets these 
requirements. The complete relative position reference tracking controller is now given by the state- 
space representation, 

C,' ] N,. = [ 0 

s = [ A , + B , K + L C , , ] G  + [-B,KN,.  - L ] [ " , ' ]  

where 6 is the controller state (or equivalently, an estimate of the observable part of the system 
state, v). 

Exploiting Input Redundancies 
In deep space, the linear model of an individual spacecraft's dynamics is essentially a double inte- 
grator. Force actuators-typically thrusters-are used for the control inputs, and these may have 
additional dynamics associated with them. If each spacecraft has zero order or identical first order 
actuator dynamics, then the input control space contains an additional degree of freedom. Note that 
if the actuators are reasonably similar, servo loops can be used to give each spacecraft equivalent 
actuation dynamics. We now demonstrate how this additional degree of freedom can be exploited 
to achieve other formation objectives. 

Under the above assumptions, B, has reduced column rank. The key insight is that we need only 
control N - 1 of the spacecraft in order to control all of the relative positions defining the formation. 
This means that there is a matrix, B l ,  satisfying B,Bl = 0. An SVD can be used to calculate this 
matrix, and we can define a projection, ( I  - B I B I T ) ,  such that, 

B,(I - B I B I T )  u = B, u and B,(I - B I B I T )  u = 0.  
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Note that the projected control input, ( I -  B ~ B I ~ )  u, drives the observable state, w, in the intended 
manner, but does not directly drive the unobservable state, z ,  which contains the dynamics of the 
centroid of the formation. If A,, # 0 the unobservable states may still be driven indirectly through 
the state w. The subsystem, (A, ,B,Bl ) ,  may not be completely controllable as some part of the z 
state may originally have been controllable only via A,, and B,. Any uncontrollable part of z can 
be removed via a truncated similarity transform. For simplicity we assume that this has been done 
and omit the details. Any control signal of the form u = Blv directly drives the z part of the state. 
We can therefore calculate control actuation signals of the form, 

which allow us to control the z and w components of the state independently. The input u controls 
the formation in the manner given in the previous sections and 77 can be considered as a control 
variable for the formation centroid (and other common unobservable states). We now give two 
practical uses for this control degree of freedom. 

Minimizing formation fuel consumption 
The input null-space control variable 77 can be chosen to minimize the total formation fuel use. At 
each time instant, given the formation actuation command u, we calculate 77 as the solution to the 
following linear program. 

N 

If actuator servo loops have been applied on each spacecraft then the ui represent commanded 
thrusts and these are only approximately equivalent to the fuel used on each spacecraft. Note that 
this approach minimizes the total formation fuel consumption for a given controlled maneuver. It is 
not necessarily a solution to the problem of finding the minimum fuel maneuver between specified 
formation configurations. One of the two examples considered in design example uses this form of 
input null-space control. 

Control of the formation centroid 
We now consider the problem of using the variable 7 as a means of controlling the formation centroid. 
The dynamics of the unobservable state can be expressed as, 

t = A , z  + A,, w + B,Blq. 

We again take the approach of separating this control problem into a estimator and state-feedback 
design. The lack of observability of z means that the estimator is now open-loop and given by the 
marginally stable z dynamics above. 

Our control of z is implemented via 77 = -K, i ,  where 2 is an estimate of z.  The objective can 
again be specified in terms of driving all z in an ellipse, z E 20 = { z I zT20z  < 1, 20 = ZF > 0 }, 
to zero with cost bounded by, 
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This gives an LMI problem identical in form to that used to solve the state feedback problem. This 
approach is a simple solution to the problem; we may wish to  obtain higher performance by taking 
advantage of the estimate 6 in accounting for the disturbance to z (i.e. in the case where A,, # 0). 

This input null-space controller can now be integrated into the previous reference tracking con- 
troller. The final controller for the ith spacecraft is expressed as, 

A,  - B , B ~ K ,  A,, + B,(I - B ~ B ~ ) K )  [:I = [ 0 A,  + LC, + B,K 
-B,(I - B ~ B ~ ~ ) K N ,  

+ [ -B,KN, 

The Hj  matrices define the input switching of the relative position measurements. These can be 
precalculated, Ho = I, H I  = XIM1, .. . , Hj  = I - X j M T ,  and applied to switch between 
locally measured or communicated relative position measurements. The switching between the Hj 
measurement matrices can occur independently and asynchronously between the various spacecraft 
controllers. That is, the spacecraft need not use identical topologies. 

This controller implements both control objectives (precise control of relative positions via state 
feedback on 6, and open-loop control of the formation centroid via feedback on E )  in a manner 
which ensures that the objectives do not interact. This input decoupling approach could equally 
well be used to  implement lower bandwidth and/or lower resolution feedback control of the formation 
centroid if a lower precision measurement of absolute position was available. 

A DESIGN EXAMPLE 
We illustrate the application of measurement switching, optimal relative state control design, and 
input null space control on a four spacecraft, two-dimensional, example. Each spacecraft is modeled 
in each dimension as a double integrator with first order actuation dynamics. To illustrate the most 
general application of the input null space control we consider the case where each spacecraft has 
identical actuation dynamics (1.0 second time constant). The spacecraft masses are not identical 
and are specified as 300, 310, 280 and 280 kg. 

The control will maneuver the spacecraft from an initial position-in an arbitrary (z,y) frame- 
of a square 200 meters on a side, rotating clockwise at 0.003 rad/second, to a non-rotating line in 
the y direction with 200 meters separation. The initial and final formation specification, and the 
measurement vector, consists of 12 relative positions (6 in each dimension). Each vehicle begins the 
maneuver using the local relative control topology. The maneuver is such that line-of-sight contact 
is lost between various spacecraft a t  seven instances (including the final position), and at these 
times the affected spacecraft employ relative measurement switching to accomplish control of the 
maneuver. 

We consider two controllers with differing objectives for the input null space control. The first 
maintains the estimated formation centroid at  the same position throughout the maneuver. The 
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Figure 4: Absolute frame x-y plot of the trajectories for the centroid and minimum fuel controllers. 

second allows the centroid to  move to perform the maneuver with minimum fuel consumption. In 
each case, the relative positions track identical trajectories. 

Figure 4 illustrates the x-y plane motion of each spacecraft for each of the two input null space 
control options. In absolute coordinates there are significant differences in the trajectories, and in 
the final positions. The minimum fuel controller uses 3.1% less fuel illustrating that maintaining the 
centroid invariant is reasonably efficient, but not optimal. The instances where measurement vector 
switching occurs, and the measurement topology that each spacecraft uses, are given in Table 1. 

Figure 5 illustrates the six relative distances during the maneuver. Each can be associated with a 
measurement/communication link, and the times at which these links are occluded is also illustrated. 
Note that the relative positions (shown in Figure 5 ) ,  and the information switching instances (given 
in Table 1) are identical for both the centroid control and minimum fuel control cases. 

Each spacecraft has sufficient information to reconstruct the relative paths of all of the other 
spacecraft, predict when specific measurement and communication links will be occluded, and de- 
termine a switching strategy using the remaining available links. The control design is optimal with 
respect to the chosen formation-wide criteria, and in this instance there is sufficient freedom in the 
input null space to allow additional control objectives. The maneuver demonstrated required relative 
information to  be communicated between spacecraft. This is not always the case; simpler maneuvers 
may be accomplished without interspacecraft communication or topological reconfiguration. 
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Figure 5:  Spacecraft relative distance vector, ~ i j ,  for centroid and minimum fuel controllers. Dotted 
lines indicate relative links that are occluded by intervening spacecraft. 
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I Time I Link I Measurement Topology ~ ~~~~ ~ 

I (set.) I Occlusions I S I C 1  SIC2 

I I and sIc3 1 1  

Table 1: Relative position vector switching instances. The measurement/communication link is 
considered to  be occluded if the edge of an intervening 2 meter radius spacecraft comes within 
10 degrees of the line-of-sight. Superscripts * and t denote information communicated via one and 
two links respectively. 

CONCLUSIONS AND FUTURE RESEARCH 
Relative position based specifications are a suitable choice for deep space formations where absolute 
position measurements are inaccurate or unavailable. The redundancy in a relative postion based 
design allows the development of a family of equivalent formation controllers, where each spacecraft 
may use different relative measurement vectors. Some of these vector components may be com- 
municated from other spacecraft. The freedom in selecting amongst multiple topologies allows the 
optimal formation control to  be maintained under reconfiguration when certain measurement and 
communication links are no longer available. An input null space control approach has been out- 
lined, and it allows the formation to  simultaneously achieve other objectives in a decoupled manner. 
The minimum fuel controller is one such example. 

If data communication latency is significant, the switching between measured and communicated 
information may require a more detailed stability analysis. This is an area of future research, 
including formation control methods that are robust to potential communication latencies. 

Our approach essentially employs a transformed state estimator in each spacecraft, and this allows 
each spacecraft to reconstruct the controls and trajectory of all other spacecraft. This can be done 
with only N - 1 relative spacecraft measurements. However, it may be possible to improve the 
accuracy of the internal estimators by transmitting additional information around the network, and 
this is also an area of research interest. 
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