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Abstract 
Planetary science missions, such as those that explore Mars and Saturn, employ a variety of spacecraft such as orbiters, 

landers, probes, and rovers. Each of these kinds of spacecraft depend on embedded real-time control systems-systems that 

are increasingly being asked to do more as challenging new mission concepts are proposed. For both systems engineers and 

software engineers the large challenges are in analysis, design and verification of complex control systems that run on 

relatively limited processors. Project Golden Gate-a collaboration among NASA’s Jet Propulsion Laboratory, Sun 

Microsystems Laboratory, and Carnegie Mellon University-is exploring those challenges in the context of real-time Java 

applied to space mission software. This paper describes the problem domain and our experimentation with the first 

commercial implementation of the Real Time Specification for Java. The two main issues explored in this report are: (1) the 

effect of RTSJ’s non-heap memory on the programming model, and (2)  performance benchmarlung of RTSJLinux relative to 

C++/VxWorks. 

1. Introduction 
The Jet Propulsion Laboratory (JPL)-part of the California Institute of Technology-serves as NASA’s lead center for the 

robotic exploration of space. Many of JPL’s past missions have been orbiters and fly-by spacecraft controlled in an open-loop 

manner using time-based sequencers, with Earth-in-the-loop decision-making expressed in the form of new sequences 

transmitted to the spacecraft. Increasingly, though, NASA’s missions require in situ explorers (such as Mars rovers), where 

many decisions cannot await a 20-40 minute round-trip light-time delay between Earth and Mars. These in situ explorers will 

typically contain many closed-loop control systems, performing and coordinating multiple concurrent science and engineering 
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activities. Furthermore, the larger amount of software-based capabilities intended for these robots has raised a higher level of 

concern about system design and software reliability. 

As a federally-funded research and development center, one of JPL’s roles is to actively explore new technologies that help 

NASA accomplish its challenging space missions and help advance practices in the aerospace industry. The Java 

programming language was one such technology, of interest because of its simpler object model and automatic memory 

management, though clearly not suited for real-time applications. However, the formation of the Real-Time Expert Group in 

1999 and its development of the Real-Time Specification for Java (RTSJ) marked the beginning of particular interest at JPL, 

led by Kirk Reinholtz. Even prior to the emergence of RTSJ v1.0, JPL and Sun conducted a study of Java for flight software, 

and that study identified several areas of concern where additional data was needed. As RTSJ matured and its reference 

implementation became available, the time came for a more in-depth evaluation. 

In 2002 Project Golden Gate was formed as a collaboration among JPL, Sun Microsystems Laboratory, and Carnegie Mellon 

University (CMU). All three partners shared an interest in RTSJ and each brought different interests and skills to the 

collaboration. JPL brought knowledge of a challenging problem domain and expertise in information and control architecture 

for autonomous physical systems. Sun brought deep knowledge of Java, RTSJ, and real-time scheduling theory. CMU brought 

expertise in Java and in high-dependability computing. This active collaboration is now in its second year, as described in this 

paper in terms of significant issues and current results. 

2. Problem Domain 
2.1 Robotic Space Vehicles 

Compared to many systems built for use on Earth, planetary space missions have several unusual properties that affect system 

design. The first two properties-long time delays and low data transmission rates-are unavoidable consequences of physics 

and the vastness of outer space. The round-trip light-time delay between Earth and Mars, for example, varies between 20 and 

40 minutes depending on the relative positions of the planets; the delay with Pluto is over 9 hours. This means that space 

vehicles operating far beyond Earth orbit must be somewhat autonomous, able to maintain spacecraft health and accomplish 

science goals without human intervention for long periods of time. Another factor that adds to the need for autonomy is that 

the Earth-based facilities for communicating with such spacecraft, known as the Deep Space Network [lo], are 

oversubscribed resources; there are many more active spacecraft than deep space antennas, so communication is scheduled 



only for specific time windows. As a result, data destined for Earth must be stored on the spacecraft until the next 

communication opportunity. 

The second property-low data transmission rates-arises from the inverse square law for power radiation, which says that 

received signal power decreases as the square of the distance between transmitter and receiver. Information theory also tells 

us that channel capacity depends on signal-to-noise ratio (SNR), and since SITR decreases with distance, low data rates are the 

result. One way is to improve SNR is to increase the power of the radiated signal, but that’s not an option for most spacecraft 

since they are power-limited. As a result, data transmission rates decrease rapidly with increasing distance from Earth. For 

example, one design for a mission to Pluto yielded a 300 bps “downlink” from the orbit of Pluto to Earth. Such low data rates 

mean that communication bits must be used wisely. Since instruments on modern spacecraft are capable of acquiring far more 

data than can be sent back to Earth, hard choices must be made about what data to send to Earth. 

A third property of planetary space missions is that flight processors are generally years behind their commercial counterparts 

because they must be radiation-hardened. The economic reality is that “rad-hard” versions of commercial processors come 

into being only every few years. By the time they are produced they are already lagging, and by the time they are flown, they 

are even further behind. As a result, CPU cycles are often a limiting resource in space missions. Flight software is usually 

custom-made to be frugal in CPU cycles and memory. 

Finally, a fourth property arises from the economics of space missions. One of the biggest cost factors in deep space missions 

is the launch vehicle, which is sized to the amount of mass being launched and the required trajectory. This cost pushes 

designers to reduce mass as much as possible. That means reducing the size of batteries and solar panels, reducing the amount 

of propellant, eliminating articulation mechanisms (such as camera and antenna gimbals), reducing electromagnetic shielding, 

etc. To exaggerate just a bit, the net result is that “everything affects everything”; resource margins are small, making 

spacecraft control a delicate balancing act, trying to accomplish mission objectives without violating any constraints and 

without oversubscribing any resources. Spacecraft software is complex because it has to monitor and manage all these 

interactions. 

2.2 Real-Time Control Loops 
Project Golden Gate has focused much of its attention on real-time closed-loop control of physical systems. Such control 

systems are designed for continuous operation, interacting with the real world through sensors and actuators. In our case, 

these are embedded control systems that live within the resource-limited world of planetary rovers and spacecraft. As Figure 1 



shows, in the problem domains of interest to P L ’ s  missions, control loop frequencies vary considerably from a few Hertz up 

I 

into the kilohertz range. Design difficulty grows with the frequency and number of control loops that run on a single 

I 

processor. 

Because of comparatively slow flight processors, current engineering practice at JPL usually involves of lot of performance 
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Figure 1. SofhYare control loop frequency in Hz 

evaluation and hand-tuning of software. For example, the Cassini spacecraft’s processor for the attitude control system 

normally runs at 60-70% utilization, with expected periods of 80-90% load. This stands in sharp contrast to some automotive 

control systems where processors are sized to keep utilization below 20%. 

3. Rocky 7 and MDS: A Research Platform 
3.1 The Rocky 7 Rover 
Project Golden Gate’s work has focused in part on designing and developing software for driving and steering “Rocky 7”, a 

research rover at JPL. Although Rocky 7 will never go to Mars, it is outfitted with the kinds of sensors and actuators that exist 

on real Mars rovers. In fact, the design of Rocky 7 helped shape the design of Sojourner, the rover that landed on Mars in 

1997 as part of the Mars Pathfinder mission. The rover hardware includes six driving motors, two steering motors, three joint 

motors for the camera mast, two joint motors for the instrument arm, three stereo camera pairs, a camera frame grabber, a 3- 

axis accelerometer, a 1-axis gyroscope and a wireless data link. As such, Rocky 7 serves as a realistic test-bed for 

experimentation. 



The rover’s processor is a 300 MHz PPC 750 with 256MB RAM (upgraded from the 

original RAD6000 processor used on Mars Pathfinder). The operating system is 

TimeSys Linux RTOS [9], a low-latency version of Linux, and the virtual machine 

running on top of that is TimeSys JTime’, the first commercial implementation of 

RTSJ. The work reported herein occurred as the team designed control loops for 

driving the Rocky 7 rover, taking pictures periodically with the hazard cameras, and 

transmitting telemetry to a base station. 

3.2 MDS Architecture 
The design of our control systems is governed by the architecture of the Mission Data 

Figure 2. Rocky 7 rover at work in 
the JPL Mars Yard. 

System (MDS), an information and control architecture that emphasizes explicit representation of physical states (both 

continuous and discrete states), explicit models of hardware and physical effects, separation of estimation and control, and 

goal-oriented operation that enables varying levels of onboard autonomy [4]. 

As shown in Figure 3, real-time control loops in MDS involve 

four kinds of components: hardware adapters, state variables, 

estimators, and controllers. There is a hardware adapter for 

each controllable hardware unit, and each one provides 

software interfaces for sending commands and obtaining 

measurements. A state variable is a component that holds 

information about a physical state (such as rover position) and 

measurements 

Hardware Adapter 

Figure 3. A simple hard real-time control loop in MDS 
involves data flows among four components. 

whose value history is made available as telemetry. An estimator interprets measurements from potentially multiple sensors in 

order to generate state estimates. A controller compares current state estimates to a ‘goal’ (a constraint on the value of a state 

variable over a time interval) and issues commands to actuators, as needed, to influence a physical state. 

The dominant data flow around a control loop involves four flows: controllers query state variables for state estimates; 

controllers submit commands to hardware adapters; estimators query hardware adapters for measurements; and estimators 

update state variables. The main challenges in software design for hard-real-time control loops using the RTSJ involve 

appropriate use of non-heap memory for these four data flows, as described in section 4. In our case, coordinated control of 

’ JTime is a registered trademark of TimeSys Corporation. 



the 6 driving motors and 2 steering motors on the Rocky 7 rover involved nine control loops. A more complete rover software 

implementation would include additional control loops for the camera mast and padtilt mechanism, robot arm and 

instruments, uplink and downlink communications, and picture-taking with stereo cameras for both navigation and hazard 

avoidance. 

4. RTSJ Programming Model 

[ Note to reviewers: I t  wasn’t clear to me how much background material about RTSJ that I should include for this audience. 
I can include a lot more $desired, as provided in reference 12. ] 

4.1 Scheduling Interface 

An overarching theme of the MDS architecture is to elevate cross-cutting concerns into “architecture space” where they can 

be seen and managed in a coherent way, not left as a later problem for system integration. The RTSJ’s well-defined 

scheduling interface fits this theme well. First, it emphasizes analysis and design based on explicit timeliness requirements. 

Priority assignments may be a way to satisfy certain requirements, but priorities themselves are not the requirements. Second, 

the notion of release characteristics-i.e. cost, deadline, minimum inter-arrival time, cost overrun handler and missed deadline 

handler-as well as schedulable types-RealtimeThread, NoHeapRealTimeThread and AsyncEventHandler-help 

newcomers to real-time programming approach design in a disciplined way. Third, the concept of feasibility analysis is 

important not only at runtime but also at design time. Systems engineers can keep track of schedule feasibility even in early 

stages of design, using rough estimates of release parameters and refining those values as design and implementation proceed. 

In short, the scheduling interface of RTSJ is an important contribution. 

4.2 Memory Management 
Automatic memory management is one of the biggest benefits of the Java programming language relative to C++. This 

capability, achieved through automatic garbage collection, eliminates a significant source of programmer error, enabling 

larger applications to be developed with fewer defects. A price for this benefit is that a thread’s execution time and response 

latency is non-deterministic because the garbage collector can preempt application execution at any time. This fact precludes 

highly predictable real-time execution in ordinary Java. 

The RTSJ addresses this limitation through facilities that enable application logic to execute without interference from the 

garbage collector. The key idea is to provide new kinds of Runnable that are guaranteed not to access heap memory. Such 

Runnables can preempt the garbage collector at any time and thus run with high temporal determinism. Of course, these 

Runnables need some kind of working memory, so the RTSJ provides two kinds of non-heap memory: scoped memory and 



immortal memory. Objects allocated in immortal memory persist for the life of the application, so the only way to reuse such 

objects is to write new values into them. Objects allocated in scoped memory persist only until the scope is emptied, which 

occurs when all threads exeunt the scope. Table 1 shows what kinds of threads are allowed to allocate objects in the different 

kinds of memory areas. These new memory areas come with VM-enforced “assignment rules”, as shown in Table 2, to ensure 

that the garbage collector’s business is separated from hard real-time activities. The net result is that, when programming hard 

real-time activities, RTSJ programmers cannot follow the normal Java practice of allocating heap objects and passing around 

references, expecting automatic reclamation by a garbage collector. Further, they must consciously size these new memory 
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Consider again the hard real-time control loop depicted in Figure 3. For each execution of a component, it may generate 

internal transient data that never leaves the component, it may need to save some data that persists across executions, and it 

may also read and/or write data to other components. Since heap memory cannot be accessed by a NoHeapRealtimeThread, 

the solution must involve scoped memory and/or immortal memory. 

Yes, if same, 
outer or shared Yes Yes 

In RTSJ there is a single instance of ImmortalMemory and all threads can gain access to it by calling a public static 

i n s t ance  ( ) method. In contrast, there can be many instances of ScopedMemory. A NoHeapRealtimeThread is a kind of 

java.lang.RunnabZe, and it gains access to a specific ScopedMemory either via constructor argument or via a call to the 

memory area’s e n t e r  ( ) method. As a Runnable, when its run method is called, all allocations come out of that scoped 

memory area until it completes the run method or until it enters another scoped memory area. When all Runnables exeunt a 

scoped memory area, the scope will be emptied before being entered again (all objects finalized and discarded). 



In our design each component has its own memory area, which we call a scoped memory scratchpad. The component’s run 

method is called in the scope of the scratchpad memory area. When that component calls another component to get data, the 

called component can do a new to allocate an object to return, and that object is placed in the caller’s scratchpad since the 

scratchpad was the last entered memory area. When the call returns, the caller must either finish with the returned object or 

copy it into a more persistent area before finishing the run method. In the latter case, we give the component access to a 

memory pool allocated in immortal memory. The component must obtain an unused object from the pool and copy the data 

into the pool object. At some later time, when the pool object is no longer needed, it must be released back to the pool. 

By using a wrapper on the component that handles the mechanics of entering the scope, the component’s logic need not be 

aware that it is running in the scope of a scratchpad memory area, or even that it is running under a RTSJ-compliant VM 

instead of a regular JVM. It must however not keep references returned from an interface call and expect them to be valid the 

next time the component is run. Components that receive data by being called must only satisfy the requirement that they not 

hold onto a reference received in the call; if they need to have the object after returning, they must copy it. To avoid memory 

allocation a restricted pool is used per component for this copy. 

We selected scoped memory scratchpads as the best combination of agreeable Java style, safety from programmer error, and 

real-time determinism. Scoped memory is “agreeable” in the sense that Java programmers can allocate and manipulate objects 

in a familiar manner (using ‘new’), without GC interference, but they must be cognizant of memory access restrictions and 

they must ensure that all threads exit the scoped memory in order to empty it. Scoped memory scratchpads do depend on 

programmer discipline to ensure that all threads exit a scope in order to empty it, but this aspect can be handled in framework 

code, rather than application-specific code. Although restricted memory pools are still used in conjunction with the scratchpad 

approach, and thus require the discipline of releasing objects back to the pool, all of the pool management is confined to a 

single component and is thus much easier to design and verify. For more details, see [ 121. 

4.3 Thoughts on Real-Time Garbage Collection 
One objective of the JSR-1 expert group that shaped the RTSJ was to bring real-time programming to Java programmers, but 

the programming model raises a hurdle. The RTSJ’s ability to satisfy demanding timeliness requirements requires a 

significant change in the programming model enjoyed by Java programmers everywhere. However, for suitable applications, 

real-time garbage collection would enable programmers to apply the normal Java programming model, and thus avoid all the 

issues and complications discussed above. The key, of course, is whether an application’s timeliness requirements and rate of 



garbage production is compatible with a collector’s execution overhead and worst-case latency. For example, the Metronome 

real-time garbage collector can achieve 6 ms pause times with 50% CPU utilization [13]. Clearly, such technology will be a 

better answer for some applications than trying to deal with scoped memory and immortal memory. Unfortunately, given that 

CPU cycles are a limiting resource in most planetary space missions, this technology is not an obvious answer for JPL. 

Still, there are other approaches. It’s important to note that flight software is highly engineered, not off-the-shelf, so it’s 

reasonable to make memory management a more conscious part of design. Just as Lisp programmers learned long ago, Java 

programmers can learn to write code that is either garbage-free or very low and predictable in garbage production. Also, for 

some applications, there are perfect times for garbage collection. For example, a Mars rover can periodically “park”, and if it 

can force garbage collection at those times, then it can avoid unexpected latencies while driving and taking science 

observations and communicating with Earth. The trade space here runs from fully automatic memory management (a la Java) 

to mixed automatic/manual memory management to completely manual memory management (a la C/C++), with performance 

and verifiability as top concerns, often at odds with each other. Better analysis tools may help us achieve both. 

5. Performance Benchmarking 
Given the comparatively lower performance of radiation-hardened flight processors, any new software technology such as 

RTSJ and Linux will be scrutinized with respect to its effects on CPU and memory usage. In the case of flight projects at JPL, 

this means comparing it to the current dominant software platform, namely, the C/C++ language running on the VxWorks 

real-time OS. As a result, we have focused our early benchmarking efforts on measurements that are comparable between the 

two platforms. These measurements include timing jitter, application throughput, memory usage, and overhead related to I/O. 

Preliminary results are summarized below. All tests were conducted on a PowerPC 750 running at 300 MHz with 256MB 

RA&I and 1MB L2 cache. The Java data collection programs were run on the TimeSys JTIME Platform without using the 

ahead-of-time (AoT) compiler since it wasn’t available at the time. The C++ data collection programs were run on the 

WindRiver’s VxWorks (5.2) platform with the ACE operating system wrapper. 

[ Note to reviewers: We expect to have updated results with AoT and with OVM by the time of the conference. ] 

5.1 Timing Jitter 
The jitter experiment was designed to determine if there was any significant difference in jitter of thread dispatch between the 

TimeSys JTIME (RTSJ) platform and the WindRiver VxWorks (C++) platform. Each data collection run consisted of a 

single, high precision, periodic test thread with zero or more non-precision background threads performing random allocation 



of memory blocks ranging from one byte to one kilobyte in size. Results showed that the two platforms were comparable. As 

expected, RTSJ’s RealtimeThreads exhibited much more jitter than NoHeapRealtimeThreads due to latency introduced by the 

garbage collector. 

5.2 Throughput 
The throughput experiment separately measured floating-point and integer operations throughput. As expected, given the lack 

of an ahead-of-time compiler for RTSJ, the C++ performance was much better. Specifically, the ratio of RTSJ to C++ 

execution time was 4.73 for logical shifting operation, 4.28 for integer arithmetic operations, and 2.24 for floating point 

operations. We will rerun these tests later with the AoT compiler. 

5.3 Startup Delay 
High-energy particles in outer space can cause “single event upsets” in a processor, causing the processor to raise a machine 

exception or freeze. Recovery involves rebooting, and the length of time that that takes can make the difference between a 

temporary glitch and a mission-ending failure. The quicker the processor can start running application code and recovering its 

state, the better. To our surprise, C++/VxWorks exhibited a 50% longer startup delay than RTSJLinux. We attribute the 

difference to the time VxWorks spent loading symbols and configuring the network adapter. 

5.4 Disk and Memory Footprint 

The following table shows the footprint needed to run a small application on each platform. The respective sizes are 

characteristic, but in actual use, these figures could vary widely. It should be noted that the Linux kernel requires less disk 

space than the VxWorks kernel, and that while the Java application code is extremely compact, the Java Virtual machine is 

VxWorks/C++ 
VxWorks kernel (including C++ 

0 C++ application (including ACE) 

Total application size - 4021.5K 

libraries) - 1629K 

- 2392.5K 

large. Also, it should be noted that the Java application compiles to a larger image at run time than the C++ code. 

TimeSys LindJava 
TimeSys Linux kernel - 639K 

0 TimeSys JTime Virtual Machine (required 
for java applications) - 9420.8K 
Java application byte code - 1 1 K 

0 Total application size - 10070.8 K (9.83M) 

Memory Footprint 

C++ application memory usage: 156.3 K 
Java application (using default JVM 
settings): 7780 K 

NOTE: Small Java applications have a higher 
memory requirement due to the Virtual 
Machine. 

5.5 JNI Overhead 
Originally we planned to use RTSJ’s physical memory access in order to perform memory-mapped VO directly from Java 

code. However, due to a limitation in JTime, we were not able to access the memory-mapped addresses. As a result, to keep 



making forward progress, we implemented drivers in C and used JNI to cross the boundary between the two languages. We 

noticed that JNI introduces considerable overhead; copy semantics are expensive, and so the number of JNI crossings had a 

large effect on I/O performance. To get better performance we moved more functionality into the C/C++ code to reduce the 

number of boundary crossings. We plan to revisit this issue as soon as JTime supports access to the entire physical memory 

space. 

6. Future Work 
Our ongoing and future work divides into two main categories: benchmarking and programming model. In terms of 

benchmarking, we are developing more extensive benchmarks and will run all of them with the TimeSys AoT compiler. We 

also plan to run our RTSJ benchmarks on OVM [ 113 as soon as the OVM project completes implementation of the RTSJ 

memory areas (expected in February 2004). The comparison between JTime and OVM may reveal areas where performance 

is influenced more by the VM design than by complexities of the RTSJ. 

In terms of a programming model for RTSJ, we are exploring an architecture that presents a more object-oriented face to the 

programmer. Estimation and control functionality that has to be run in a particular sequence at a particular period is grouped 

together in the same “sphere”. Each sphere can expose certain kinds of data on its surface for other spheres to see and use, 

with the guarantees that the data’s age is no greater than the period of its sphere and that clients will see the data as an 

immutable object. This approach emphasizes design based on timeliness constraints, rather than priorities and strict ordering, 

enabling potentially better CPU utilization through modern scheduling algorithms. 

7. Summary 
Project Golden Gate is a collaboration among JPL, Sun, and CMU that formed around the goal of experimenting with the 

Real-Time Specification for Java (RTSJ) and assessing its suitability as an implementation language for space missions, 

particularly in situ robots such as Mars rovers. The RTSJ is interesting in this context partly because it elevates timeliness 

characteristics and feasibility analysis to a first-class design aspect, partly because of the potential for improved programmer 

productivity, and partly because of the prospect for building complex, dependable control systems in a more repeatable way. 

To date, the team has implemented and demonstrated mobility control of a 6-wheel experimental Mars rover using the 

TimeSys JTime virtual machine running on TimeSys Linux RTOS, and has conducted several performance comparisons to 

C++ running on VxWorks. Outer space is an unforgiving environment for software failures, so dependability is an ever- 



present concern that is being examined in terms of programming model and verifiability. Intelligent use of the RTSJ's scoped 

memory and immortal memory are particularly important. 
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