MISUS:
Multi-rover Integrated Science Understanding System

JPL Task Team:
Tara Estlin (PI), Rebecca Castano, Ashley Davies,
Forest Fisher, and Daniel Gaines

Wesleyan University Collaboration:
Martha Gilmore

Intelligent System AR and IDU Workshop
February 2004
MISUS Approach

- Framework for coordinating multiple rovers in performing autonomous science operations
 - Provides an onboard science capability for collecting new data
 - Enables rover team to autonomously investigate new environment

- System integrates techniques from machine learning and planning/scheduling
 - Data analysis
 - Generates new science goals
 - Produces valid plans to achieve goals
 - Monitors plan execution and performs re-planning

- Also integrated with a simulation environment that models different planetary terrains

- **Key feature:** closes the loop between sensor data collection, science goal selection, and activity planning and scheduling
System Overview

1. **Data Analysis:**
 - Machine-learning clustering system
 - Analyzes input data and constructs summary model
 - Generates and prioritizes new science targets

2. **Planning:**
 - Distributed, continuous planning system
 - Produces rover operation plans to achieve input science goals
 - Monitors plan execution and re-plans when necessary

3. **Environment Simulation:**
 - Models geological environments and multiple rover science activities within them

T. Estlin, 2/4/2004
Key Task Objectives

- **Interdependent science goals**
 - Science goals/objectives are typically considered independently
 - Goals are often related – science utility of a goal can increase/decrease if related goals are achieved
 - Investigating methods for reasoning about these interdependent relations to both generate better goals and higher quality plans

- **Applying onboard data-analysis and planning techniques to planetary field geology**
 - Analysis techniques uses terrain model of mineralogical deposits to help identify areas and rocks of interest
 - Overall goal is to identify rock composition and deposit classification

- **Enabling a distributed rover team to efficiently perform terrain investigation**
 - Goal assignments may dynamically change based on rover and environment status
 - Goal information is shared to improve quality of overall collection
Schedule and Milestones

- **FY01**
 - Developed distributed planning system for producing multi-rover operation plans and monitoring execution
 - Developed data analysis algorithm for evaluating geological relationship among data

- **FY02**
 - Developed planning optimization approach for interdependent science goals
 - Developed prioritization algorithm that uses learned data model to generate new set of observation goals
 - Extended environment simulator to incorporate more realistic terrain distribution

- **FY03**
 - Fully integrated new planning and analysis approaches
 - Improved system robustness and tested running continuously over multi-day scenarios
 - Extended infrastructure to support easier demonstration and evaluation

- **FY04**
 - Perform full system evaluation
 - Perform simulation and hardware demonstrations
Recent Accomplishments

- Extended planning optimization approach for interdependent goals to operate in distributed environment
 - Goal status information is shared between rovers
 - All agents can use interdependency information and current goal status to guide new goal additions
 - System attempts to continually assign unachieved goals to improve overall quality of collected data

- Increased distributed planning capability for handling larger quantities of science goals and more uncertainty
 - Improved scheduling heuristics to maximize rover resources
 - Adapted improved distributed-coordination capability to allow better consistency and communication between plans
Recent Accomplishments, cont.

- Completed integration of all new system components
 - Closed-loop between new versions of planner, data analysis, and environment simulator.
 - Tested full closed-loop system running autonomously for several Martian days
- Developed several key software pieces to enable easier testing and demonstration
 - Time warping capability for distributed plan execution and monitoring
 - Implemented two other applicable data-analysis algorithms to provide comparison with MISUS approach
 - Created new display tool that allows easy visualization of mineralogical classification and comparison to ground truth
Recent Accomplishments, cont.

- Developed evaluation plan for overall system
 - Lays out series of tests for both individual components and entire system
 - Metrics include rock and deposit classification accuracy, percentage of rocks found, power/memory requirements, etc.

- Evaluated plan quality improvements produced by planning optimization approach for interdependent goals
 - Extended past tests for centralized planner to collect statistics for distributed planning system
 - Each rover planner uses performs optimization based on randomized hill-climbing with restart
 - Shown to significantly improve plan quality in both single planner and distributed planner systems
Planning Optimization Performance

![Graph showing the performance of different optimization techniques](image)

- ASPEN+IDGS
- ASPEN+Random
- ASPEN+SimpleReward

Objective Function Score vs. Number of optimization steps (of 50 iterations each)

Average Max Score

T. Estlin, 2/4/2004
FY04 Directions

- Complete system evaluation
 - Evaluate classification accuracy of data analysis module vs. other approaches
 - Evaluate full system capabilities and limitations
- Perform several system demonstrations
 - Using environment and hardware simulators, show multiple rovers performing rock classification of local terrain area
 - Using rover hardware (e.g., Rocky 8, FIDO) in Mars Yard, show MISUS coordinating data collections w/ 2-3 rovers
Problem:
Enable a team of rovers to investigate a new planetary environment in a closed-loop, autonomous fashion with little communication from ground. In particular, develop onboard analysis and command sequencing capabilities to support robotic geological investigations.

Objectives:
- Integrate AI machine learning and planning techniques to provide closed-loop data collection, analysis and sequence generation.
- Intelligently coordinate multiple rovers in performing science operations both at command level and science analysis level.

Key Innovation:
- Developed a planning optimization approach for reasoning about and achieving interdependent goals in a distributed environment
- Design a machine-learning clustering algorithm to infer geological relationships among data and to produce new observation goals that improve overall model accuracy

NASA Relevance:
Relevant to future missions that require more autonomous and/or larger teams of rovers to gather and evaluate science data
Also applicable to spacecraft and constellation missions that would benefit from autonomous data collection and analysis

Accomplishments:
Developed distributed planning optimization approach for handling interdependent science goal information
Developed novel data-analysis algorithm for determining measurement uncertainty and science goal relationships
Papers presented at Mars Surface Workshop and Planning/Scheduling Workshop
Presentations to MSL & MDS teams on closed-loop data analysis and planning capabilities

Schedule:
Evaluate data-analysis algorithm vs. competing methods on data model accuracy and improvement over time – April 2004
Evaluate full system on series of metrics including rock classification accuracy, percentage of rocks found, power requirements, etc. - July 2004
Full system demonstration using multiple rovers to characterize rock distribution in local area. Will use multi-rover hardware and environment simulators. - Sept 2004
Extra Slides
Models distribution of rock types in the observed terrain

Uses a novel clustering approach that allows features to be treated heterogeneously
- Employs an objective function for inferring geological relationships among data
- Both spectral and visual texture data are analyzed

A prioritization algorithm uses clustering output to generate a new set of observation goals
- New information will further improve accuracy of data model
- Select goals based on evaluation of scientific importance

Prioritization examines goal interdependency relations
- Individual goal values may by dependent on related goals being achieved
- Algorithm generates goals, goal-utility values and goal interdependency relations
Planning

- Uses distributed version of CASPER planning system
 - Central planner develops abstract plan, dividing goals among rovers
 - Individual rover planners develop detailed, executable plan for achieving assigned goals
- Planning system can reason about interdependent goal relations
 - Evaluates goal interdependency relations when selecting subset of goals to achieve
 - Optimization based on randomized hill-climbing with restart
- Planning is dynamic
 - Rover planners monitor plan execution and perform re-planning when necessary
 - Uses rover simulation tool to provide execution feedback
 - Rover goals can be re-assigned to other rovers dynamically due to unexpected failures or resource over-subscription
Environment Simulation

- Simulates science data operations
- Different Martian rockscapes can be created
 - Select different rock types, size and spatial distributions
 - Currently use rock-patch-facies-deposit environment model to create terrain
- Mineral distributions developed in collaboration with JPL geologists
 - Currently using “rock-patch-facies-deposit” model to realistically create terrain
- Simulator executes science operations at appropriate locations and generates sample data
- Returns both spectral data and visual texture data