Electric Propulsion at JPL
NASA Science Missions are the Foundation of Electric Propulsion at JPL

Our Vision: “Advanced Electric Propulsion for NASA’s Science Spacecraft”

- Derived from the Science & Missions Flow Down

 NASA Strategic Goals
 - To understand and protect our home planet
 - To explore the Universe and search for life
 - To inspire the next generation of explorers
 - ...as only NASA can

 Space Science Enterprise Strategic Goals
 - Explore the Solar System and the universe beyond
 - Understand the origin and evolution of life
 - Search for evidence of life elsewhere.

 JPL Strategic Goals
 - Explore our Solar System,
 - Detect “other earths” in neighboring planetary systems,
 - Search for life beyond the confines of Earth

- Electric Propulsion Enables Many of These Missions
Electric Propulsion at JPL: Roles & Resources

JPL Roles in Electric Propulsion

- Experienced discipline experts, program element & contract technical managers for flight projects
 - JIMO – High Power Electric Propulsion System
 - Dawn – Ion Propulsion System
 - ST-7 – Disturbance Reduction System Thrusters
 - Road Runner – Hall Thruster Plasma Diagnostics (AFRL)

- Pre-Project planning technology support
 - LISA – Thrusters for Precision Formation Flying
 - Prometheus – Electric Propulsion Technology
 - Team-X – Electric Propulsion

- Electric propulsion system mission assurance
 - Failure mode analysis
 - Engine qualification tests & life models
 - Electric thruster integration issues: plumes, contamination, etc.; tests & models

- Technology development to meet mission requirements
 - Carbon Based Ion Optics (CBIO)
 - NASA Evolutionary Xenon Thruster (NEXT)
 - Nuclear Electric Xenon Ion System Technologies (NEXIS)
 - JIMO Propulsion System Technologies

Thusters for Precision Formation Flying
- Propulsion for Micro-Spacecraft
- Lithium Lorentz force thrusters
- Bismuth – Anode Layer Thrusters (TAL) for NEP

Excellent Facilities:
- 6 Large Vacuum Facilities
- Several Smaller Chambers with Advanced Diagnostics

Unique Analytical Capabilities:
- A strong tradition of combining analysis and experiment in technology development

World-Class Workforce:
- 20 Engineers (18 PhD’s, 2 MS’s)
- 3 Technicians
- Access to a Wealth of Expertise at JPL
Deep Space 1 was the first spacecraft to use ion propulsion for an interplanetary mission.

- Deep Space 1 Flight Engine Developed by JPL Managed Team
 NSTAR Project (JPL, GRC, industry, universities and international partners)
- Deep Space 1 Ion Engine Life Testing Performed by JPL
 1000 hour validation test
 8200 hour Life Demonstration Test
 NSTAR Extended Life Test (30,352 hours)
- Deep Space 1 Flight System Integration and Functional Tests
 End-to-end system demonstration in thermal-vacuum test
- Deep Space 1 NSTAR Flight Diagnostics Package
- Deep Space 1 Flight Operations and Successful Mission
 16,265 hours of operation in space
 Hyper-Extended Mission – NSTAR thruster tests

Deep Space 1 flew by the comet Borrelly in 2001, collecting valuable science data.

Flight ion engine firing on Deep Space 1 spacecraft during solar thermal vacuum test.

World’s longest ion engine endurance test was conducted at JPL.
GOAL

Characterize the conditions and processes of the solar system's earliest epoch by investigating in detail two of the largest protoplanets remaining intact since their formations.

Ceres and Vesta reside in the zone between Mars and Jupiter called the asteroid belt.

MISSION OVERVIEW:

Delta 7925H launch; 3 NSTAR Xenon (Xe) thrusters
Cruise: one thruster at a time
Vesta: orbit at 2450, 700 and 200 km alt. 7 months incl. orbit changes
Ceres: orbit at 5900, 1300 and 700 km alt. 5 months incl. orbit changes
288 kg Xe to Vesta; 89 kg to Ceres for maximum injected mass
Orbit capture with xenon

Dawn Spacecraft Configuration
(3 ion thrusters, 2 PPUs, 2 DCIUs)
ST7-Disturbance Reduction System

- Demonstrate drag-free operation
- Launch: August, 2006

- Busek Colloid Microthrusters will offset solar pressure for gravitational sensor
- Each Microthruster provides between 2-20 μN with 0.1 μN precision
- Currently at TRL 4—Requires performance, contamination, beam profile and neutralization testing to move to TRL 6 before launch

- Advanced Propulsion Technology Group supporting ST7 as technology advisor with thruster testing in FY03-04

- Developing world-leading test facilities for Microthrusters:
 - Nano-Newton Thrust Stand
 - 2 m diam. ultra-high vacuum chamber with beam profile and contamination diagnostics
AFRL Road Runner Flight Project

- JPL/AFRL Propulsion Measurements Program
 Combined flight instrument, ground measurement, and modeling program.
 Objective: integration handbook for 200 W class Hall Thruster.

- Design and systems engineering for flight instruments
 2 plume probes, 3 contamination instruments: 2 kg overall.
 Team: JPL, AFRL, Broadreach Engineering, Spaceworks.

- Activities
 Ground plume characterization - 2001-2005
 Flight systems delivery (AFRL to AFRL) – late 2004
 Launch – Early 2005

Instruments/Modeling

- Validated model required to extend flight results to operational missions

- Path to validated model
 Plume instruments directly measure ion, electron content of plume, providing
 validation of thruster internal and plume expansion code.
 Contamination instruments assess degradation, provide validation of more
 complex plume/spacecraft 3D interaction codes.

- Plume Instruments take snapshot of thruster operational conditions
 Ion energy spectrometer: ion flux energy distribution
 Electron probes: Plume electron density and SC current return/balance.

- Contamination Instruments determine changes over thruster operational life
 Radiometer: assesses change thermal control material α and ε.
 Photometer: measures optical transmission changes.
 Solar cell: determine I-V characteristic of triple junction cells.
Ion Thrusters for the Prometheus JIMO Project

- Nuclear Electric Propulsion Systems Engineering
- Thruster Development – Competitively Selected
 Nuclear Electric Xenon Ion System Technologies (NEXIS)
 Two Stage Bismuth – Anode Layer Thrusters (TAL)
- NEP System End-to-End Test at JPL
 Joint MSFC – JPL effort
 Demonstrated 11/01 at low-power (< 200We)

Jovian Icy Moon Orbiter requires 6500s Isp thrusters, enabled by JPL carbon grid and service life assessment technologies

NEP Electric Propulsion System Block Diagram

NEXIS long life and high efficiency thruster for JIMO
JIMO-NEXIS Ion Thruster Development

- NEXIS Lab Model Thruster demonstrated performance in agreement with JIMO mission analysis model
- NEXIS designed for extraordinary life using revolutionary Carbon-Carbon grids, graphite keeper, long life hollow cathodes
- The thruster demonstrated the NRA performance objectives of 22.5 kWe, 7500 s and 3.9 A,
- Peak performance achieved 27 kWe at 8700 s, 4 A with an efficiency of 81%.
- Beam flatness measured at 80-82%

Graphite discharge cathode keeper

NEXIS thruster prior to installation in the vacuum test chamber
Very High \textit{Isp} Anode Layer Thruster (VHITAL)

Motivation:
2-Stage Thruster with Anode Layer (TAL) 160 developed more than 20 years ago and demonstrated excellent performance on Bi at TsNIIMASH with a specific impulse up to 8000 s, efficiency greater than 70% at 100 kW and 8000 s and power up to 140 kW. This high power and high efficiency performance is optimal for NEP missions to the outer planets.

Objective:
Validate the TAL-160 thruster performance at 25 kW (6000 s) and 36 kW (8000s) on Bi at JPL.

JPL Roles/Capabilities:
- **Mission analysis** to identify the thruster operating regimes which are optimal for the missions of interest.
- **Thruster performance evaluations** in vacuum facility for high power liquid metal-fueled electric thrusters.
- **Development of Bi-fed cathode, propellant isolator, and feed system.**
- **Thruster lifetime assessment** with surface layer activation diagnostic.
- **Thruster plume characterization** with Faraday, emissive, and ion energy and QCM probes.
- **Assessment of spacecraft contamination** with experimental and theoretical approaches.

VHITAL Project Selected – Start April 1, 2004
LISA is an Interferometric Gravity Wave Detector currently in pre-phase A
Precision Formation Flying requirement: 5 million km within 10 nm
Thrust requirements: 1-25 μN within 0.1 μN for 3 years continuously

Advanced Propulsion Technology Group supporting LISA as technology advisor with thruster and neutralizer testing and modeling efforts in FY02-04

- JPL was first US institution to test FEEP Technology in June 01

APT Group Developing:
- Nano Newton Thrust Stand
- UHV chambers for beam profile and field emission cathode neutralization experiments
- Computational plume expansion and droplet production models
Long Duration Tests to Identify and Characterize Failure Modes

- 10 kWue test (1988)
- 5 kWue test (1990)
- Test-to-Failure Test (1993)
- NSTAR Testing
 - 2000 Hour Test (1994)
 - 1000 Hour Test (1995)
 - 8200 Hour Test (1998)

In-Space Data from the Deep Space 1 Spacecraft to Characterize Failure Modes and Validate Ground Measurements

Probabilistic Analysis to Assess Service Life

- Relatively simple analytical models of failure process embedded in Monte Carlo simulation
- Experimental data and additional modeling to characterize parameter distributions

Modeling of Plasma and Surface Processes

- Particle-in-Cell code simulations of ion acceleration and charge exchange process
- Hollow cathode physics models
- Surface kinetics modeling of simultaneous sputtering and deposition

Critical part of JIMO and NEXT programs
JPL Computer Models of Ion Thruster Performance & Life

Computer models are used to guide design, correlate test data & predict engine life
Validated with lab & flight performance & wear data

Hollow cathode orifice and discharge chamber models include ionization physics

Codes model ion trajectories and erosion of a single grid aperture

Calculated accelerator grid hole compared with data from the NSTAR Life Demonstration Test
JPL Roles in the GRC Led NASA Evolutionary Xenon Thruster (NEXT)

JPL Tasks

- Leadership of the project’s definition and review of the System Technical Requirements and Verification (TRV) document
- Support to the Deep Space Design Reference Mission (DSDRM) analysis, and leadership of the mission analysis of NEXT application to other Code S missions
- Leadership of the initial integrated breadboard system testing
- Leadership of the service life validation activity, and development of the project’s service life validation plan.
- Support to the NEXT project manager in the review of component design efforts and system integration test planning activities

"The 40cm NEXT thruster will be more than twice as powerful as today’s NSTAR thruster.

CEX3D Calculation

JPL leading the service life validation activity"
Advanced carbon grid materials offer dramatic improvements in ion engine technology

- Carbon erosion resistance essentially eliminates grid wearout failure modes
- Light weight carbon materials yield factor of 3 savings

Goals and Objectives

- Develop 30-cm carbon-carbon grids
- Validate the performance and life of the carbon-carbon grids
- Develop and deliver grid life modeling software

Major Products

- 30-cm CC grids for long life operation at Isp’s between 4000 and 5000 s.
- “User friendly” grid life modeling software
- Establish the feasibility of developing 40-cm CC Grids

Key Challenges

- Achieving required beam extraction characteristics
- Demonstrate ability to survive launch loads
- Demonstrate ability to provide sustained operation with acceptable arcing at the required electric field

Accomplishments

- 30cm Carbon – Carbon Grids Running at 5000s
- Grids on thruster passed vibe

Carbon erosion rates the lowest
Emerging NASA Missions Require Extremely High Precision, Low Noise Thrusters

NASA roadmaps show many missions requiring precision thrusters for drag make-up and constellation maintenance besides LISA and ST-7:

EX-5 (Earth Science)
- Time varying Earth Gravity
- Code Y Strategic Plan

LIRE (Code U)
- Solar System Test of General Relativity
- On Fundamental Physics in Space Roadmap

MAXIM (SEU)
- X-ray imaging of black holes
- On SEU roadmap

Terrestrial Planet Finder (TPF) (ASO)
- IR Imaging of planetary Systems
- Positioning control < 30µm

Planet Imager (PI) and Life Finder (LF)
- TPF follow-on

Stellar Imager (SEC)
- UV Imaging of other stars
- On SEC Roadmap

In-Space Propulsion should address the needs of this important class of missions
(Typical: µN thrust levels, <0.1 µN thrust noise, and < 1 µNs Impulse bit)
• The Microthrust Propulsion Laboratory (MPL) is a world-class facility for developing and testing microthrust propulsion systems

• Capable of a Class-10 cleanroom environment, MPL has 1000 sq. ft. of floor space for multiple projects

• A 2 m diam., 2 m long ultra-high vacuum (UHV) chamber will provide a unique environment for testing microthrusters

• Chamber is equipped with a Nano-Newton Thrust Stand, exhaust beam profiling and contamination diagnostics, and a load-lock system for rapid turn around

• This facility is the only one of its kind in the world, allowing JPL to become a leader in microthruster technology development and evaluation
Many NASA missions are planned for interferometry and gravity wave detection, as well as DOD missions. Constellation attitude maintenance and control poses stringent propulsion requirements:

LISA (NASA/ESA):
- Thrust: 1 - 20 μN
- Control Accuracy: 0.1 μN

ST-7 (NASA):
- Thrust: 1 - 20 μN
- Thrust Noise: 0.1 μN

TechSat 21 (Air Force):
- Min. Thrust: 2 mN (2003), 40 - 200 μN
- Impulse Bit: 2 mNs (2003), 2 μNs (est.)

TPF (NASA):
- Thrust: 0.1 N (re-formation)
 - μN (pointing)

PI, LF (NASA):
unknown, presumed similar to TPF

Technology Needs: Evaluate FEEP and Colloid Thrusters
(Performance, Contamination, Plume, Lifetime)

Key JPL Facilities:
- Micro-Thrust Stand
- Micropropulsion Test Facility with UHV Chamber

Advanced Technology Development:
- Field Emitter Array (FEA)
 - Cathodes as neutralizers for FEEP/Colloids. Collab. Development with Industry
- Vacuum Arc Ion Thruster (SBIR)
Mission Needs: Micro Spacecraft propulsion and attitude control

Due to the small mass of micro spacecraft, pointing and deadband control will require extremely small impulse bits and thrust values depending on mass of the spacecraft:

<table>
<thead>
<tr>
<th>S/C Mass (kg)</th>
<th>Required Impulse Bit (Ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17 mrad (1°)</td>
</tr>
<tr>
<td>1</td>
<td>1.4 x 10^{-4}</td>
</tr>
<tr>
<td>10</td>
<td>4.3 x 10^{-4}</td>
</tr>
<tr>
<td>20</td>
<td>1.1 x 10^{-3}</td>
</tr>
</tbody>
</table>

Technology Needs: Highly integrated, modular, miniature, ultra-low impulse bit attitude control thrusters. Utilize novel microfabrication (MEMS) methods in their realization.

- Conventional Components
- Conventionally Integrated

State-of-the-Art:
- Miniature Components
- Conventionally Integrated

Goal:
- Micromachined Components
- Highly Integrated Modules
- Minimal External Interfaces

Integrated High Voltage Interface
- Drivers for MIV, MMV, VLM on single chip

Micro-Isolation Valve (MIV)
- Energy: 10 - 60 mJ
- Response: 0.1 - 0.3 ms
- Pressure: 3000 psi burst

Micro-Thruster Valve (MMV)
- Power: 0.5 W (hold)
- Voltage: 5 Vdc
- Response: 1.5 ms open, 0.5 ms close
- Pressure: 300 psi
- Life: 1M cycles

Vaporizing Liquid Micro-Thruster (VLM)
- Thrust: 32 μN
- Power: 0.8 W
- Ibit: <10^{-8} Ns
Lithium Lorentz Force Accelerators are Ideal for Very High Power Applications

- Lithium-fed Lorentz Force Accelerators (LFA's)
 - High power processing capability
 - Lithium propellant has potential for very high efficiency
- 0.5 -- 1 MWe Ideal for near-term applications
 - First generation power sources with system power levels of 1-5 MWe
 - Specific impulse of 4000-6000 s
 - Orbit transfer and Mars cargo applications
- 1 -- 5 MWe Mid-term propulsion requirements
 - Second generation power systems at 10--30 MWe
 - Specific impulse of 4000-6000 s
 - Initial piloted Mars missions

Unique Attributes:
- Steady state operation up to 500 kWe
- Radiation-cooled
- All refractory metal construction

JPL's 500 kWe Thruster: A Testbed for High Power LFA Technology Development

The JPL High Power Test Facility: A Unique Asset for MWe-Class Thruster Development

J X B forces accelerate plasma axially and radially
Advanced Propulsion Studies of Interstellar Missions

- Mission/technology studies to identify and scope out the ultimate Stretch Goal for propulsion: Interstellar Missions
 Goal is to identify candidate technologies and technology roadmaps that can provide required performance
 Identify current/near-term technologies that can be worked now to give mid-term benefits for ambitious missions within the solar system, and eventually provide the performance required for Interstellar capabilities

- Mission requirements based on assumption that the Interstellar Mission will be a follow-on to Origins Program: Need FAST (0.5c cruise), RENDEZVOUS (not flyby) mission
Electric Propulsion at JPL

Vision: “Advanced Electric Propulsion for NASA’s Science Spacecraft”

Roles and Resources

Wide Range of Technology Development Guided by Flight Project Needs

Flight Project Experience

Focus on Understanding Basic Processes: Coordinated Modeling & Experiment