TO: M. Vallisneri
FROM: Logistics and Technical Information Division
SUBJECT: Notification of Clearance - CL#04-0821

The following title has been cleared by the Document Review Services, Section 274, for public release, presentation, and/or printing in the open literature:

Synthetic LISA: Simulating Time-Delay Interferometry in a Model LISA

This clearance is issued for the full paper and is valid for U.S. and foreign release.

Please add the NASA logo to your presentation.

Clearance issued by

Adrian Segura
Document Review Services
Section 274
AUTHORIZATION FOR THE EXTERNAL RELEASE OF INFORMATION
Submit web-site URL or two copies of document with this form to Document Review, 111-120, or email them to docrev@jpl.nasa.gov.

<table>
<thead>
<tr>
<th>LEAD JPL AUTHOR</th>
<th>MAIL STOP</th>
<th>EXTENSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michele Vallisneri</td>
<td>169-327</td>
<td>3-7634</td>
</tr>
</tbody>
</table>

[CL No. 09-0821]

Approval is required for all JPL scientific and technical information intended for unrestricted external release via print or electronic media. See explanations on page 3 of this form and the Distribute Knowledge documents available through http://dkm.jpl.

<table>
<thead>
<tr>
<th>BOX</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>ABSTRACT (for publication)</td>
</tr>
<tr>
<td>☐</td>
<td>FULL PAPER (including poster, video, CD-ROM)</td>
</tr>
<tr>
<td>☐</td>
<td>WEB SITE</td>
</tr>
<tr>
<td>☐</td>
<td>ORAL PRESENTATION</td>
</tr>
<tr>
<td>☒</td>
<td>Abstract</td>
</tr>
<tr>
<td>☒</td>
<td>Full Text</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthetic LISA: Simulating Time-Delay Interferometry in a Model LISA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OTHER AUTHOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Armstrong</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KEY WORDS FOR INDEXING (Separate items with commas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LISA, gravitational waves, data analysis</td>
</tr>
</tbody>
</table>

THIS WORK:

☐ Describes technology reported in New Technology Report (NTR) No.
☐ Provides more information for NTR No(s).
☒ Describes only science results, data, or theoretical discussions

Publications that describe technology (including software) require an NTR prior to clearance. For assistance, contact the Strategic Intellectual Assets Management Office, ext. 3-5421.

<table>
<thead>
<tr>
<th>ORIGINATING ORGANIZATION NUMBER (Section, Project, or Element)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3265</td>
</tr>
</tbody>
</table>

ACCOUNT CODE OR TASK ORDER (For tracking purposes only)
102177 1.4.1.1

LEAD JPL AUTHOR’S SIGNATURE
Michele Vallisneri

DATE
3/17/2004

PERFORMING ORGANIZATION (If different)

SECTION OR PROJECT LEVEL MANAGER APPROVAL

DATE

I attest to the quality of information in this material, including its accuracy, relevance and usefulness, audience suitability, clarity, completeness, and lack of bias.

DATE
3/16/04

For presentations, documents, or other scientific/technical information to be externally published (including via electronic media), enter information—such as name, place, and date of conference; periodical or journal name; or book title and publisher—in the area below.

Web Site:
Postclearance URL (external) http://www.isc-aroup.phys.uwm.edu/awdaw8/ (under "transparencies")

☐ Brochure/Newsletter
☑ JPL Publication Section 274 Editor (If applicable)
☐ Journal Name

Meeting Title: 8th Gravitational Wave Data Analysis Workshop

Meeting Date Dec 17-20 2003 Location: University of Wisconsin, Milwaukee

Sponsoring Society

☑ Book/Book Chapter ☐ Assigned JPL Task ☐ Private Venture Publisher

If your document will not be part of a journal, meeting, or book publication (including a web-based publication), can we post the cleared, final version on the JPL worldwide Technical Report Server (TRS) and send it to the NASA Center for Aerospace Information (CASI)? ☐ Yes ☐ No

(For more information on TRS/CASI, see http://techreports.jpl.nasa.gov and http://www.sti.nasa.gov.)

If your document will be published, the published version will be posted on the TRS and sent to CASI.

II. NATIONAL SECURITY CLASSIFICATION

☐ SECRET (One of the five boxes denoting Security Classification must be checked.)
☐ SECRET RD
☐ CONFIDENTIAL
☐ CONFIDENTIAL RD
☒ UNCLASSIFIED

NASA EXPORT-CONTROLLED PROGRAM STI
☐ International Traffic in Arms Regulations (ITAR)
☐ Export Administration Regulations (EAR)

Export-Controlled Document — U.S. Munitions List (USML Category) __________ or Export Control Classification Number (ECCN) __________ from the Commerce Control List (CCL) __________

CONFIDENTIAL COMMERCIAL STI

(Confidential box below and indicate the distribution limitation if applicable.)

☐ TRADE SECRET Limited until (date) __________________
☐ SBIR Limited until (date) __________________
☐ COPYRIGHTED Limited until (date) __________________
☐ COPYRIGHT Publicly available __________________

TRANSFERRED TO: (but subject to copying restrictions)

ADDITIONAL INFORMATION

(Confidential box below and indicate distribution limitation below and/or until [date], if applicable.)

☐ U.S. Government agencies and U.S. Government agency contractors only
☐ NASA contractors and U.S. Government only
☐ NASA personnel and NASA contractors only agencies only
☐ Available only with the approval of the issuing office
☐ NASA personnel only
III. AVAILABILITY CATEGORY (cont.) – To be completed by Document Review

- **PUBLICLY AVAILABLE STI**
 - Publicly available means it is unlimited and unclassified, is not export-controlled, does not contain confidential commercial data, and has cleared any applicable patent application.

IV. DOCUMENT DISCLOSING AN INVENTION (For SIAMO Use Only) ROUTED ON

- If STI discloses an invention
 - Check box and send to SIAMO

V. BLANKET AVAILABILITY AUTHORIZATION (Optional)

- All documents issued under the following contract/grant/project number may be processed as checked in Sections II and III.
 - This blanket availability authorization is granted on (date)
 - Check one: □ Contract □ Grant □ Project Number

- The blanket release authorization granted on (date)
 - □ is RESCINDED – Future documents must have individual availability authorizations.
 - □ is MODIFIED – Limitations for all documents processed in the STI system under the blanket release should be changed to conform to blocks as checked in Sections II and III.

VI. PROJECT OFFICER/TECHNICAL MONITOR/DIVISION CHIEF REVIEW OF I THROUGH V

- NAME OF PROJECT OFFICER OR TECH. MONITOR
- MAIL STOP
- SIGNATURE DATE

VII. EXPORT CONTROL REVIEW/CONFIRMATION ROUTED ON

- Public release is approved
- Public release not approved due to export control
- Export-controlled limitation is approved
- Export-controlled limitation is not applicable

- USML CATEGORY NUMBER (ITAR)
- CCL NUMBER, ECCN NUMBER (EAR)
- JPL EXPORT CONTROL ADMIN. REPRESENTATIVE SIGNATURE DATE

VIII. OTHER APPROVALS ROUTED ON

- □ LAUNCH APPROVAL
- □ OFFICE OF COMMUNICATIONS AND EDUCATION
- □ GENERAL COUNSEL
 - Budgetary/Cost Data
 - Vendor Data
 - Copyrights
 - Other □
- □ OTHER

- SIGNATURE DATE

IX. FINAL VERIFICATION, APPROVAL, AND DISPOSITION BY DOCUMENT REVIEW

- I have determined that this publication:
 - □ DOES contain ITAR/export-controlled, confidential commercial information, and/or discloses an invention and the appropriate limitation is checked in Sections III and/or IV.
 - □ DOES NOT contain ITAR/export-controlled, confidential commercial information, nor does it disclose an invention and may be released as indicated above.

- Does NOT contain ITAR/export-controlled, confidential commercial information, nor does it disclose an invention and may be released as indicated above.

- PUBLIC release is approved for U.S. and foreign distribution
- PUBLIC release is not approved

- SIGNATURE
- MAIL STOP DATE
- Obtained published version
- Obtained final JPL version

See page 3 for instructions for completing this form.
Synthetic LISA
simulating time-delay interferometry
in a model LISA

(presenting) Michele Vallisneri
(in absentia) John W. Armstrong
LISA Science Office, Jet Propulsion Laboratory
12/17/2003
Why Synthetic LISA?

• Simulate LISA fundamental noises at the level of science/technical requirements
 • Higher level than extended modeling (no spacecraft subsystems)
 • Lower level than data analysis tools (do time-domain simulation of TDI; include removal of laser frequency fluctuations)

• Provide streamlined module to filter GWs through TDI responses, for use in developing data-analysis algorithms
 • Include full model of TDI (motion of the LISA array, time- and direction-dependent armlengths, causal Doppler observables, 2nd-generation TDI observables)
 • Use directly or to validate (semi)analytic approximations

• Make it friendly and fun to use
A LISA block diagram (very high level!)

GW sources
for plane waves, work from k, $h_+(t)$, $h_x(t)$ at SSB

LISA noises
laser freq. fluctuations, (optical bench), proof mass, optical path

LISA geometry
spacecraft positions → photon propagation → armlengths

Doppler y_{ij}
inter-spacecraft relative frequency fluctuations

Doppler z_{ij}
intra-spacecraft relative frequency fluctuations

TDI observables
time-delayed combinations of y_{ij} and z_{ij}
laser-noise and optical-bench-noise free
3 independent observables
A LISA block diagram (very high level!)

\[
X = U^{32,322} - U^{23,233} - U^{31,22} - U^{21,33} + U^{23,2} - U^{32,3} + U^{21} - U^{31}
- \frac{1}{2}(U^{21,2233} + U^{21,33} + U^{21,22} - U^{21})
- \frac{1}{2}(U^{31,2233} - U^{31,33} - U^{31,22} + U^{31})
\]

Doppler \(y_{ij} \)
inter-spacecraft relative
frequency fluctuations

Doppler \(z_{ij} \)
intra-spacecraft relative
frequency fluctuations

TDI observables

- time-delayed combinations of \(y_{ij} \) and \(z_{ij} \)
- laser-noise and optical-bench-noise free
- 3 independent observables

\[
\alpha = U^{21} - U^{31} + U^{13,2} - U^{12,3} + U^{32,12} - U^{23,13}
- \frac{1}{2}(U^{213,2} + U^{213,3} + U^{21} - U^{21,123} + U^{32,3} + U^{32,12})
+ \frac{1}{2}(U^{223,2} + U^{23,13} + U^{31} - U^{31,123} + U^{12,3} + U^{12,12})
\]
A LISA block diagram (very high level!)

GW sources
for plane waves, work from k, $h_+(t)$, $h_\times(t)$ at SSB

Doppler y_{ij}
inter-spacecraft relative frequency fluctuations

Doppler z_{ij}
intra-spacecraft relative frequency fluctuations

photon propagation vector
GW TT tensor

$$\Psi_l(t) = \frac{\hat{n}_l \cdot h(t) \cdot \hat{n}_l}{2[1 - (\hat{k} \cdot \hat{n}_l)^2]}$$

geom. projection factor

GW buffeting of spacecraft
s at emission (t-L_t

geom. projection factor

wavefront retard.; p_i are spacecraft pos.

$$y_{l}\rightarrow (t) = y_{(s)lr}(t) = \left[1 + \epsilon_{slr} \hat{k} \cdot \hat{n}_l \right] (\Psi_l(t - \hat{k} \cdot \hat{p}_s - L_l) - \Psi_l(t - \hat{k} \cdot \bar{p}_r))$$

12/17/2003

GWDAW 2003: Michele Vallisneri on Synthetic LISA
A LISA block diagram (very high level!)

Doppler shift measured for reception at spacecraft 1 and emission at spacecraft 3 (laser travels along arm 2)

LISA noises
laser freq. fluctuations, (optical bench), proof mass, optical path

\[y_{21} = C_{3,2} + 2pm^*_1 - C^*_1 + y_{21}^{\text{opt path}} \]

proof-mass 1 noise

\[z_{21} = C_1 + 2pm_1 - C_1^* \]

fluctuations of lasers 1 and 1*

fluctuations of laser 3 at emission (t - L_2)
fluctuations of laser 1* (reference) at reception (t)

inter-spacecraft relative frequency fluctuations
intra-spacecraft relative frequency fluctuations

Doppler shift measured between optical benches on spacecraft 1

12/17/2003
GWDAW 2003: Michele Vallisneri on Synthetic LISA
For laser noise, use combination of Markov chain (exp(-\lambda t)) then interpolate uncorrelated white noise produced at fixed sampling time.

Covariance in the time domain by applying digital filters in

Assume Gaussian, \(f_2 \), white

LISA noises: 16 time series (6 root mass + 6 optical path + 6 laser)

LISA noises

A LISA block diagram (very high level)
A LISA block diagram (very high level!)

Motion complicates GW signals (1):
- by changing orientation of LISA plane (power spread through ~9 bins)
- by Doppler-shifting incoming GW signals (due to relative motion, dominates for f > 10^{-3} Hz; bandwidth ~ (ΩR/c)f)

Motion improves sensitivity to GW (1):
- to source position and polarization
- makes it homogeneous in the sky

Motion hinders noise suppression (1,2,3):
- need accurate knowledge of armlengths
- high-order time delays needed

1. One Solar orbit/yr; LISA triangle spins through 360°/orbit
2. Armlengths deviate from equilateral triangle at ~2%
3. Armlengths are time and direction dependent

LISA geometry
spacecraft positions → photon propagation → armlengths
The Synthetic LISA package

Implements the LISA block structure as a collection of C++ classes

Class LISA

Defines the LISA time-evolving geometry (positions of spacecraft, armlengths)

OriginalLISA: static configuration with fixed (arbitrary) armlengths

ModifiedLISA: stationary configuration, rotating with T=1yr; different cw and ccw armlengths

CircularRotating: spacecraft on circular, inclined orbits; cw/ccw, time-evolving, causal armlengths

EccentricInclined: spacecraft on eccentric, inclined orbits; cw/ccw, time-evolving, causal armlengths

NoisyLISA (use with any LISA): adds white noise to armlengths used for TDI delays

Class Wave

Defines the position and time evolution of a GW source

SimpleBinary: GW from a physical monochromatic binary

SimpleMonochromatic: simpler parametrization

InterpolateMemory: interpolate user-provided buffers for h_+, h_x

...
The Synthetic LISA package

...things to do with it right now!

Class **LISA**
Defines the LISA time-evolving geometry
(positions of spacecraft, armlengths)

OriginalLISA: static configuration with fixed (arbitrary) armlengths

ModifiedLISA: stationary configuration, rotating with $T=1yr$; different armlengths

CircularRotating: spacecraft on inclined orbits; cw/ccw, time-evolving, causal armlengths

EccentricInclined: spacecraft on eccentric, inclined orbits; cw/ccw, time-evolving, causal armlengths

NoisyLISA (use with any LISA): adds white noise to armlengths used for TDI delays

Class **Wave**
Defines the position and time evolution of a GW source

SimpleBinary: GW from a physical monochromatic binary

SimpleMonochromatic: simpler parametrization.

InterpolateMemory: interpolate user-provided...

Check the sensitivity of alternate LISA configurations

Class **TDI(LISA, Wave)**
Return time series of noise and GW TDI observables (builds causal y_{ii}'s; includes 1st- and 2nd-generation observables)

TDInoise: demonstrates laser-noise subtraction

TDIsignal: causal, validated vs. *LISA Simulator*

TDIfast: cached for multiple sources (Edlund)

12/17/2003

GWDAW 2003: Michele Vallisneri on Synthetic LISA
The Synthetic LISA package

...things to do with it right now!

Class LISA
- Defines the LISA time-evolving geometry (positions of spacecraft, armlengths)
 - **OriginalLISA**: static configuration with fixed (arbitrary) armlengths
 - **ModifiedLISA**: stationary configuration; rotating with T=1yr; different cw and ccw armlengths
 - **CircularRotating**: spacecraft on circular, inclined orbits; cw/ccw, time-evolving, causal armlengths
 - **EccentricInclined**: spacecraft on eccentric, inclined orbits; cw/ccw, time-evolving, causal armlengths
 - **NoisyLISA** (use with any LISA): adds white noise to armlengths used for TDI delays

Class Wave
- Demonstrate laser-noise sub.:
 - 1st-generation TDI
 - modified TDI
 - 2nd-generation TDI
 - degradation of subtraction for imperfect knowledge of arms with armlocking

Class TDI(LISA, Wave)
- Return time series of noise and GW TDI observables (builds causal y's; includes 1st- and 2nd-generation observables)
 - **TDInoise**: demonstrates laser-noise subtraction
 - **TDIsignal**: causal, validated vs. LISA Simulator
 - **TDIfast**: cached for multiple sources (Edlund)
The Synthetic LISA package

...things to do with it right now!

Class **LISA**
- Produce synthetic time series to test data-analysis algorithms
 - **ModifiedLISA**: stationary configuration, rotating with T=1yr; different cw and ccw armlengths
 - **CircularRotating**: spacecraft on circular, inclined-orbits; cw/ccw, time-evolving, causal armlengths
 - **EccentricInclined**: spacecraft on eccentric, inclined-orbits; cw/ccw, time-evolving, causal armlengths
 - **NoisyLISA** (use with any LISA): adds white noise to armlengths used for TDI delays

Class **Wave**
- Defines the position and time evolution of a GW source
 - **SimpleBinary**: GW from a physical monochromatic binary
 - **SimpleMonochromatic**: simpler parametrization
 - **InterpolateMemory**: interpolate user-provided buffers for h_ν, h_x

Class **TDI**(LISA, Wave)
- Return time series of noise and GW TDI observables (builds causal y_i's; includes 1st- and 2nd-generation observables)
 - **TDInoise**: demonstrates laser-noise subtraction
 - **TDISignal**: causal, validated vs. LISA Simulator
 - **TDIfast**: cached for multiple sources (Edlund)
Using Synthetic LISA

The preferred interface to Synthetic LISA is through a simple script in the language Python.

This is a Python script!

```python
#!/usr/bin/python
import lisaswig;
unequalarmlisa = lisaswig.OriginalLISA(15.0,16.0,17.0);
Create a LISA (geometry) object;
use static LISA, with unequal arms
Armlengths (s)
unequalarmnoise = lisaswig.TDInoise(unequalarmlisa,
1.0,2.5e-48,1.0,1.8e-37,1.0,1.1e-26,1.0);
Create a TDI object based on our chosen LISA
Laser correlation (s)
lisaswig.printtdi("noise-X.txt",unequalarmnoise,1048576,1.0,"X");
Print X TDI noise to disk!
Noise sampling time (s)
Proof mass S_n x f^2 (Hz^{-1})
Opt. path S_n x f^2 (Hz^{-1})
Laser S_n (Hz^{-1})
File name # samples requested, sampling time
TDI variables to print
```
Example: unequal-arm 1st-gen. noises

Note laser noise subtraction!

\[
\begin{align*}
lisawig.printtdi("noise-a.txt",unequalarmnoise,1048576,1.0,"a");
lisawig.printtdi("noise-z.txt",unequalarmnoise,1048576,1.0,"z");
lisawig.printtdi("noise-E.txt",unequalarmnoise,1048576,1.0,"E");
\end{align*}
\]
Example: noisyLISA subtraction

\begin{align*}
\text{originallisa} &= \text{lisawig.OriginalLISA}(16.6782, 16.6782, 16.6782) \\
\text{noisyli} &= \text{lisawig.NoisyLISA}(\text{originallisa}, 1.0, \text{measurement noise}) \\
\text{originalnoise} &= \text{lisawig.TDINoise}(\text{originallisa}, \quad \text{measurement noise } S_n (s^2 Hz^{-1}) \\
&\quad 1.0, 2.5e-48, 1.0, 1.8e-37, 1.0, 1.1e-26, 0.1) \\
\text{noisynoise} &= \text{lisawig.TDINoise}(\text{noisyli}, \text{originallisa}, \quad \text{Use different LISA for noise and TDI delays} \\
&\quad 1.0, 2.5e-48, 1.0, 1.8e-37, 1.0, 1.1e-26, 0.1) \\
\end{align*}
Example: monochromatic binary

- $f = 2 \, \text{mHz}$
- $T = 1 \, \text{yr}$

- Ecliptic latitude: $\pi/2$
- Ecliptic longitude: 0

- Lat.: $\pi/5$
- Long.: $\pi/3$

```python
mylisa = lisawig.CircularRotating(0.0, 0.0, 1.0)  # LISA array parameters
mybinary = lisawig.SimpleBinary(frequency, initial_phase, inclination, amplitude,
                                ecliptic_latitude, ecliptic_longitude, polarization_angle)

mysignal = lisawig.TDIsignal(mylisa, mybinary)    # samples requested, sampling time
lisawig.printtdi("signal-X.txt", mysignal, secondsperyear/16.0, 16.0, "X")
```
Comparison with LISA Simulator

TDI X (no noise), T = 1 yr

\[f = 1.94 \text{ mHz} \]
\[\text{inc} = 1.60 \]
\[\text{ecliptic lat.} \approx 0, \text{ long.} = 0 \]
Case study: S/Ns for extreme-mass ratio inspirals

Hughes-Glampedakis-Kennefick integrator (C++): output \(h_+ \), \(h_x \)

(Python)

Synthetic LISA: generate A, E, T, X GW & noise time series

Matlab: compute S/Ns

12/17/2003

GWDAW 2003: Michele Vallisneri on Synthetic LISA
Summary!

- *Synthetic LISA* is the package I would have wanted to download and use, had I not written it.
- *Synthetic LISA* simulates LISA fundamental noises and GW response at the level of science/technical requirements.
- *Synthetic LISA* includes a full model of the LISA science process (2nd-generation TDI, laser-noise subtraction).
- *Synthetic LISA*’s modular design allows easy interfacing to extended modeling and data-analysis applications.
- *Synthetic LISA* is user-friendly and extensible (C++, Python, other scripting languages).
- *Synthetic LISA* is planned for open-source release in Jan/Feb (NASA permitting).
Synthetic LISA
simulating time-delay interferometry
in a model LISA

Michele Vallisneri
Jet Propulsion Laboratory
12/17/2003