
Flight Software Issues in Onboard Automated Planning: Lessons Learned on EO-1

Daniel Tran, Steve Chien, Gregg Rabideau, Benjamin Cichy
Jet Propulsion Laboratory, California Institute of Technology

Contact: { firstnameJastname} @jpl.nasa.gov

ABSTRACT

Planning and scheduling systems for spacecraft operations have traditionally been an important step in
the ground operations of mission planners. In the Autonomous Sciencecraft Experiment (ASE), this step
is moved onboard the Earth Observing- 1 spacecraft. The ASE features several advanced technologies:
onboard image processing, a robust execution engine, and onboard planning and scheduling. This paper
focuses on the onboard planner and scheduler CASPER, whose core planning engine is based on the
ground system ASPEN. Given the challenges of developing flight software, we discuss several of the

determining what data to place within the engineering telemetry packet, and performing long term
planning.

7 issues encountered in preparing the planner for flight, including reducing the code image size,

INTRODUCTION

The Autonomous Sciencecraft Experiment (ASE), currently flying onboard the Earth Observing- 1 (EO-
1) [41 spacecraft, demonstrates the future in space missions using several integrated autonomy software
technologies to perform onboard image processing, robust execution, onboard planning and scheduling,
and autonomous spacecraft re-tasking. The onboard planner generates a detailed operations plan from
high-level requests sent from the ground. This plan is sent to the robust execution engine, which issues
commands to the flight software. The onboard science algorithm analyzes acquired images and
autonomously issue new requests to the planner to generate a new observation plan, and re-task the
spacecraft.

The ASE onboard flight software consists of three main software components:

Image processing algorithms that analyze onboard data to detect dynamic events such as volcano
eruptions, flooding, lake freezehhaw, sea-ice breakup, and autonomously request updates to the
mission operations plan.
Robust execution software using the Spacecraft Conznzand Language (SCL) to enable spacecraft
telemetry processing and event-driven commanding.
Planning and scheduling software using the Continuous Activity Scheduling Planning Execution
and Re-planning (CASPER) software to schedule science observations, ground contacts, and re-
plan based on requests from onboard image processing.

The image processing algorithms analyzes onboard data to detect dynamic science events. Based on its
output, it submits a request to update the mission operations plan. This request can be removing the
image froin the solid state recorder (SSR) to free up space for acquiring more images, or re-taslung the
spacecraft to acquire more images of the target or an adjacent target on subsequent orbits.

The robust execution software (SCL) [5] accepts CASPER planned activities as input and issues
individual spacecraft commands. SCL also monitors the state of the spacecraft by maintaining a
database of the current spacecraft telemetry. This database is constantly monitored for any deviations
during plan execution and SCL can quickly respond to any situations that may endanger the spacecraft.

1

mailto:jpl.nasa.gov

The planning and scheduliiig software (CASPER) is a model-based planner that generates detailed
mission operations plans from requests provided by the science team or onboard image processing.
CASPER represents the operations constraints of the spacecraft in a general modeling language and
reasons about these constraints to generate the detailed plan. CASPER also has the capability to
continuously monitor the SCL database for any anomalous spacecraft situations and can modify the plan
accordingly .

With all flight projects, developing softwave for space missions introduces many key challenges.

0

e

0

0

Limited commiinicntion - EO- 1 has approxiinately 8 ground contacts a day, each approximately
10-15 minute long with an uplink/downlink rate of 2Kbitd2Mbits. Also, with EO-] in extended
mission, the Mission Operations Control Center (MOCC) is only staffed 12 hours a day. Given
these conditions, EO-1 is able to upload 300Kbytes of data a day.
Limited observability - Because processing telemetry is expensive, onboard storage is limited,
and downlink bandwidth is limited, engineering telemetry is limited. Thus the ground operations
team must be able to operate the spacecraft with limited information. CASPER is allocated 248
bytes of data in its telemetry packet to store all real-time information about the state of the
planner and averages an output of 1 packet every 60 seconds.
Limited CPU - The ASE software operates on a MIPS R3000 Mongoose V running at SMIPS,
much slower than typical desktop workstations. Our CPU allocation on EO-1 is 4 MTPS, which
is shared among SCL, CASPER, and image processing.
Limited memory - The Mongoose V contains 256MB of RAM, with 32MB allocated to the
original flight software. Of the remaining memory, 40MB is allocated for the CASPER code and
heap space, with the rest set aside for SCL, image processing, and the filespace
Limitedfilespace - Developers chose not to include a filesystem as part of the original flight
software. ASE requires the use of a filesystem and included an 8MB ramdisk. CASPER was
allocated 1MB of filespace for output log files, with the remaining set aside for project files and
output files for SCL and onboard image processing.

In the remainder of this paper, we provide a general description the CASPER planner, discuss our
methods to reduce the CASPER image size, our strategy for determining what data to store within the
engineering telemetry packet, and our approach to performing long term planning.

A GENERAL DESCRIPTION OF CASPER

The spacecraft planning and scheduling process is traditionally performed as one step of ground
operations to schedule science observations and downlink opportunities. The output of this process is a
detailed sequence of commands to be issued to the spacecraft for execution. In order for the ASE to
autonoinously satisfy new science requests from image processing algorithms, this step is done onboard
by the CASPER [2] planning software. CASPER is able to represent the operations constraints in a
generic modeling language and reasons about these constraints to generate a detailed mission operation
plan while respecting mission constraints and resources.

2

Repair Algorithm

Start

1.

2.

3 .

4.

5.
6.
7.

Given

(if conflicts exist and user time-limit not exceeded)

Select an activi

Figure 1 - The main CASPER
planning and scheduling algorithm

CASPER uses a local search [3] approach to
develop the detailed operation plan. The main
algorithm for planning and scheduling is based
on a technique called iterative repair. During
iterative repair, the conflicts in the plan are
detected and resolved one a time, until no
conflicts exists. A conflict is considered to be
any violation of the mission or spacecraft
constraints and resolved through several
predefined methods. These methods include:
moving, adding, removing, detailing, or
abstracting a scheduled operation. The repair
algorithm may use any of these methods in an
attempt to resolve a conflict.

Here is an example of the repair algori thin after
introducing a set of new science observations
into the plan:

Several conflicts are introduced and recognized by CASPER because the requests do not satisfy
all operations constraints.
Given the set of the conflicts, CASPER will choose one conflict to resolve. In our example, its
will be a resource conflict because the available memory on the solid state recorder (SSR) is
oversubscribed.
Given the list of repair methods available for this conflict (add an activity replenish the memory,
remove a user of the resource, move a user of the resource), CASPER selects move to resolve the
conflict.
From the list of activities that subscribe to the SSR memory (all science observations), CASPER
selects one activity to move.
An available start time to resolve this conflict is selected.
The science observation is moved to the new start time, resolving the conflict.
This algorithm is then repeated until all conflicts within the schedule are resolved.

PREPARING CASPER FOR FLIGHT

the many challenges to developing flight software, this section discusses several issues
encountered in preparing the CASPER planner for flight. Specifically, we describe:

Reducing the CASPER image size - With infrequent and short ground contacts and limited
available memory, we needed to reduce the CASPER image size. We discuss our strategies to
reduce the CASPER image size.
CASPER engineering data - With limited communication and engineering data, we describe our
criteria for selecting points of data to collect.
Approach to long term planning - CASPER must be able to autonomously plan for a week’s
worth of EO-] activities, which includes over 100 science observations. We discuss how this is
achieved within the available memory and CPU.

Reducing the CASPER image
CASPER’s core planning engine is the Automated Scheduling and Planning Environment (ASPEN) [3]
ground-based planner. ASPEN is a re-usable framework which is capable of supporting a wide variety
of planning and scheduling applications. It provides a set of software components commonly found in

3

most planning systems such as: an expressive modeling language, resource management, a temporal
reasoning system, and support of a graphical user interface. ASPEN and CASPER is flexible enough to
be used for multiple applications such as MAMM, MISUS, and CLEaR. Though CASPER for ASE
requires only a subset of the software components provided, all components are still included as part of
the CASPER image.

CASPER developers took two approaches to reducing the image size: removing unneeded Components
and reducing code image size inefficiencies. A large portion of this work was done for the Three Corner
Satellite mission (3CS) [see related work], which had a more constrained RAM allocation. 3CS
contained 16MB of RAM, with 8MB allocated for the CASPER code and heap space. Prior to this
work, the image size of CASPER was at 12MB.

The CASPER development team went through the core software and removed each software component
deemed unnecessary for flight. Several modules removed from the CASPER code include:

Backtracking Search - The ASPEN framework provides several search algorithms that perfoim
backtracking search. On ASE, we have decided to use the repair search algorithm, so these other
algorithms are not needed.
Optimization - CASPER provides the capability to optimize the schedule based on several
preferences [lo] defined by mission planners. However, we have decided not to use this
functionality for ASE.
GUZ Sockets - Because ASPEN is a ground-based planner, it provides a GUI for visualizing the
schedule and interacting with it. Communication with this GUI is done through the ASPEN
socket interface. In flight, support for a GUI is not necessary.
General Heuristics - The ASPEN core contains multiple sets of generic heuristics that have been
found to be useful across multiple projects. CASPER for ASE requires a subset of these
heuristics; therefore, the unused sets can be removed.
Generali~ed Timelines - Generalized timelines provides a general infrastructure to model
complex state variables and resources. This infrastructure is not required for ASE.

Removing software components trimmed approximately 3MB from the CASPER image size, reducing it
to 9MB.

CASPER also makes heavy use of the Standard Template Library (STL), specifically the containers
provided. STL templates are widely known to increase code size in C++ because for each container
defined in CASPER, the code may be duplicated several times. There exist various compiler techniques
available that attempts to minimize the duplication. However, CASPER was compiled using the
VxWorks 5.3 GNU compiler, the compiler used in the original flight software build, which does not
provide any support to reduce duplication. To minimize the impact of code bloat, we re-implemented
the STL container and functions used in the CASPER code. This re-implementation, dubbed “lite STL”,
was developed to minimize the code generation, trading space for execution time. For example, the STL
map container uses a red-black tree as the underlying implementation to allow O(1og N) lookups, while
the “lite” implementation uses lists with a lookup time of O(N). The implementation of red-black tree is
more sophisticated than lists, requiring larger amounts of code. This “lite STL” implementation also
provided another added benefit; we did not need to modify any of the core software with ASPEN
because the API did not change. For projects that operate on desktop workstations, the full STL
implementation can be used, while other projects requiring a lightweight version of CASPER can use
the “lite STL” implementation. We were able to remove approximately 3MB from the CASPER image
using this strategy.

4

Along with simple compiler optimization, removing unneeded software components, and reducing the
impact of code duplication, the final size of the CASPER image was reduced to 5MB.

To improve the time required to uplink the ASE software, given the uplink rate of 2Mbits/sec, we also
utilized onboard decompression. We compressed the ASE software on the ground, and uploaded this
compressed version to memory. The existing flight software was then patched to perform the
decompression routine. This step provided a huge savings in uplink time. The full ASE flight software,
originally at 9MB, compressed to a I .5MB image size. Given our short and infrequent contact times,
this reduced the uplink time from an estimated 30 days to approximately 5 days.

CASPER engineering data
On traditional ground planning systems, there are several ways of collecting data about the state and
actions of the planner. Most systems provide a graphical user interface that allows ground personnel to
immediately determine conflicts within the schedule, and the disk drive allows for large amounts of data
to be stored for review. These are the methods we had used for developing and debugging issues with
CASPER.

a

Collecting data for spacecraft operations is done much differently. ASE has two methods of collecting
data: a telemetry packet and log files. Telemetry is output by each subsystem at various frequencies (a
packet every 1 to 8 seconds) and provides information about the health and state of the spacecraft. The
telemetry values are stored on the spacecraft local recorder and automatically downlinked during each
ground contact. While in ground contact, the real-time telemetry data produced by each subsystem is
immediately available to the ground operations team, but collected data has approximately a 24 hour
turnaround time before it is available. Engineering data is the only method the EO-1 operations team
used to collect data on the spacecraft. ASE introduced an 8MB ramdisk into the system as a means of
collecting output log files. However, processing and viewing log files introduces extra work for the
ground operator. In order to downlink log files from the spacecraft, operators need to specify the file to
downlink and initiate the dump at the start of the ground contact. Also, if the file is too large, the
operator may need to downlink the file across multiple ground stations and reconstruct it afterwards.

To fit within the framework of normal EO-1 operations and reduce the requirements to ground
operators, we decided that engineering data would be the main method of extracting information about
the health and status of CASPER. Output log files are still available for downlink, in case an anomalous
situation occurs that cannot be explained through the telemetry packet.

There were several objectives in determining what points of data to include in the CASPER telemetry
packet. We wanted to be able to identify an anomalous situation within the planner and replay that data
to replicate what occurred in flight. This was achieved by partitioning the packet into three sections.

Health and Status - contains a short summary of the planning software status.
Autonomous Decisions - these decisions occur during modifications to the schedule in an iteration of
rep air.
Uncontrollable Inputs - all un-controlled, tin-planned inputs to the planner are logged. With
CASPER, these inputs are updates to plan variables that differ from the modeled value.

A maximum of 248 bytes are available in a single telemetry packet. In the latest build of the ASE
software, the CASPER telemetry packet is utilizing 224 out of the 248 bytes available. Below, we list

5

out a few of the data points for each section, and provide a brief reason for each. To maximize the
packet space, each telemetry point listed below is either 2 or 4 bytes in size.

Data Point
Heartbeat

Description
Up-counter to indicate
 lanner is still active

Eirors
Warnings
Current Stack Usage

Maximum Stack Usage

-
Current Heap Usage

conflicts is variable and unbounded. It would be
impossible to store an unbounded set of data
points within a finite telemetry packet, without
creating an artificial upper bound. Instead, the
conflict selected is stored to determine what
schedule modifications were done. This strategy
of selecting what was chosen is done for all choice
points. The output log files contain the detailed
list of possibilities for each choice point for a
repair iteration.

Number of errors
Number of warnings
Current amount in use
from allocated stack
space
High amount used
from allocated stack
space
Current amount
allocated from heap
manager

With all autonomous plan modifications logged,
we are able to reproduce in our ground testbed
what occurred in flight. However, because we are
not able to store the full state of CASPER, we
assume that it is possible to reproduce the initial
conditions of the system. When loading the initial
set of goals into the planner, there needs to be the
same number of conflicts on our ground testbed as
there would be in flight in order to reproduce what
occurred.

Telemetry Point
Iteration counter

The tiineline update section (see Table 3) of the
telemetry packet contains all un-modeled updates
to the CASPER planner during execution. As
activities are inserted into the CASPER schedule,
the future values of the spacecraft telemetry are
modeled as timelines. Each timeline is constantly

Description
Number of repair
iterations

The health and status section (see Table 1) of the
packet allows LIS to deteimine the status of
CASPER. The error and warning counters
indicates if an unexpected situation occurred within
the planning software. The stack usage indicates
how much margin exists before overflowing the
allotted stack space. The heap usage will indicate if
a memory leak is occurring.

Success

Seconds Elapsed

Pre Conflict Count

Indicates if the last plan
modification was
successful
Elapsed time for the
last iteration
Number of conflicts
prior to plan
modification

Post Conflict Count

Conflict Type
Conflict Start Time
Conflict End Time
Resolution Method

Activity Instance ID

Activity Schema ID

Parameter Schema ID

Number of conflicts
after plan modification
Type of last conflict
Start time of conflict
End time of conflict
Method used to modify
the plan
Instance of activity
modified
Schema of activity
modified
Activity parameter
being modified

6

monitored to ensure what CASPER modeled is a
true reflection of the state of the spacecraft.

updates to the timelines are inserted into the plan.
When the model differs from the spacecraft,

telemetry point indicate
how the schedule was
updated

I

I mlink Rate I
I

I I

Table 3 - A sample of the schedule update section of the
CASPEK telemetry packet . .

A common update to the CASPER planner occurs
for the number of free memory blocks in the solid
state recorder after executing a science
observation. Due to scarce computing resources,
it is not uncommon for the instruments to collect
data several seconds longer than planned, thus
consuming more memory blocks. Therefore the
spacecraft telemetry value for the number of free
memory blocks differs from the value CASPER
modeled. CASPER then updates the timeline to
the new value.

Several other points of data were considered but omitted from the CASPER telemetry packet due to its
limited size and time constraints.

Activity information - activity state information, start time, and unique identifiers are several of the
parameters that could be saved in the telemetry packet.
CASPER input coinmands - the last ground command issued to CASPER can be logged in the
packet as verification of receipt. Currently, we are examining the consequences of the command to
determine if it was successful received.
Heuristic informution - at each decision point in the repair iteration, weighted heuristics are used to
select the coirect value. Data indicating which heuristics were used would help in determining why
decisions were made during repair.
Code execution - within critical areas of the CASPER planning code, saving what section of the
code is executing would help in debugging. For example, if CASPER were to enter a section a code
and loop forever, we are not currently able to determine where the code is “stuck”.

Approach to long term planning
One of the scenarios planned for ASE is autonomous control of EO-1 for a week. This requires
CASPER to support generation of a valid schedule for a week’s worth of EO-1 operations. During a
nominal week, EO-1 averages over 100 science observations and 50 S-BandX-Band ground contacts.
The size of this problem presents a challenge to CASPER, given the limited memory and CPU
constraints.

While most desktop workstations have several GB’s of memory available, CASPER on EO-1 is
constrained with a 32MB heap. As result, we need to ensure that generation of a week’s plan does not
exhaust all available heap space. A science observation is the most complex activity within the
CASPER model, consisting of over 78 activities. Planning a week’s worth of operation would require
sched~iling over 7800 activities (not included downlink and momentum management activities) and
exhaust our heap space.

Also, as the number of goals in the schedule increase, the computation time to schedule a goal will also
increase, due to the interaction between goals. On EO-1, this problem is exacerbated with a 8 M P S
processor, of which 4MIPS are shared by SCL, CASPER, and science processing.

7

Deleted Past

Test Description
Onboard cloud detection
Onboard commanding path
CASPER ground generated commands executed onboard
Software jumping and loading
ASE autonomously acquires dark calibration image and performs downlink
ASE autonomously acquires science images and performs downlinks
ASE autonomously analyzes science data onboard and triggers subsequent

1 observations

Near-term detailed I Long-term
planning window i I planning window

Test Date
March 2003
May 2003
July 2003
August 2003
October 2003
January 2004 - present
April 2004 (expected)

abstract

I
I Rio Grande I Dallas Overlap Winnibigoshish I I i I 4 I Leech Lakes I

H*
H H H H

HH
H H

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

I Abstract science
I observations

Current time

Figure 2 - Strategy for long term planning

Current time + 24 hours

To resolve the problems with CPU and memory consumption, CASPER will utilize a hierarchal
planning approach with focused planning periods. CASPER will perform abstract planning and
scheduling of observations for the entire week, such as ensuring a constraint of one science observation
per orbit. It will also perform near-term planning for the next 24 hours by detailing the science
observations to the low-level activities. This near-term planning window is continuously updated to
include the next 24 hours of the schedule and as past observations exit the planning window, they are
automatically removed from the plan. By reducing the number of science observations that need to be
scheduled and detailed to a 24 hour period, we reduce memory and CPU consumption.

This strategy has not been implemented for the current version of CASPER operating onboard EO-1, but
is being developed for our next ASE software release, where we plan to demonstrate long-term
autonomous planning.

FLIGHT STATUS

The ASE software has been steadily progressing to full operations with the major milestones listed
below.

8

The only step remaining for full operations is the flight of the integrated science with autonomous
planning and execution. This software is currently in integration and test and is expected to be ready for
flight in the April 2004 timeframe. When this software build is ready it will be flown until September
2004 and will be used to acquire as many science-triggered scenes as resources allow.

An additional effort includes teaming with the NASA Aines Research Center to fly the Livingstone 2
Mode Identification and Diagnosis software to be added to ASE in the June 2004 timeframe. The
Livingstone 2 experiment would demonstrate tracking of multiple fault hypotheses, a capability not
demonstrated in the Remote Agent Experiment in 1999. This effort is in earlier stages but is making
good progress.

RELATED WORK

The Three Corner Sat (3CS) University Nanosat mission [l] will be using the CASPER onboard
planning software integrated with SCL and the flight software. Though significantly less complex that
EO-1, this mission represented a significant step in preparing CASPER for flight. 3CS required
CASPER to fit within a more constrained memory footprint, as only 8MB of RAM was allocated.
CASPER was developed to operate under the VxWorks operating system, provide a simplified set of
telemetry points, and interfaced with the SCL execution software. The 3CS mission was scheduled to
begin in late 2003, but has since been rescheduled for launch on a Delta IV rocket in July 2004.

In 1999, the Remote Agent experiment (RAX) [6] executed for a few days onboard the NASA Deep
Space One mission. RAX is an example of a classic three-tiered architecture [7], as is ASE. RAX
demonstrated a batch onboard planning capability (as opposed to CASPER's continuous planning) and
RAX did not demonstrate onboard science.

SUMMARY

The ASE onboard EO-I is demonstrating several advanced software components capable of
autonomously re-tasking the spacecraft to respond to several types of science events. This represents the
future of spacecraft missions. We've discussed several issues in developing the onboard planning
system, CASPER, given the many challenges imposed in designing flight software.

REFERENCES

[I] S. Chien, B. Engelhardt, R. Knight, G. Rabideau, R. Sherwood, E. Hansen, A. Ortiviz, C. Wilklow,
S. Wichman , "Onboard Autonomy on the Three Comer Sat Mission," Proc 1-SAIRAS 2001, Montreal,
Canada, June 2001. (also see http://threecs.colorado.edu)

[2] S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Rabideau, "Using Iterative Repair to Improve
Responsiveness of Planning and Scheduling," Proceedings of the Fifth International Conference on
Artificial Intelligence Planning and Scheduling, Breckenridge, CO, April 2000. (also see
http://casper.jpl.nasa.gov)

[3] G. Rabideau, R. Knight, S. Chien, A. Fukunaga, A. Govindjee, "Iterative Repair Planning for
Spacecraft Operations in the ASPEN System," International Symposium on Artificial Intelligence
Robotics and Automation in Space, Noordwijk, The Netherlands, June 1999.

[4] Goddard Space Flight Center, EO-1 Mission page: http://EO-1 .gsfc.nasa.gov

9

http://threecs.colorado.edu
http://casper.jpl.nasa.gov
http://EO-1
http://gsfc.nasa.gov

[5] Interface and Control Systems, SCL Home Page, interfacecontrol.com

[6] NASA Ames, Remote Agent Experiment Home Page, http://ic.arc.nasa.gov/projects/remote-agent.
See also "Remote Agent: To Boldly Go Where No AI System Has Gone Before", Nicola Muscettola, P.
Pandurang Nayak, Barney Pell, and Brian Williams. Artijicial Intelligence 103(1 -2):5-48, August 1998

[7] S. Chien, B. Cichy, S. Schaffer, D. Tran, G. Rabideau, R. Bote, Dan Mandl, S. Frye, S. Shulman, J.
Van Gaasbeck, D. Boyer, Validating the EO-1 Autonomous Science Agent, Working notes of the
Workshop on Safe Agents, AAMAS-2003.

[8] E. Gat et al., Three-Layer Architectures. in D. Kortenkamp et al. eds. AI and Mobile Robots. AAAI
Press, 199s.

[9] S. Chien, B. Cichy, S. Schaffer, D. Tran, G. Rabideau, R. Bote, D. Mandl, S. Frye, S. Shulman, J.
Van Gaasbeck, D. Boyer, Validating the EO-1 Autonomous Science Agent, Working notes of the
Workshop on Safe Agents, AAMAS-2003.

[101 G. Rabideau, B. Engelhardt, S. Chien, "Using Generic Preferences to Incrementally Improve Plan
Quality," in Proceedings of the Fifth International Conference on Artificial Intelligence Planning and
Scheduling (ALPS 2000), Breckenridge, CO. April, 2000.

[l 11 T. Estlin, T. Mann, A. Gray, G. Rabideau, R. Castano, S. Chien and E. Mjolsness, "An Integrated
System for Multi-Rover Scientific Exploration," Sixteenth National Conference of Arti
(AAAI-99), Orlando, FL, July 1999.

[121 B. Smith, B. Engelhardt, D. Mutz. "Reducing Costs of the Modified Antarctic Mapping Mission
through Automated Planning", Fourth International Symposium on Reducing the Cost of Spacecraft
Ground Systems and Operations, 2001.

ACKNOWLEDGEMENT

Portions of this work were performed at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.

10

http://interfacecontrol.com
http://ic.arc.nasa.gov/projects/remote-agent

