
Improving Software Size Estimates by
Using Probabilistic Pairwise Comparison Matrices’

py-” * Karen T. Lum

Jet Propulsion Laboratory
Karen. T.Lum@pl.nasa.gov

kw Dr. Jairus Hihn
California Institute of Technology/-”

Jet Propulsion Laboratory
Jairus. M. Hihnajpl. nasa.gov

California Institute of Technology/#”

Abstract
The Pairwise Comparison technique is a general purpose estimation approach f o r capturing expertjudgment. This

approach can be generalized to a probabilistic version using Monte Carlo methods to produce estimates of size
distributions. The probabilistic pairwise comparison technique enables the estimator to systematically incorporate
both estimation uncertainty as well as any uncertainty that arises from using multiple historical analogies as
reference modules. In addition to describing the methodology, the results of the case study are also included. This
paper is an extension of the work presented in [Lum & Hihn, 20031 and will show how the original software size
estimates compared to the actual delivery size. It will also describe the techniques used to modify the approach
based on lessons learned.

1. Introduction

Software cost estimates are typically required in the early stages of the life-cycle when requirements and design
specifications are immature. Under these conditions, the production of an accurate cost estimate requires extensive
use of expert judgment and the quantification of significant estimation uncertainty. Research has shown that under
the right conditions, expert judgment can yield relatively “accurate” estimates [Hihn & Habib-agahi, 19901.
Unfortunately, most expert judgment-based estimates do not meet these conditions and frequently degenerate into
outright guessing. At its best, expert judgment is a disciplined combination of a ‘best guess’ and historical
analogies. Pairwise comparison matrices provides a formal, systematic means of extracting, combining, and
capturing expert judgments and their relationship to analogous reference data [Saaty, 19801.

The use of matrices of pairwise comparisons as an approach for deriving a cardinal ranking vector from
subjective paired comparisons was first introduced by Saaty in 1977 as part of the Analytical Hierarchy Process
(AHP) [Saaty, 19771. AHP, as originally proposed, is a decision-making or prioritization technique. The usefulness
of this technique for software size estimation was recognized in the mid-eighties [Bozoki, 1986; Lambert, 19861.
Bozoki provided a more detailed description of his approach in [Bozoki, 19931. Usmg a pairwise comparison matrix
to estimate software size requires an expert’s judgment as to each module’s relative bigness compared to one
another. The effectiveness of this approach is supported by experiments that indicate that the human mind is better
at identifying relative differences than at estimating absolute values [Shepperd, 2001, Miranda, 19991. In this paper,
for ease of exposition, pairwise comparison matrices will be called judgment matrices following [Crawford, 19871.

An opportunity to apply the pairwise comparison technique arose when a cost estimate was required for a
mission critical ground software project. The software team members wanted to be more rigorous in how they
approached the estimating task. They also imposed a number of constraints. The team wanted to estimate the size
and cost of its next software development task based on a recently completed development activity. Since there
were numerous sources of potential risk and uncertainty associated with the next delivery, the technical staff wanted
to provide ranges for the ratio comparisons in order to visualize the actual probability distribution for the estimates.
In addition, they had multiple sources of historical software size data that could be incorporated. While m r e
information is generally considered helpful, this particular situation presented some complexities that the standard

’ The research described in this abstract was camed out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with
the National Aeronautics and Space Administration.

mailto:T.Lum@pl.nasa.gov
http://nasa.gov

approach did not address well when incorporating uncertainty. Therefore, the pairwise technique had to be adapted
to address distributional inputs in the context of multiple reference analogies.

is provided in [Lum, Hihn, 20031. This paper describes the approach and algorithms used to generalize the paired
ratio comparison matrix technique in order to utilize information inherent in multiple estimates, multiple reference
projects, and estimator range information for the purpose of generating estimated size distributions. In addition, this
paper details the application of this technique in the context of an actual software project, in order to assess its
effectiveness.

A description of how this technique was applied to effort estimation in combination with software cost models

2. Pairwise Comparison Technique

Creating a judgment matrix involves creating an n x n matrix (AnXfl=[a,]), where n is the number of entities (for
software, this could be modules, use cases, requirements, etc.), being compared. Each element, aV, in the matrix is

Size
Size

an estimate of the relative size of entity i with respect to entityj, that is - . The properties of a judgment matrix

require that elements be:

than entity z;
(1) reciprocal, aIJ = l/a,,, which means that entity i is a, times bigger than entityj, then entityj is l la , times smaller

(2) the same size as itself, which means that all diigonal elements a,, = 1.
The implication of these properties is that only the upper or lower triangle of the judgment matrix must be filled in.

For example, see Table 1, which is a judgment matrix with estimates of the relative software size of four modules.
The values in Table 1 indicate that Module 1 is two times as big as Module 2 , three times bigger than Module 3, and
four times bigger than Module 4, and so forth. Note that there is no a priori reason that all the values in the upper
triangle are greater than 1.

Table I. Example judgment matrix

Based on Conditions 1 and 2 above, the matrix can be completed as follows:

xample completed judgment matrix

One way to interpret the judgment matrix is that each column yields a different ranking vector for the purpose
of determining the relative size of the four entities. Each vector is normalized such that the module that corresponds
to itself (the diagonal elements) is always 1, and it is the reference module against which all comparisons in the
same column are made. Therefore, column 1 indicates that module 2 is half as big as module I; module 3 is 33% of
the size of module 1; and module 4 is 25% of module 4. Each column can be interpreted in this manner. InTable 2,
there are four different rankings (an n x n matrix yields n independent ranking vectors). In a case where different
ranking vectors have different rank orders for each entity, there is more estimation uncertainty around the entities
being compared.

A special case exists when a judgment matrix is perfectly consistent. This occurs when a,, X aJk = alk for all

i, j , k. If a judgment matrix is consistent, then each vector is equivalent to all the others, or each vector can be
transformed into the other via a linear transformation. This means that there is really one vector of unique
information. Time has been wasted in making all of these pairwise comparisons in the example, since only four

numbers needed to be guessed and not six. Fortunately, it turns out that judgments are rarely consistent, unless the
estimator is cheating.

More frequently, inconsistent matrixes will result. The example in Table 2,gives four different rankings each
yielding a slightly different set of estimates for the modules. The benefit is that there is plenty of information from
which a final estimate can be generated. However, only one vector is desired, not n vectors.

There have been a number of mathematical procedures proposed for deriving a single ranking vector from an
inconsistent judgment matrix. These produce numbers that meet the conditions of a ratio scale. This means the
slope of a line has been defined but the intercept or origin of the scale is still unknown. Therefore, the actual sizes
of the modules are unknown, and only their relative sizes are known. However, as long as at least one of the
modules used to derive judgment matrix is an historical analogy, that module can be used to determine the intercept
or origin to determine the estimated sizes for each module.

The original approach proposed by [Saaty, 19771 was to use the Perron-Frobenius right eigenvector. Research
has shown, however, that this is one of the worst techniques to use [Hihn & Johnson, 19881. There are many
potential solutions to this problem. The Geometric Mean method, which is very easy to calculate, has been
advocated by many authors for various reasons. [Hihn & Johnson, 1988; Crawford and Williams, 19851. Miranda
chose to use the geometric mean procedure because of its simplicity and the results achieved in during
experimentation with thirty participants [Miranda, 200 11. Therefore, the geometric mean is the recommended
approach used in this case.

I1

The Geometric Mean is calculated as v, = n a,;' , which yields a vector
J =I

that meets the requirements of a ratio scale. The example in Table 2 would yield the vector

Asanexample, the2.21 isderivedfrom (1 ~ 2 ~ 3 x 4) ' ' ~ .
Once the ratio scale vector is calculated, the size of each known entity can be calculated using & least one

known historical analogy to normalize the vector, and in essence define the origin for the ratio scale. This allows
one to convert the vector to cardinal numbers yielding absolute values of the size estimates. The size of at least one
of the elements in the ratio scale is needed as a reference to derive a multiplier m

Size r e ,
m=- , ref is one of the modules i through n

'ref

which is used to calculate the size of the other elements. The formula is as follows:

Using the example in Table 2 and assuming the reference module is v3 at 2000 lines of code, this step would
result in the following:

nz = 200010.76 = 2632.15
Size, = 2632.15 x 2.21 = 5826

S i z e z = 2 6 3 2 . 1 5 ~ 1.11 =2913
Size3=2632.15 x 0.76=2000
Size4=2632.15 x 0.54= 1414

In summary an estimate of size using pairwise comparison matrices can be generated using four steps:
1)
2) Derive the judgment matrix
3)
4)

Estimate the relative size of all modules

Compute the geometric mean across each row in the matrix
Derive size estimate by normalizing values to the reference module

3. Probabilistic Pairwise Comparison Technique

Two major adaptations to the basic pairwise comparison technique described above were made: (1) the
incorporation of distributions for pairwise judgments and (2) the use of multiple reference modules. There are many
distributions that could be used. A log normal distribution would make it possible to derive a closed form solution.
However, it is difficult for engineers to estimate the mean and variance of a log normal distribution. The use of
estimation ranges (low, mode, and high) was a found to be a more practical approach. Since it is important for a
software manager and engineers to have a clear understanding of their inputs and estimates, the simplest distribution
cognitively is the triangular distribution. That is, - TriPDF (min, mode, max) a 11
where the element a,! is a triangular distribution TriPDF with a minimum variate (min), a peak variate (n d e) , and a
maximum variate (mux). This requires the use of a Monte Carlo technique to combine the different distributions,
but with modern computers and software that is not a difficult task.

To illustrate the technique the example from the previous section will be used. The first step is that the
subjective judgments in Table 1 can be entered as distributions as shown in Table 3. Here are three elements as
distributions and three as point values.

Table 3. a;;as distributions

In Table 3, element ~ 1 4 and element a34 are entered as distributions with a,4 - TripD8’(3,4,6)
anda,, - TriPDF(1,1.5, 3), respectively. The element a,, would be interpreted as Module 1 is most likely 4
times bigger than Module4, but could be as much as 6 times bigger, or at a minimum, it could be the three times the
size. The element a,, would be interpreted as Module 3 is most likely 1.5 times bigger than Module 4, but could be
as much as 3 times bigger, or at a minimum, it could be the same size. Random draws are made from these
distributions to determine the geometric mean vector, which becomes:

VmF = [v P D F , = fi a;’’], where a , - TriPDF (min, mode, max) .
/= 1

The result is that each element in the geometric mean vector is now a distribution V P D F ~ .

Another major adjustment to the basic pairwise technique is the manner in which multiple reference software
modules are incorporated. The basic method described above works well for the case where there is a single
reference analogy. However, having multiple reference analogies with the typical case of an inconsistent judgment
matrix creates a dilemma. A different total size estimate is generated depending upon which reference module is
used. The solution proposed here involves incorporating the multiple references by capturing the different possible
reference values as a distribution. This way the basic Monte Carlo structure that has been set up here can be used as
a general purpose approach for any type of ranking problem.

A triangular distribution is used to capture the differences between the multiple reference-derived multipliers

m P D F , . ~ ~ through m P D F , . ~ ~ ,

- Size,,
mPDFre f i --

V ~ ~ ~ I . G ~

If the matrix were consistent, having multiple references should theoretically result in the same multiplier value
*
PDF = mPDFi = PDE, '

A triangular distribution is merely a simple method of capturing the multiple references. Therefore, one solves
*

for a single distribution of the multipliers mPD,
miDF - TriPDF (minMultiplier, GMmultiplier, maxMultiplier)

where
X

minMailtip1 ier = & m,,,,,
;=I

l l x

GMmultiplier = fi (mpDFred)
i=l

'c

maxMult@lier = maxmpDF ref
1 = I

for i through x number of references.
For example, the first four columns in Table 4 are the completed judgment matrix shown in Table 3 based on - TviPDF (min, mode, ma,) . The gray shaded cells of the matrix are completed using the properties of a a 1,

judgment matrix. Therefore, elements U J ~ and a22 are the same size as itself, 1. Element a42 is the reciprocal of
element ~ 2 4 , which is

1
TriPDF (2,2.5,3) '

The remainder of the judgment matrix was completed in a similar manner.

Table 4. Completed matrix and multipliers based on distributional inputs'

Using the algorithm described above yields the geometric mean distribution function, whose mean values are shown
in the Geometric Mean PDF column of Table 4,

r2.261

The means of the distributions are shown in the cells.

Having multiple references and an inconsistent judgment matrix results in many multipliers of different values.
For example, given that the actual sizes of Modules 1, 2, and 3 are 6000, 3000, and 2000 lines of code respectively,
and using the average values shown in Table 4, the expected multipliers would be

Expected(mp,,ref, 1 = sizere, + vpDFrdf, = 6000 + 2.26 = 2657.1 ,

ExPected(mPDFref2) = Sizeref2 ' P 0 F r e f 2 =3000+1.17 = 2 5 6 3 . 7 2 , a n d

Expected (nz,,, ,ef, 1 = Si%??, + VPDF r e f 3 = 2000 + 0.80 = 2503.36 ,

Expected(Size,) = 2657.1~0.47 = 1259,

Expected(Size,) = 2503.36~0.47 = 1 1 8 6 .

If the multiplier derived from Module 1 is selected, the expected size of Module 4 would be

while if the multiplier derived from Module 3 is used, the expected size of Module 4 would be

In this example, having multiple references results in three different size estimates. A problem aises in deciding
which multiplier should be used to estimate the remaining unknown modules.

To derive the size estimate of Module 4, the triangular distribution of the minimum multiplier, geometric mean
of the multipliers as a mode, and maximum multiplier is used. This produces a distribution for mPDF as shown in
Figure 1.

*

m* ,,,Cumulative Distribution Function

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
2300 2400 2500 2600 2700 2800

Multiplier Value

Figure 1. Cumulative distribution function of miDF

Therefore, the size of Module 4 is
*

SizePDF4 = mPDF x v P D F 4 1

which is a distribution that can be shown as a cumulative probability curve (Figure 2).

Module 4 Size
Cumulative Distribution Function

100%

90%

80%

70%

2 60%

5 50%

e 40% n
30%

20%

10%

0%

-
Q

600 800 1000 1200 1400 1600

Size (SLOC)

Figure 2. Module 4 size cumulative distribution function based on Table 3 inputs

4. Application

The techniques described above were applied to the estimation of a mission critical ground software delivery at
JPL. The project wished to estimate the size and cost of its next delivery (Delivery 2) based on analogy to its
current delivery (Delivery 1). However, many actuals were not recorded during the current delivery and therefore
needed to be reconstructed. As it was easier to reconstruct effort data, the software team first estimated the direct
cost of Delivery 2 through pairwise comparison to delivery 1 using effort as the size factor. The direct effort
estimate resulted in an estimate much lower than the project team had expected [Lum and Hihn, 20031. The project
team was then convinced to attempt an estimate using a cost model. Since cost models require size as an input, the
Probabilistic Pairwise Comparison technique was used to estimate the size of Delivery 2. The Delivery 1 source
code was run through a code counter, and the pairwise technique was then repeated 6 r estimating the size of
Delivery 2 using the modules of Delivery 1 as reference points.

A major step in obtaining acceptance from the team was allowing them to think of the software in terms of
capabilities. This was very important since their cognitive model was based on the concept of capabilities and the
team had no experience in estimating software size by lines of code or function points. Since the pairwise
comparison technique is based on estimating the relative size differences between modules, it was assumed that this
relative difference would be the same - subject to a linear transformation. This is a critical assumption, which will
be discussed in more detail at the end of the paper.

The first delivery consisted of one major software function (Function A) that could be further subdivided into
five modules. The second delivery consisted of two major software functions (Functions B and C) that each had
five modules. Code counts for the user interface modules of each Function were not available, as they were in a
language for which a code counter was not available3. Therefore only four modules of each function were compared
with each other. The four modules for each second delivery software function were coinpared with the four modules
of the first delivery software function based on their relative size. Function B and Function C were not compared
with each other, because the two software functions would be developed by different people who found it difficult to
compare functions that had not been developed yet. Therefore the pairwise judgment matrix of this exercise
produced two 8 x 8 matrices with 64 possible comparisons per matrix. (Figure 3 and Figure 4).

’ The cost of the user interfaces for Function B and Function C were estimated in a different manner, using direct effort coinparisons, since size
references were not available for the user interface module of Function A.

A significant adaptation to the paired comparisons method described by others is that the estimators were
allowed to give ranges for

Size,
Size , a,] - -- , where a,, - TriPDF (min, mode, max).

These ranges were easily captured and a Monte Carlo distribution of the ratio scales was easily implemented in
Microsoft Excel'.

I I I
Figure 3. Original comparison inputs for Function B vs. Function A modules

I, ?.." ,,....., ,,..,....... ,....... t " "..
I -".-31-w.--.+-" / ' I I "11-1111 -1. i 1, "

---",,.L",-- ~ ,.-.,--"--,L,.+
$ ---- 1-

Figure 4. Original comparison inputs for Function C vs. Function A modules

Quadrants I1 and 111 (Figure 5) of the matrices were easily completed utilizing the judgment matrix properties:
aii =llaji and aii = 1. Since Delivery 1 was completed and all the actuals were known Fable 5), Quadrant IV was
derived with the actuals as reference points. For example, it is known from actuals that the development size of
force models was approximately 1.45 times more than event based integration effort and 1.48 times more than the
partial derivatives effort, etc. As quadrant IV is based on actuals, it is the only consistent quadrant, satisfying the
property uv x a,k = aik. Since the other three quadrants are based upon subjective judgments, they are unlikely to be
consistent.

Figure 5. Random variable formulas are entered in cells for elements with a range of comparisons

The matrix was completed such that a triangular random variable draw formula was entered in the cells for which
ranges were given (Figure 5).

Table 5. Actual size of reference modules4
I Actual Size (KSLOC)

Force Models
Event Based Integration
Partial Derivatives
Core Integration
User Interface

6.5
4.5
4.4
10

Code count not available

Figure 6. A single multiplier PDF miDF is derived from the multiple reference multipliers and

estimates are a function of mPDF
*

As there were multiple references (four modules from Delivery l), computing the reference multiplier required
extra steps. Since the subjective pairwise judgments were inconsistent in this application, four reference modules
produced four different multipliers, each producing significantly different estimates. A Monte Carlo run on the
triangular random draw of the four multipliers using the lowest value multiplier as a minimum, the geometric mean
of the four multipliers as the mode, and the highest value multiplier as a maximum was performed:

miDF - TriPDF (minMult@lier, GMmultiplier, maxMultiplier) .
*

An estimate of each Delivery 2 module was then calculated using the new randomly drawn multiplier mPDF,
Allowing ranges in the pairwise judgments and drawing from the four possible multipliers captures the

uncertainty in the estimate and serves to average out estimation errors. Utilizing a Monte Carlo technique produces
size cumulative distribution functions for each module of the Delivery 2 functions, each Delivery 2 function, and the
total Delivery 2 size. Table 6 and Table 7 show the resulting distributions of each element in Function B and
Function C respectively, as well as the total size of each function in delivery 2.

Table 6. Function B size estimates

5th Percentile
Mode

95th percentile

Function B
Core Mapping Smoother Stochastics Total SLOC

3621 280C 331 6 588C 15898
574c 3831 4985 10374 2221 1
6794 523C 6444 1 1878 29950

Code Counts derived using Galorath’s Count95 tool.

Table 7. Function C size estimates

IMeasurement I Delay I File I I Function C

15th Percentile
Models Modeis Formats Stations Total SLOC

8209 31 OC 4525 3976 19866
Mode

95th percentile

5. Results

10737 3789 5971 4833 24356
12837 4897 7053 6241 30899

Delivery 2 was completed in nine months and within 10% of the budget with 24,506 lines of code. Not all of
the original capabilities were included in the release. The task leads subjectively estimated the differences between
the planned modulc capabilities and the capabilities actually delivered, which varied from 0 to 100%, with most
modules at 90% of the plan. While Function B delivered 90% of its capabilities, Function C delivered significantly
reduced capability than planned. Almost none of the Delay Models functionality was delivered. Only 50% of
Measurement Models and 90% of File Format capabilities delivered. The size estimates were adjusted for the
differences in planned functionality and are compared with the actual sizes inTable 8.

Functions B and C were collectively overestimated by 44%. The team's estimate also produced a very wide
range across the modules. On the surface, this appears to be a mediocre performance, but compared to an average
size underestimate of 70% on JPL Deep Space Network subsystems upgrades (from 1989 to 1997) and
underestimates in excess of several hundred percent on recent JPL flight software systems, it is a marked
improvement, especially considering that the team had virtually no experience in estimating size by lines of code.

Table 8. Functions B and C delivered software size vs. adjusted size estimates

'Original estimates were adjusted to reflect the actual percentage of functionality delivered.

In addition, it is necessary to take consider that the team estimated modules by subjectively comparing relative
differences in capability - not lines of code. The two modules, which are off by an order of magnitude, are
Smoother and Stochastics in Function B. These two modules are very algorithmically intensive, such that six
months was spent in deriving and implementing the algorithms for 200-800 lines of code. If these two
algorithmically intensive elements are excluded from the analysis, the total size estimate is within 30% of the actual
(Table 9). This result strongly suggests that pairwise comparisons between capabilities can be used to estimate
relative differences in size for procedural code but not algorithmically intensive code. This result is not particularly
surprising, as a number of authors have also noted problems with the function point sizing metric when estimating
algorithmically intensive code.

Table 9. Function B actual size ents

*Original estimates were adjusted to reflect the actual percentage of functionality delivered.
** Excluding the algorithmically-intensive Stochastics and Smoother elements.

6. Conclusion

The pairwise comparison technique is a general purpose estimation approach for capturing expert judgment and
can be relatively easily implemented using Microsoft Excel3 if the geometric mean method is used to derive the ratio
vector V. In this document, it has been documented how this approach can be further expanded into a probabilistic
version using Monte Carlo methods in order to produce estimates of size distributions. The probabilistic pairwise
comparison technique enables the estimator to systematically incorporate both estimation uncertainty as well as any
uncertainty that arises from using multiple historical analogies as reference modules. While more work needs to be
done to verify the effectiveness of this approach, it does appear that it can be used to improve software size
estimates for non-algorithmically intensive code.

One natural extension of this analysis is that if all pairwise comparisons are assumed to be log normally
distributed, a relatively simple closed form solution exists for deriving the estimated size distributions as a function
of the means. Standard deviations of the pairwise comparisons and the Monte Carlo computations would not be
necessary. The disadvantage of this approach is that it has been found in practice to be easier for engineers to
estimate low, most likely and a high than to subjectively estimate a mean and variance of a distribution, especially if
it is skewed, as in a log normal distribution.

The most important result of this study may be sociological in nature. The study proved to be a relatively
successful example of introducing quantitative techniques into a skeptical software development. Working with the
technical staff in a way that they prcferred and that was consistent with their cognitive models allowed us to engage
them, eventually leading to a relatively rigorous size estimate and use of a cost model.

7. References

[l] Boehm, B., et al., Software Cost Estimation with COCOA40 II, Upper Saddle River, New Jersey, Prentice Hall PTR: 2000.
[2] Bozoki, G. “Software Size Estimator (SSE),” Centre National $Etudes Spatiales (CNES), Toulouse, France, June 1986.
[3] Bozoki, G. “An Expert Judgment-Based Software Sizing Model,” Joumal of

[4] Crawford, G. “The Geometric Mean Procedure for Estimating the Scale of a Judgment Matrix,” Mathematical Modelling 913-
5, 327-334.ing 913-5, 327-334.

[5] Crawford, G. and Williams, C “The Analysis of Subjective Judgment Matrices,” Rand Corporation, R-2572-1-AF, May 1985.
A Project AIR FORCE report prepared for the USAF.

[6] Hihn, J.M. and Habih-agahi, H. “Cost Estimation of Software Intensive Projects: A Survey of Current Practices,”
Proceedings of the Thirteenth IEEE International Conference on Software Engineering, May 13-16, 1991. (also
SSORCEiEEA Report No. 2. August 1990)

[7] Hihn, J.M. and Johnson, C. “Evaluation Techniques for Paired Ratio Comparison Matrices in a Hierarchical Decision
Model,” Measurement in Economics, Physical-Verlag Heidelberg, 1988.

Parametrics, Volume XIII, Number 1, May 1993.

[SI Lambert, J. “A Software Sizing Model,” Journal of Parametrics, Vol. Vi, 1986, pp75-87.
[9] Lum, K., and Hihn, J., Estimation of Software Size and Effort Distributions Using Paired Ratio Comparison Matrices,

Proceedings of the 3rd Annual Joint Conference of the International Society of Parametric Analysts (ISPA) and Society of
Cost Analysis and Estimation (SCEA), 17-20 June, 2003, Orlando, FL.

[lo] Miranda, E,: “Establishing Software Size Using the Paired Comparisons Method.” Proc. of the IWSM99, Lac Superieur,
Quebec, Canada, September 1999, pp. 132-142

[1 11 Miranda, E. “Improving Subjective Estimates Using Paired Comparisons,” IEEE Software JadFeb 2001.
[12] Saaty, T. “A Scaling method for Priorities in a Hierarchical Structure”. J. Math. Psychology Vol. 15 1977, p 234-281.
[13] Saaty, T. Tlze Analyfic Hierarchy Process, McGraw-Hill, New York, N Y 1980.
[14] Shepperd, M. and Cartwright M. “Predicting with Sparse Data,” IEEE Transactions on Software Engineering, Nov. 2001,

Vol. 27, No. 11.

