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Abstract 
The Pairwise Comparison technique is a general purpose estimation approach f o r  capturing expertjudgment. This 

approach can be generalized to a probabilistic version using Monte Carlo methods to produce estimates of size 
distributions. The probabilistic pairwise comparison technique enables the estimator to systematically incorporate 
both estimation uncertainty as well as any uncertainty that arises from using multiple historical analogies as 
reference modules. In addition to describing the methodology, the results of the case study are also included. This 
paper is an extension of the work presented in [Lum & Hihn, 20031 and will show how the original software size 
estimates compared to the actual delivery size. It will also describe the techniques used to modify the approach 
based on lessons learned. 

1. Introduction 

Software cost estimates are typically required in the early stages of the life-cycle when requirements and design 
specifications are immature. Under these conditions, the production of an accurate cost estimate requires extensive 
use of expert judgment and the quantification of significant estimation uncertainty. Research has shown that under 
the right conditions, expert judgment can yield relatively “accurate” estimates [Hihn & Habib-agahi, 19901. 
Unfortunately, most expert judgment-based estimates do not meet these conditions and frequently degenerate into 
outright guessing. At its best, expert judgment is a disciplined combination of a ‘best guess’ and historical 
analogies. Pairwise comparison matrices provides a formal, systematic means of extracting, combining, and 
capturing expert judgments and their relationship to analogous reference data [ Saaty, 19801. 

The use of matrices of pairwise comparisons as an approach for deriving a cardinal ranking vector from 
subjective paired comparisons was first introduced by Saaty in 1977 as part of the Analytical Hierarchy Process 
(AHP) [ Saaty, 19771. AHP, as originally proposed, is a decision-making or prioritization technique. The usefulness 
of this technique for software size estimation was recognized in the mid-eighties [Bozoki, 1986; Lambert, 19861. 
Bozoki provided a more detailed description of his approach in [Bozoki, 19931. Usmg a pairwise comparison matrix 
to estimate software size requires an expert’s judgment as to each module’s relative bigness compared to one 
another. The effectiveness of this approach is supported by experiments that indicate that the human mind is better 
at identifying relative differences than at estimating absolute values [Shepperd, 2001, Miranda, 19991. In this paper, 
for ease of exposition, pairwise comparison matrices will be called judgment matrices following [Crawford, 19871. 

An opportunity to apply the pairwise comparison technique arose when a cost estimate was required for a 
mission critical ground software project. The software team members wanted to be more rigorous in how they 
approached the estimating task. They also imposed a number of constraints. The team wanted to estimate the size 
and cost of its next software development task based on a recently completed development activity. Since there 
were numerous sources of potential risk and uncertainty associated with the next delivery, the technical staff wanted 
to provide ranges for the ratio comparisons in order to visualize the actual probability distribution for the estimates. 
In addition, they had multiple sources of historical software size data that could be incorporated. While m r e  
information is generally considered helpful, this particular situation presented some complexities that the standard 

’ The research described in this abstract was camed out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with 
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approach did not address well when incorporating uncertainty. Therefore, the pairwise technique had to be adapted 
to address distributional inputs in the context of multiple reference analogies. 

is provided in [Lum, Hihn, 20031. This paper describes the approach and algorithms used to generalize the paired 
ratio comparison matrix technique in order to utilize information inherent in multiple estimates, multiple reference 
projects, and estimator range information for the purpose of generating estimated size distributions. In addition, this 
paper details the application of this technique in the context of an actual software project, in order to assess its 
effectiveness. 

A description of how this technique was applied to effort estimation in combination with software cost models 

2. Pairwise Comparison Technique 

Creating a judgment matrix involves creating an n x n matrix (AnXfl=[a,]), where n is the number of entities (for 
software, this could be modules, use cases, requirements, etc.), being compared. Each element, aV, in the matrix is 

Size 
Size 

an estimate of the relative size of entity i with respect to entityj, that is - . The properties of a judgment matrix 

require that elements be: 

than entity z; 
(1) reciprocal, aIJ = l/a,,, which means that entity i is a, times bigger than entityj, then entityj is l la ,  times smaller 

(2) the same size as itself, which means that all diigonal elements a,, = 1. 
The implication of these properties is that only the upper or lower triangle of the judgment matrix must be filled in. 

For example, see Table 1, which is a judgment matrix with estimates of the relative software size of four modules. 
The values in Table 1 indicate that Module 1 is two times as big as Module 2 ,  three times bigger than Module 3, and 
four times bigger than Module 4, and so forth. Note that there is no a priori reason that all the values in the upper 
triangle are greater than 1. 

Table I. Example judgment matrix 

Based on Conditions 1 and 2 above, the matrix can be completed as follows: 

xample completed judgment matrix 

One way to interpret the judgment matrix is that each column yields a different ranking vector for the purpose 
of determining the relative size of the four entities. Each vector is normalized such that the module that corresponds 
to itself (the diagonal elements) is always 1, and it is the reference module against which all comparisons in the 
same column are made. Therefore, column 1 indicates that module 2 is half as big as module I;  module 3 is 33% of 
the size of module 1; and module 4 is 25% of module 4. Each column can be interpreted in this manner. InTable 2, 
there are four different rankings (an n x n matrix yields n independent ranking vectors). In a case where different 
ranking vectors have different rank orders for each entity, there is more estimation uncertainty around the entities 
being compared. 

A special case exists when a judgment matrix is perfectly consistent. This occurs when a,, X aJk = alk for all 

i, j ,  k. If a judgment matrix is consistent, then each vector is equivalent to all the others, or each vector can be 
transformed into the other via a linear transformation. This means that there is really one vector of unique 
information. Time has been wasted in making all of these pairwise comparisons in the example, since only four 



numbers needed to be guessed and not six. Fortunately, it turns out that judgments are rarely consistent, unless the 
estimator is cheating. 

More frequently, inconsistent matrixes will result. The example in Table 2,gives four different rankings each 
yielding a slightly different set of estimates for the modules. The benefit is that there is plenty of information from 
which a final estimate can be generated. However, only one vector is desired, not n vectors. 

There have been a number of mathematical procedures proposed for deriving a single ranking vector from an 
inconsistent judgment matrix. These produce numbers that meet the conditions of a ratio scale. This means the 
slope of a line has been defined but the intercept or origin of the scale is still unknown. Therefore, the actual sizes 
of the modules are unknown, and only their relative sizes are known. However, as long as at least one of the 
modules used to derive judgment matrix is an historical analogy, that module can be used to determine the intercept 
or origin to determine the estimated sizes for each module. 

The original approach proposed by [Saaty, 19771 was to use the Perron-Frobenius right eigenvector. Research 
has shown, however, that this is one of the worst techniques to use [Hihn & Johnson, 19881. There are many 
potential solutions to this problem. The Geometric Mean method, which is very easy to calculate, has been 
advocated by many authors for various reasons. [Hihn & Johnson, 1988; Crawford and Williams, 19851. Miranda 
chose to use the geometric mean procedure because of its simplicity and the results achieved in during 
experimentation with thirty participants [Miranda, 200 11. Therefore, the geometric mean is the recommended 
approach used in this case. 

I1 

The Geometric Mean is calculated as v,  = n a,;' , which yields a vector 
J =I 

that meets the requirements of a ratio scale. The example in Table 2 would yield the vector 

Asanexample, the2.21 isderivedfrom ( 1 ~ 2 ~ 3 x 4 ) ' ' ~ .  
Once the ratio scale vector is calculated, the size of each known entity can be calculated using & least one 

known historical analogy to normalize the vector, and in essence define the origin for the ratio scale. This allows 
one to convert the vector to cardinal numbers yielding absolute values of the size estimates. The size of at least one 
of the elements in the ratio scale is needed as a reference to derive a multiplier m 

Size r e ,  
m=- , ref is one of the modules i through n 

'ref 

which is used to calculate the size of the other elements. The formula is as follows: 

Using the example in Table 2 and assuming the reference module is v3 at 2000 lines of code, this step would 
result in the following: 

nz = 200010.76 = 2632.15 
Size, = 2632.15 x 2.21 = 5826 



S i z e z = 2 6 3 2 . 1 5 ~  1.11 =2913 
Size3=2632.15 x 0.76=2000 
Size4=2632.15 x 0.54= 1414 

In summary an estimate of size using pairwise comparison matrices can be generated using four steps: 
1) 
2) Derive the judgment matrix 
3) 
4) 

Estimate the relative size of all modules 

Compute the geometric mean across each row in the matrix 
Derive size estimate by normalizing values to the reference module 

3. Probabilistic Pairwise Comparison Technique 

Two major adaptations to the basic pairwise comparison technique described above were made: (1) the 
incorporation of distributions for pairwise judgments and (2) the use of multiple reference modules. There are many 
distributions that could be used. A log normal distribution would make it possible to derive a closed form solution. 
However, it is difficult for engineers to estimate the mean and variance of a log normal distribution. The use of 
estimation ranges (low, mode, and high) was a found to be a more practical approach. Since it is important for a 
software manager and engineers to have a clear understanding of their inputs and estimates, the simplest distribution 
cognitively is the triangular distribution. That is, - TriPDF (min, mode, max) a 11 
where the element a,! is a triangular distribution TriPDF with a minimum variate (min), a peak variate ( n d e ) ,  and a 
maximum variate (mux). This requires the use of a Monte Carlo technique to combine the different distributions, 
but with modern computers and software that is not a difficult task. 

To illustrate the technique the example from the previous section will be used. The first step is that the 
subjective judgments in Table 1 can be entered as distributions as shown in Table 3. Here are three elements as 
distributions and three as point values. 

Table 3. a;;as distributions 

In Table 3, element ~ 1 4  and element a34 are entered as distributions with a,4 - TripD8’(3,4,6) 
anda,, - TriPDF(1,1.5, 3), respectively. The element a,, would be interpreted as Module 1 is most likely 4 
times bigger than Module4, but could be as much as 6 times bigger, or at a minimum, it could be the three times the 
size. The element a,, would be interpreted as Module 3 is most likely 1.5 times bigger than Module 4, but could be 
as much as 3 times bigger, or at a minimum, it could be the same size. Random draws are made from these 
distributions to determine the geometric mean vector, which becomes: 

VmF = [ v P D F ,  = fi a;’’], where a ,  - TriPDF (min, mode, max) . 
/= 1 

The result is that each element in the geometric mean vector is now a distribution V P D F ~ .  

Another major adjustment to the basic pairwise technique is the manner in which multiple reference software 
modules are incorporated. The basic method described above works well for the case where there is a single 
reference analogy. However, having multiple reference analogies with the typical case of an inconsistent judgment 
matrix creates a dilemma. A different total size estimate is generated depending upon which reference module is 
used. The solution proposed here involves incorporating the multiple references by capturing the different possible 
reference values as a distribution. This way the basic Monte Carlo structure that has been set up here can be used as 
a general purpose approach for any type of ranking problem. 



A triangular distribution is used to capture the differences between the multiple reference-derived multipliers 

m P D F , . ~ ~  through m P D F , . ~ ~ ,  

- Size,, 
mPDFre f i  -- 

V ~ ~ ~ I . G ~  

If the matrix were consistent, having multiple references should theoretically result in the same multiplier value 
* 
PDF = mPDFi = PDE, ' 

A triangular distribution is merely a simple method of capturing the multiple references. Therefore, one solves 
* 

for a single distribution of the multipliers mPD, 
miDF - TriPDF (minMultiplier, GMmultiplier, maxMultiplier ) 

where 
X 

minMailtip1 ier = & m,,,,, 
;=I 

l l x  

GMmultiplier = fi (mpDFred ) 
i=l 

'c 

maxMult@lier = maxmpDF ref 
1 = I  

for i through x number of references. 
For example, the first four columns in Table 4 are the completed judgment matrix shown in Table 3 based on - TviPDF (min, mode, ma,) . The gray shaded cells of the matrix are completed using the properties of a a 1, 

judgment matrix. Therefore, elements U J ~  and a22 are the same size as itself, 1. Element a42 is the reciprocal of 
element ~ 2 4 ,  which is 

1 
TriPDF (2,2.5,3) ' 

The remainder of the judgment matrix was completed in a similar manner. 

Table 4. Completed matrix and multipliers based on distributional inputs' 

Using the algorithm described above yields the geometric mean distribution function, whose mean values are shown 
in the Geometric Mean PDF column of Table 4, 

r2.261 

The means of the distributions are shown in the cells. 



Having multiple references and an inconsistent judgment matrix results in many multipliers of different values. 
For example, given that the actual sizes of Modules 1, 2, and 3 are 6000, 3000, and 2000 lines of code respectively, 
and using the average values shown in Table 4, the expected multipliers would be 

Expected(mp,,ref, 1 = sizere, + vpDFrdf, = 6000 + 2.26 = 2657.1 , 

ExPected(mPDFref2 ) = Sizeref2 ' P 0 F r e f 2  =3000+1.17 = 2 5 6 3 . 7 2 , a n d  

Expected (nz,,, ,ef, 1 = Si%??, + VPDF r e f 3  = 2000 + 0.80 = 2503.36 , 

Expected(Size,) = 2657.1~0.47 = 1259, 

Expected(Size,) = 2503.36~0.47 = 1 1 8 6 .  

If the multiplier derived from Module 1 is selected, the expected size of Module 4 would be 

while if the multiplier derived from Module 3 is used, the expected size of Module 4 would be 

In this example, having multiple references results in three different size estimates. A problem aises in deciding 
which multiplier should be used to estimate the remaining unknown modules. 

To derive the size estimate of Module 4, the triangular distribution of the minimum multiplier, geometric mean 
of the multipliers as a mode, and maximum multiplier is used. This produces a distribution for mPDF as shown in 
Figure 1. 

* 

m* ,,,Cumulative Distribution Function 
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Figure 1. Cumulative distribution function of miDF 

Therefore, the size of Module 4 is 
* 

SizePDF4 = mPDF x v P D F 4 1  

which is a distribution that can be shown as a cumulative probability curve (Figure 2). 
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Figure 2. Module 4 size cumulative distribution function based on Table 3 inputs 

4. Application 

The techniques described above were applied to the estimation of a mission critical ground software delivery at 
JPL. The project wished to estimate the size and cost of its next delivery (Delivery 2) based on analogy to its 
current delivery (Delivery 1). However, many actuals were not recorded during the current delivery and therefore 
needed to be reconstructed. As it was easier to reconstruct effort data, the software team first estimated the direct 
cost of Delivery 2 through pairwise comparison to delivery 1 using effort as the size factor. The direct effort 
estimate resulted in an estimate much lower than the project team had expected [Lum and Hihn, 20031. The project 
team was then convinced to attempt an estimate using a cost model. Since cost models require size as an input, the 
Probabilistic Pairwise Comparison technique was used to estimate the size of Delivery 2. The Delivery 1 source 
code was run through a code counter, and the pairwise technique was then repeated 6 r  estimating the size of 
Delivery 2 using the modules of Delivery 1 as reference points. 

A major step in obtaining acceptance from the team was allowing them to think of the software in terms of 
capabilities. This was very important since their cognitive model was based on the concept of capabilities and the 
team had no experience in estimating software size by lines of code or function points. Since the pairwise 
comparison technique is based on estimating the relative size differences between modules, it was assumed that this 
relative difference would be the same - subject to a linear transformation. This is a critical assumption, which will 
be discussed in more detail at the end of the paper. 

The first delivery consisted of one major software function (Function A) that could be further subdivided into 
five modules. The second delivery consisted of two major software functions (Functions B and C) that each had 
five modules. Code counts for the user interface modules of each Function were not available, as they were in a 
language for which a code counter was not available3. Therefore only four modules of each function were compared 
with each other. The four modules for each second delivery software function were coinpared with the four modules 
of the first delivery software function based on their relative size. Function B and Function C were not compared 
with each other, because the two software functions would be developed by different people who found it difficult to 
compare functions that had not been developed yet. Therefore the pairwise judgment matrix of this exercise 
produced two 8 x 8 matrices with 64 possible comparisons per matrix. (Figure 3 and Figure 4). 

’ The cost of the user interfaces for Function B and Function C were estimated in a different manner, using direct effort coinparisons, since size 
references were not available for the user interface module of Function A. 



A significant adaptation to the paired comparisons method described by others is that the estimators were 
allowed to give ranges for 

Size, 
Size , a,] - -- , where a,, - TriPDF (min, mode, max). 

These ranges were easily captured and a Monte Carlo distribution of the ratio scales was easily implemented in 
Microsoft Excel'. 

I I I 
Figure 3. Original comparison inputs for Function B vs. Function A modules 
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Figure 4. Original comparison inputs for Function C vs. Function A modules 

Quadrants I1 and 111 (Figure 5) of the matrices were easily completed utilizing the judgment matrix properties: 
aii =llaji and aii = 1. Since Delivery 1 was completed and all the actuals were known Fable 5), Quadrant IV was 
derived with the actuals as reference points. For example, it is known from actuals that the development size of 
force models was approximately 1.45 times more than event based integration effort and 1.48 times more than the 
partial derivatives effort, etc. As quadrant IV is based on actuals, it is the only consistent quadrant, satisfying the 
property uv x a,k = aik. Since the other three quadrants are based upon subjective judgments, they are unlikely to be 
consistent. 

Figure 5. Random variable formulas are entered in cells for elements with a range of comparisons 

The matrix was completed such that a triangular random variable draw formula was entered in the cells for which 
ranges were given (Figure 5). 



Table 5. Actual size of reference modules4 
I Actual Size (KSLOC) 

Force Models 
Event Based Integration 
Partial Derivatives 
Core Integration 
User Interface 

6.5 
4.5 
4.4 
10 

Code count not available 

Figure 6. A single multiplier PDF miDF is derived from the multiple reference multipliers and 

estimates are a function of mPDF 
* 

As there were multiple references (four modules from Delivery l), computing the reference multiplier required 
extra steps. Since the subjective pairwise judgments were inconsistent in this application, four reference modules 
produced four different multipliers, each producing significantly different estimates. A Monte Carlo run on the 
triangular random draw of the four multipliers using the lowest value multiplier as a minimum, the geometric mean 
of the four multipliers as the mode, and the highest value multiplier as a maximum was performed: 

miDF - TriPDF (minMult@lier, GMmultiplier, maxMultiplier ) . 
* 

An estimate of each Delivery 2 module was then calculated using the new randomly drawn multiplier mPDF, 
Allowing ranges in the pairwise judgments and drawing from the four possible multipliers captures the 

uncertainty in the estimate and serves to average out estimation errors. Utilizing a Monte Carlo technique produces 
size cumulative distribution functions for each module of the Delivery 2 functions, each Delivery 2 function, and the 
total Delivery 2 size. Table 6 and Table 7 show the resulting distributions of each element in Function B and 
Function C respectively, as well as the total size of each function in delivery 2. 

Table 6. Function B size estimates 

5th Percentile 
Mode 

95th percentile 

Function B 
Core Mapping Smoother Stochastics Total SLOC 

3621 280C 331 6 588C 15898 
574c 3831 4985 10374 2221 1 
6794 523C 6444 1 1878 29950 

Code Counts derived using Galorath’s Count95 tool. 



Table 7. Function C size estimates 

IMeasurement I Delay I File I I Function C 

15th Percentile 
Models Modeis Formats Stations Total SLOC 

8209 31 OC 4525 3976 19866 
Mode 

95th percentile 

5.  Results 

10737 3789 5971 4833 24356 
12837 4897 7053 6241 30899 

Delivery 2 was completed in nine months and within 10% of the budget with 24,506 lines of code. Not all of 
the original capabilities were included in the release. The task leads subjectively estimated the differences between 
the planned modulc capabilities and the capabilities actually delivered, which varied from 0 to 100%, with most 
modules at 90% of the plan. While Function B delivered 90% of its capabilities, Function C delivered significantly 
reduced capability than planned. Almost none of the Delay Models functionality was delivered. Only 50% of 
Measurement Models and 90% of File Format capabilities delivered. The size estimates were adjusted for the 
differences in planned functionality and are compared with the actual sizes inTable 8. 

Functions B and C were collectively overestimated by 44%. The team's estimate also produced a very wide 
range across the modules. On the surface, this appears to be a mediocre performance, but compared to an average 
size underestimate of 70% on JPL Deep Space Network subsystems upgrades (from 1989 to 1997) and 
underestimates in excess of several hundred percent on recent JPL flight software systems, it is a marked 
improvement, especially considering that the team had virtually no experience in estimating size by lines of code. 

Table 8. Functions B and C delivered software size vs. adjusted size estimates 

'Original estimates were adjusted to reflect the actual percentage of functionality delivered. 

In addition, it is necessary to take consider that the team estimated modules by subjectively comparing relative 
differences in capability - not lines of code. The two modules, which are off by an order of magnitude, are 
Smoother and Stochastics in Function B. These two modules are very algorithmically intensive, such that six 
months was spent in deriving and implementing the algorithms for 200-800 lines of code. If these two 
algorithmically intensive elements are excluded from the analysis, the total size estimate is within 30% of the actual 
(Table 9). This result strongly suggests that pairwise comparisons between capabilities can be used to estimate 
relative differences in size for procedural code but not algorithmically intensive code. This result is not particularly 
surprising, as a number of authors have also noted problems with the function point sizing metric when estimating 
algorithmically intensive code. 

Table 9. Function B actual size ents 

*Original estimates were adjusted to reflect the actual percentage of functionality delivered. 
** Excluding the algorithmically-intensive Stochastics and Smoother elements. 



6. Conclusion 

The pairwise comparison technique is a general purpose estimation approach for capturing expert judgment and 
can be relatively easily implemented using Microsoft Excel3 if the geometric mean method is used to derive the ratio 
vector V. In this document, it has been documented how this approach can be further expanded into a probabilistic 
version using Monte Carlo methods in order to produce estimates of size distributions. The probabilistic pairwise 
comparison technique enables the estimator to systematically incorporate both estimation uncertainty as well as any 
uncertainty that arises from using multiple historical analogies as reference modules. While more work needs to be 
done to verify the effectiveness of this approach, it does appear that it can be used to improve software size 
estimates for non-algorithmically intensive code. 

One natural extension of this analysis is that if all pairwise comparisons are assumed to be log normally 
distributed, a relatively simple closed form solution exists for deriving the estimated size distributions as a function 
of the means. Standard deviations of the pairwise comparisons and the Monte Carlo computations would not be 
necessary. The disadvantage of this approach is that it has been found in practice to be easier for engineers to 
estimate low, most likely and a high than to subjectively estimate a mean and variance of a distribution, especially if 
it is skewed, as in a log normal distribution. 

The most important result of this study may be sociological in nature. The study proved to be a relatively 
successful example of introducing quantitative techniques into a skeptical software development. Working with the 
technical staff in a way that they prcferred and that was consistent with their cognitive models allowed us to engage 
them, eventually leading to a relatively rigorous size estimate and use of a cost model. 

7. References 

[l]  Boehm, B., et al., Software Cost Estimation with COCOA40 II, Upper Saddle River, New Jersey, Prentice Hall PTR: 2000. 
[2] Bozoki, G. “Software Size Estimator (SSE),” Centre National $Etudes Spatiales (CNES), Toulouse, France, June 1986. 
[3] Bozoki, G. “An Expert Judgment-Based Software Sizing Model,” Joumal of 

[4] Crawford, G. “The Geometric Mean Procedure for Estimating the Scale of a Judgment Matrix,” Mathematical Modelling 913- 
5, 327-334.ing 913-5, 327-334. 

[5] Crawford, G. and Williams, C “The Analysis of Subjective Judgment Matrices,” Rand Corporation, R-2572-1-AF, May 1985. 
A Project AIR FORCE report prepared for the USAF. 

[6] Hihn, J.M. and Habih-agahi, H. “Cost Estimation of Software Intensive Projects: A Survey of Current Practices,” 
Proceedings of the Thirteenth IEEE International Conference on Software Engineering, May 13-16, 1991. (also 
SSORCEiEEA Report No. 2. August 1990) 

[7] Hihn, J.M. and Johnson, C. “Evaluation Techniques for Paired Ratio Comparison Matrices in a Hierarchical Decision 
Model,” Measurement in Economics, Physical-Verlag Heidelberg, 1988. 

Parametrics, Volume XIII, Number 1, May 1993. 

[SI Lambert, J. “A Software Sizing Model,” Journal of Parametrics, Vol. Vi, 1986, pp75-87. 
[9] Lum, K., and Hihn, J., Estimation of Software Size and Effort Distributions Using Paired Ratio Comparison Matrices, 

Proceedings of the 3rd Annual Joint Conference of the International Society of Parametric Analysts (ISPA) and Society of 
Cost Analysis and Estimation (SCEA), 17-20 June, 2003, Orlando, FL. 

[lo] Miranda, E,: “Establishing Software Size Using the Paired Comparisons Method.” Proc. of the IWSM99, Lac Superieur, 
Quebec, Canada, September 1999, pp. 132-142 

[ 1 11 Miranda, E. “Improving Subjective Estimates Using Paired Comparisons,” IEEE Software JadFeb 2001. 
[12] Saaty, T. “A Scaling method for Priorities in a Hierarchical Structure”. J. Math. Psychology Vol. 15 1977, p 234-281. 
[13] Saaty, T. Tlze Analyfic Hierarchy Process, McGraw-Hill, New York, N Y  1980. 
[14] Shepperd, M. and Cartwright M. “Predicting with Sparse Data,” IEEE Transactions on Software Engineering, Nov. 2001, 

Vol. 27, No. 11. 




