
THE IMPACT OF ORGANIZATIONAL STRUCTURE
ON FLIGHT SOFTWARE COST RISK

Jairus M. Hihn
Karen Lum

Erik Monson
Jet Propulsion Laboratory’

California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91 109

Abstract- The Jet Propulsion Laboratory (JPL) has a long record of successful deep space missions from Explorer
to Voyager, to Mars Pathfinder, to Galileo to Mars Odyssey, to name but a few. Our experience and success as with
the rest of the aerospace industry is built upon our hardware and system level expertise. Throughout the nineties
software became more important in its contribution to spacecraft risk, integration and overall workforce. During the
late nineties, this change was magnified when a number of missions managed by JPL experienced significant flight
software cost growth. In addition, several of the missions have exhibited software-related schedule slips that
impacted or threatened the planned launch dates. This occurred in software developed in-house as well as those that
were contracted. In response JPL funded a study in 1999 to identify the systemic causes of reported flight software
cost growth and to develop a set of recommendations to reduce the cost risk in flight software development activities.
The results of the 1999 study were reported in [l], [2]. In 2003, a follow-up study was conducted on seven current
flight projects that launch from summer of 2001 to 2005, to see if anything had changed since 1999 and if any of the
initial reports’ recommendations had been implemented [3]. This paper summarizes the final results of the follow-up
study updating the estimated software effort growth for those projects that were still under development and
including an evaluation of the roles versus observed cost risk for the missions included in the original study which
expands the data set to thirteen missions.

INTRODUCTION

Throughout the 1990’s, software came to play an increasingly more significant role in spacecraft integration and risk,
at the Jet Propulsion Laboratory (JPL) as well as at other aerospace companies. In the late 1990’s, the importance of
software was magnified when a number of JPL-managed missions experienced significant flight software cost
growth. In addition, several missions had exhibited software-related schedule slips impacting or threatening the
planned launch dates. This occurred in both in-house and contracted software development projects. In response,
JPL funded a 1999 study to identify the systemic causes and to develop recommendations to reduce the flight
software development cost risk. The results of the 1999 study were reported in two papers. The first paper
identified the root causes of the observed flight software cost growth [l] and the second paper described a set of
proposed strategies and policies to reduce software cost growth on future missions [2]. A major recommendation of
these studies was changing the organizational structure of a software project so that the software manager had more
responsibilities and accessible reporting relationships. In 2003, a follow-up study was conducted on seven current
flight projects that launch from summer of 2001 to 2005, to see if anything had changed since 1999 and if any of the
initial reports’ recommendations had been implemented. The preliminary results of the follow-up study [3] indicated
that having a software management team in place well before system PDR with budget and design authority did
significantly reduce the likelihood of post-PDR software cost growth. The result that organizational and
management structure of software projects has a significant impact on software cost growth, is consistent with
Capers-Jones conclusion that “deficiencies of the project management function is a fundamental root cause of
software disaster” [4]. The importance of communication was also documented in [5], which showed that the impact
of software volatility on software development productivity was greatly mitigated when there was extensive internal
and extemal communication.

The research described in this abstract was camed out at the Jet Propulsion I aboratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration

1

This paper contains a summary of the final results of the 2003 follow-up study. In the final version the estimated
cost growth for those missions not launched are updated and the role statements for the software managers were
evaluated and included for the missions from the 1999 study in order to expand the data set and better document any
changes in their roles between the studies. The expanded data set made it possible to expand the analysis to include
the potential impacts on cost growth of the impact of inheritance assumptions, system heritage, and planning fidelity
and to better comprehend the complex interrelationships between software tasks and the overall project.

Note that all but one of the participating projects were unable to explicitly choose to implement the
recommendations from the 1999 study due to the timeframe of their development. Therefore, the focus of this study
is on the extent to which the recommendations were beginning to be employed and measuring any impact on the
observed software development cost growth. To provide proper context for interpreting the current study, the next
section provides a summary of causes and recommendations that were identified in the 1999 cost risk study.

BACKGROUND: 1999 SOFTWARE COST RISK STUDY SUMMARY
Projects in either development or operations phases were selected for the 1999 study, based on the following criteria:

One ground system project

Cost growth to exceed 20% of plan at Preliminary Design Review (PDR) in last three years, including one
mission that was within budget

A mixture of in-house and system contracted projects

Data was gathered using a multiple step approach incorporating interviews, focus groups, niulti-voting, and
works hops :

1. Interviews
a.

b.
c. information.

Using Protocol Analysis, an Unstructured Interview was performed to obtain self-reports on
specific mission events.
A Structured Interview identified how self-reports had been categorized and identified missing

A Focus Group I Workshop included the brainstorming of underlying causes of software cost growth, based
on interim findings from initial interviews
Multi-votinri identified top cost risk categories
A second Workshop reviewed and finalized JPL strategic software policy recommendations

2.

3.
4.

From 24 missions, eight missions were chosen that were currently either in development or operation phases,
including six flight software systems and two ground systems. The mission with no cost growth was used as a
“control”, or assisted in verifying that projects with the identified cost risk factors did, indeed, exhibit higher rates of
cost growth. Of the seven missions that experienced cost growth, the cost increased approximately 50% on average,
with a range of 25% to 180%. Characteristics of the missions used in the study are described in Table 1.

Project 8 Ground In-house Implementation YES

Based upon a categorical data analysis [6], a number of key risk areas were identified. These areas included:
Experience & Teaming, Planning, Requirements and Design, Testing, Software Inheritance, Staffing, and Tools &

2

Methods.

Risk Area

Experience and
Teaming

Planning

Requirements and
Design

Testing
Software Inheritance

Tools etc.

Staffing

Table 2 contains a summary of the top five different risk areas identified in the study, the frequency with which each
risk area was reported, and the sources of cost growth relating to each respective area. Based on the multi-voting
process and focus group discussions, participants identified the most significant risk areas as Planning, Requirements
& Design, and Experience & Teaming.

Percent of Projects
Reporting Sutntnarv of Reoorted Issues

71% Management and system engineers lacked software experience
Poor teaming between HWI SW and systems/SW team
Software team lacked mission experience

Planned inheritance never happened
Insufficient reserves for SW

I 1 Yo Poor planning and estimation practices

Software staff not included in early planning and decision making

Lack of good architecture and system partitioning

Systems decisions made without accounting for impact on software
SW requirements solidify late in the life cycle and are very volatile
‘l’estbeds; too few, too late, not validated, lacked capability
Inherited code did not behave as advertised, was poorly documented, and required
more modification than expected. (5 of 8 missions attempted to inherit software.
Of these, 4 reported major problems.)

Purchased COTS tool never used. Not included in SW inheritance.

SW teamnot included in early stages ofplanning
lntegration and SW teams not available to support ATLO

57%

7 1 Yo
57%

86?” Poor test result analysis tools

71% High turnover in software staff

During the interviews, participants were asked to provide preliminary recommendations to help mitigate cost growth
risk in flight software projects based on personal ‘lessons learned’. Recommendations mentioned at least 50% of the
time included requiring:

Project managers & systems engineers to have a better understanding of software
More detailed software planning and tracking similar to hardware
Early presence of software, even in pre-Phase A, and be part of an integrated plan
The software development process must deal with evolving requirements & assume that the unexpected will
occur

The final step translated the initial recommendations into specific JPL software policies that could be implemented
by managers of hture missions and supported by JPL policies. The following recommendations were finalized
during the second workshop:

Recommended JPL Organizational Policy

Require all projects to have a software system manager with budget authority, responsibility over flight and
ground software and who reports directly to the Project Manager (as spacecraft and instrument managers
do). The software system manager’s other responsibilities include:
Preparing software cost estimates, planning, and budgeting
Developing software architecture by PDR
Ensuring software and system architecture consistency
Ensuring software is considered in all design trades
Supporting subsystem managers in planning, development, integration, testing, operations, and maintenance
Coordinating operations, flight software, and ground software.
Determining how software will be managed within the project and integrated within the overall project
implementation structure.

3

Recommended JPL Product Policies
Require the development of:

1. System architecture, supported by a software architecture that clearly documents an integrated hardware and
software design prior to PDR.

Management plan that addresses software, including a risk management plan with reserve and contingency
allocations based on estimated risk prior to PDR.

Test strategy and plan prior to PDR.

2.

3.

Recommended JPL Process Policies

1. Software Inheritance Review, similar to the Hardware Inheritance Review (when appropriate), prior to PDR
and Critical Design Review (CDR).

Require that software be reviewed at the Non-Advocate Review (NAR).

Require that the software architectural designs be reviewed at PDR and updated at CDR.

Require that a Risk Management Plan be reviewed at PDR and updated at CDR.

Require Test Plans and status be reviewed at PDR and updated at CDR.

2.

3.

4.

5.

FOLLOWING THROUGH

Over the past four years, JPL has been redefining how software is integrated into its missions. The initial push has
been to get key software positions defined and established in all projects. To date, implementing product and process
policies has been approached more informally, allowing projects to deal with unique issues and software issues in a
project-specific basis. This will begin to change in the next few years, as there will be required software document
reviews as part of the major project milestone reviews. Changes have been made in creating two main positions: the
Project Software Systems Engineer who gives voice to software issues at the project-level, and the Flight Software
Manager who is responsible for all spacecraft software and interfaces with the instruments and the ground data
systems. These positions are being staffed much earlier in the life-cycle than in the 1990’s. Therefore, this study
focuses primarily on how these positions have been implemented and, to a somewhat lesser extent, on the maturity
and stability of the key software products and activities at system-level PDR, software and systems design stability
and integration, risk management plan existence, and whether a software inheritance review was conducted. These
are analyzed in the context of the observed cost growth and previously identified risk areas.

METHODOLOGY AND DATA SUMMARY

Methodology Comparison
The selection criteria for a project to be included in the follow up study were much simpler than in the 1999 study.
In this case, a study of overall mission cost growth was being funded by the JPL Costing Office, which decided to
take advantage of this opportunity to update the software cost risk study. Of the missions identified for the mission-
level cost growth study, many were outsourced to contractors who did not have contacts easily available and could
answer the detailed software-level questions. To compensate for this, data from several major instrument software
projects were also included to expand the size of the data set. Table 3 summarizes the methodological differences
between the 1999 study and this current study.

4

Criteria

Number of Projects

Type of Projects

Data Collection Methodology
The data that was collected through interviews lasting approximately 60-90 minutes each. Two to three persons
conducted the interviews: one functioned as the main interviewer, the second as a scribe, and the third as a backup,
to reduce the likelihood that information could be lost or misinterpreted. Interviewers met to compare interview
notes to identify discrepancies. Follow-up interviews were scheduled when further explanation was needed.
Informal phone conversations and electronic mail were also used for hrther clarification, if necessary.

1999 Study Current Study
Must have both in-house and contracted Projects participating in Mission-
SW represented level study
120% growth from PDR to launch
At least 1 ground project
1 project with no cost growth

Projects that were near launch

8 I
4 Flight (I in-house, 2 contracted, 1
mixed)
3 Instrument (3 in-house)

2 Ground (2 in-house),
6 Flight (3 in-house, 3 contracted)

The interview forms consisted of the following questions:
(1) Basic identification (name, current position, and project)
(2) Budget at PMSR (the earliest milestone representing the gate between phase A and phase B)
(3) Budget at PDR (milestone representing the gate between phase B and phase C)
(4) Budget at conipletion or launch, or if not yet completed, then the estimate at completion
(5) Description of software development and any issues or problems that arose
(6) Various questions related to recommendations from the previous study, including roles and responsibilities

of the software manager.

Although their roles may not have been software-specific, all participants in the study had extensive software
experience. The interviewees held positions including Technical (cognizant) Engineer, Software Manager, Software
System Engineer, and Flight Project Manager. The interviewees typically supported their responses to the questions
with descriptions of specific events or behaviors illustrating their issues or concerns.

After the interviews were completed and transcribed, the responses were reviewed and systematically grouped into
the risk areas identified in the 1999 study, as well as any new risk areas identified in the current study. Based on
their findings, a table of the causes of flight software growth was constructed, followed by an assessment of in the
study to determine how many of the recommendations from the previous study were implemented.

Data Summary
The current study examines software development cost on seven current JPL projects (four flight projects and three
instrument projects) that have launched or have completed CDR. Three out of four flight software projects were
contracted out or were partially contracted out. All three instrument software projects were developed in-house.
Table 4 provides an overview of the projects included in this study and summarizes their basic characteristics. See
Table 1 for comparisons to the 1999 study.

5

Table 4. Data Summary
I I I

Project
In-house vs.

Type Contract Status at Collection

Table 5. SW Cost Growth (Percent of SW Budget
from PDR to Launch)

1999 Study vs. Current Study
1999 Study (including Ground

Software) Current Study (all projects)

iMean Range Mean Range

8-100% 51% 0-1 80% 53%*

RESULTS AND ANALYSIS

Understanding Cost Growth and its Sources
The reported causes of cost growth were mapped into the risk areas identified in the original study: Experience and
Teaming, Planning, Requirements and Design, Testing, Software Inheritance, Staffing, and Tools. Table 6 provides
a summary of the issues reported along with the corresponding frequencies in each risk area.

The results in Table 6 indicate that the key causes of software cost growth have not changed since the previous study.
The issues reported are very similar and frequently identical to those reported in 1999. In all but one risk area,
frequency is off by plus or minus one response between the two studies. The only exception to this is the ‘tools and
methods area’. In the 1999 study, this was the most frequently reported risk area but in the current study it is the
least reported. One interpretation is that in the 1990’s, under the severe budget pressure of Faster, Better, Cheaper,
software engineers frequently went looking for a ‘silver bullet’, assuming that it would help reduce cost. However, it
often did not work and even increased cost development cost. Today, there appears to be more concern with using
basic, well-known, and mature tools in order to get the job done.

Table 6 reveals that Planning is the most frequently occurring risk area, with almost all projects in the study
reporting planning issues. Planning, one of the top risk areas identified in the 1999 study, had 71% occurrence.
Planning issues included: having insufficient reserves or resources for software, incorrect scoping, and poor
estimation planning practices, e.g., optimistic assumptions, overestimation of productivity, and shortened
Formulation Phase schedule.

Requirements and Design area is the next most frequently identified risk. Only one project out of seven had unstable

6

software architecture. However, five out of the other six projects reporting stable software architecture still
experienced requirements volatility, improper design documentation, or lack of hardwarehoftware architectures
integration.

Planning

Requirements and Design

Testing

Software Inheritance

ToolsiMethods

I Risk Area

Ex erience & Teainin Y

6. Reported E

1999 Study
Percentage of

Projects Reportin
Responses in Risk

Area

7 1 Oh,

71%

71%

57%

86%

71%

k Area Frequ
Current Study
Percentage of

Projects
Reporting

lesponses in Risk
Area

57%"

86%

86%

57%

43%

29%

71%

ncy with Summary Details

Summary of Reported Issues
from Current Study

Poor teaming between HWiSW and systemsiSW team
Weak communication between project mgmt and software
team

Scoped incorrectly

Insufficient reserves or resources for SW
Poor planning and estimation practices - optimistic
assumptions, overestimate productivity, short phase A or B

SW requirements solidify late in the life cycle and are very
volatile
Design not fully documented/ not properly CM'ed

Requirements immaturehot well definedhot baselined
New system and software architecture

Testbeds only had partial functionality required
Planned inheritance was less than expected
Inherited code not the same class as other code
Inherited code was treated as if it were new code due to
poor documentation

HW/SW architecture not integrated

Testbeds latehnreliable

Test tools late
Test tools lacked functionality
Loss of staff to other projects/High turnover in software
staff; training new people takes time
Insufficient workforce
Funding profile forced us to release team and then attempt
to rehire at a later date.

Staffing is the next frequently identified risk area. Staffing, a commonly identified risk area in the 1999 study,
remains a highly identified risk area in this study. However, the specific staffing issues have changed. While in the
1990s, integration and software teams were not available to support ATLO (an issue reported multiple times);
however, this is not an issue in this study's projects. This issue of shortage or loss of staff to other projects was
reported by many projects. Participants expressed their concern that training new people consumed more time and
money when the turnover is high.

Risk areas that had similar frequencies to the 1999 study include experience and teaming, testing, and software
inheritance. Although the issue of poor communication existed between software teams and the rest of the flight
project, experience does not appear to be an issue, as it was for the projects in the 1999 study. While the same
testing issues arose in this study (as in the 1999 study), projects that experienced late testbeds reported that once the
testbeds arrived, they had adequate access. Four out of seven projects in this study had software inheritance, of
which four projects reported issues with their software inheritance. The project that did not have issues with
software inheritance was the only project to hold software inheritance reviews.

The cost growth summary in Table 7 breaks down the results (flight versus instrument) and by growth from PMSR
versus PDR. Results suggest that instrument software has higher average cost growth than flight software.
Furthermore, it appears that flight software has a smaller growth range than instrument software. Yet given the small
amount of data and that several projects are not yet completed, this may not be significant.

7

Instrument Software

*Adjusted mean excludes growth due to externally caused launch slip

Table 8 presents a breakout of cost growth by project. It shows that two out of seven projects show any change in
their estimate by PDR (Projects C and G). In both cases, these two projects have also experienced smaller cost
growth from PDR to launch than the other five projects.

This raises the question: what makes these two projects different? In both of these cases, significant attention was
paid to software prior to PDR on both projects. As a result, the projects were able to identify that the PMSR budgets
were underestimated, communicate this problem to the project, and finally adjust the budget accordingly.

Is The Way JPL Builds Software Changing?
During the 1999 study, virtually all flight software was developed in an unintegrated manner, under its respective
hardware-oriented subsystems. As a result, the software cognizant engineers lacked budget authority and did not
even have a separate account. Over the past three to four years, there has been a shift in emphasis to create higher-
visibility software positions with greater authority. The current study probed to determine what software positions
actually existed on the project and to what extent they were able to fulfill the recommended job role. The following
nine recommended job roles are displayed in Table 9.

Design Responsibilities
7.
8.
9.

Development of software architecture by PDR
Ensure consistency of software architecture and the system architecture
Ensure that software is considered in all design trades

Table 10 displays a summary of responses to the survey questions that related to the implementation of the
recommendations documented in the original study, which, in different forms, have been advocated by various JPL
senior managers. Note that the instrument projects have not been asked to follow these recommendations presently.
These instrument projects are included to evaluate what extent they fulfill the recommendations informally and to
determine if underlying causes of cost growth are the same across flight systems and instrument software.

8

Percent of
Recommended

Percent Cost Project Software Role Perfornied by
Growth Systems SW iMgr and/or ReqdDesign Stable

Project PDR-Launch Software Manager Engineer PSSE at PDR

Software Risks
identified and
documented at

PDR

Flight Projects

Yes But
insufficient

Project A 60% At contractor authority

and authority Yes but

Project B 80% people authority

Not at SC SS level

ditfused over several insufficient

JPL SW Mgr had !'unction fulfilled
Project C 9 7% budget authority by JPL SW Mgr

Function partially
fulfilled by JPI,

SE and contractor
Project D 23% At contrdctor SW Mgr

Percentage cost growth from PDR to Launch is included to illustrate differences in cost growth between projects.
The next two columns summarize whether a software manager and/or project software systems engineer (PSSE)
existed on the project, whether they existed at the appropriate level, and/or whether they had sufficient authority to
do the job. Three out of seven of the projects have a software manager with budget authority who reports directly to
the flight system manager or instrument manager. However, only one of these projects has such a manager at JPL.
The other two projects that employ a flight system manager or instrument manager are at the contractor, Project C.
Furthermore, three of seven projects have someone fulfilling the project software systems engineer (PSSE) role. In
Project C, the software manager fulfilled this role (found to be very effective and based on cost growth rate and
percentage of recommended role). The Projects A and B the PSSE primarily fulfilled a review and advisory role,
making it difficult for them to be as effective. The fourth column shows the percentage of the recommended
functions that were performed by the software manager and/or PSSE (see Table 9). No project has implemented all
of these functions as originally recommended, Le., none of the studies in the survey had an integrated flight-ground
software manager. However, all four of the flight software systems (and even the three instrument projects included
in the study) implemented at least 50% of the recommendations. The last two columns indicate if the software
requirements and architecture were stable by PDR and if the software risks were formally documented at the project
level or in a software risk management plan. As before, software requirements are not stable at PDR - which will
likely always be the case for JPL given the nature of its business. Significant progress has been made in establishing
a stable software architecture by PDR, however. While there is greater inconsistency, progress is also being made in
identifying and tracking software risks and in establishing a software management plan.

Arch Yes
56% Reqs No No

Major Arch elements
not stable

56% Rcqs No Partial

Arch Yes
83% Reqs No Ye5

67% Arch and Keqs Stable Yes

Table 10 illustrates that out of all projects included in the study, Project C was the only project with a JPL Flight
Software Manager having both budget and technical authority. Project C scored the highest with 7.5 out of nine
(83%) of the recommended roles being fulfilled. A half point was given to a partially fulfilled role. Of the Flight

Instrument
Function partially
performed by JPL

SW C'ogE
1:unction partially
performed by JPI.

SW CogE

Function partially
performed by JPL

SW CogE

9

Pro:ects

67% Partial Partial

Arch Yes
56% Reqs No Yes

Arch Stable, but not
56% well integrated No

Project E

Project F

Project G

SW Cogl? at too low
of a level and no

92% budget authority
SW CogE at too low

of a level and no
100% budget authority

SW CogE at too 10%
of a level and no

8 Yu budget authority

Projects, Project C also has the lowest cost growth from PDR. (Refer to Figure 1 for this illustration, below).
Clearly, there are other differences between these projects as well as similarities besides the differences in the role of
the software manager. The major difference is that Project B is larger and more complex than Project C. However,
Projects B and C have similar cost at complete and Projects B and C also have similar cost growth from PMSR.
While this one observation is not sufficient to prove our hypothesis, it is consistent with the conclusion that the
recommendations from the previous study can reduce software cost growth, as illustrated by Figure 1.

Percent Cost
Growth Project Software Systems

Project PDR-Launch Software Manager Engineer

Multiple SW CogE’s at
lower level , no budget

Position did not exist Function
partially fulfilled by multiple SW

Project 1 30% authority CogE’s

Although the participants in the original 1999 study were not asked about their management roles directly, the
percentage of the recommended roles performed by the software manager or project software system engineer was
estimated by revisiting the original survey forms. Growth rates from PMSR were not available. The equivalent
percent of recommended roles performed and other summary data for projects in the 1999 study are presented in
Table 1 1. Not surprisingly there were no PSSE’s as the position had not been created yet and the roles fulfilled are
similar to the projects shown in Table 10 mostly ranging from 56% to 61%.

Percent of Recommended
Role Performed by SW iMg

and/or PSSE

56%

In the preliminary study, the four flight software datapoints suggest a relationship between cost growth and role
percentage. Combining the 1999 study results with the data from this follow-up study allowed us to perform an
ordinary least squares regression on cost growth versus role percentage, which did not yield any significant results.
However, the additional data makes it possible to at least consider the impact of more than just the roles fulfilled by
the software management team on cost growth. A variety of factors were considered. A significant relationship was
found between percentage of cost growth and the combination of percentage of software roles fulfilled and the
occurrence of overly optimistic software inheritance assumptions. A significant relationship was found between
percentage of cost growth and the combination of percentage of software roles fulfilled and the occurrence of overly
optimistic software inheritance assumptions. This result is displayed in Figure 1.

Project 2

Project 3

Project 4

Project 5

Project 6

80% lower level mostly fulfilled by JPI, SW Cogl-: 61Yo
Mutliple Cogb’s at JPL
and Contractor at lower
Icvcl, some had budget

Position did not exist Function
partially fulfilled by multiple SW

Position did not exist Function
partially fulfilled by JPL SE and

contractor SW Mgr but too

Position did not exist Function
partially fulfilled by JPL SE and

contractor SW Mgr but too

Position did not exist Function
partially fulfilled by JPI, Slj, and

contractor SW Mgr but too

35% authority CogE’s 61%

60% At contractor only distributed 67%

55% At contractor only disti ibuted 56%

120% At contractor only distributed 56%

Single SW CogE but no
budget authority and at Position did not exist Function

Figure 1 shows flight software cost growth versus percent of software roles fulfilled for the flight projects from the
1999 study together with the flight projects in this study. Projects B, 4, 5, and 6 were projects in which the project
participants indicated that the original inheritance assumptions were overly optimistic. It appears that a strong
relationship to cost growth, with an adjusted R-square of .63, exists between inheritance and role percentage.
Inheritance was treated as a qualitative variable with a value of 1 for overly optimistic inheritance assumptions, and a
value of 0 for realistic inheritance assumptions. A multiple regression with role percentage and inheritance as

10

independent variables appears to be statistically valid with an F-value of 9 at an observed significance level of .05.
All t-statistics are significant at the ten-percent level. These results indicate that there is a statistically significant
relationship between percent of software roles fulfilled and flight software cost growth when inheritance is taken into
consideration (Figure 1).

It is the combination of these two factors - software role percentage and overoptimistic inheritance assumptions -
that gave us these significant results. While there are other factors that can cause cost growth, there is insufficient
evidence to support the relationship of cost growth to other contributors of cost growth. There was no significant
relationship found between cost growth and whether the software project was contracted or in-house. Another
dimension - newness of the technology or precedentedness - was also analyzed. There was insufficient evidence to
prove a relationship between the precedentedness of the software and the percent of software cost growth. There
was also no software cost growth pattern found over time when the data is laid out by project launch date.

R = Role Percentage
H = Overoptimistic Inheritance

0% ---7- I

50% 55% 60% 65% 70%

Percent of Recommended Software
-___ - -

Figure 1 Spacecraft Flight Software Cost Growth vs. Software Manager Roles and Responsibilities

CONCLUSIONS

The purpose of the study was to document whether the recommended Flight Software Manager roles and
responsibilities as documented in the 1999 cost risk study may have been implemented and whether they had any
effect in reducing software cost growth. A secondary objective was to document any trends in software cost growth.
There are, however, a few important considerations to be mentioned. The sample size is relatively small and only
one of the seven projects in the follow-up study had time to formally implement the recommendations.

It was found that average cost growth had not significantly changed since the 1999 study. Furthermore, the
underlying causes of such cost growth were fhdamentally the same as found previously. Clearly, increased effort is
required to catch cost growth prior to PDR in order to eliminate extensive software cost growth after the commitment
review. With respect to the Flight Software Manager recommendations, it was found that all seven projects

11

implemented at least 50% of the recommended roles between their Software Manger and/or Project Software
Systems Engineer. While more data is needed, results from this follow-up study support the importance of software
‘visibility’ at the project-level and the delegation of responsibility to a strong software manager with budget and
technical authority. In order to be effective, these positions also need to be filled well in advance of PDR. With the
combined dataset from the 1999 study and this current study, the main contributors to flight software cost growth are
the combination of percent of software roles fulfilled and overoptimistic inheritance assumptions.

These results are consistent with the 1999 study recommendations that a strong, highly visible software management
team at the project- and system-level is needed. They need to have budget authority to make decisions in a timely
manner, and they need to have major input into system-level design decisions. The results support the assertion that
greater discussion and visibility of software earlier in the lifecycle will help managers to identify and address the
most troublesonie problems before they lead to significant cost and schedule growth.

REFERENCES

[11 Hihn, J and Habib-agahi, H. “Identification and Measurement of the Sources of Flight Software Cost Growth”,
Proceedings of the 22nd Annual Conference of the International Society of Parametric Analysts (ISPA), 8-10 May
2000, Noordwijk, Netherlands.

[2] Hihn, J and Habib-agahi, H. “Reducing Flight Software Development Cost Risk: Analysis and
Recommendations”, 2000-5349, Proceedings AIAA Space 2000, 19-2 1 September 2000, Long Beach, CA.

[3] Hihn, J, Lum, K, Habib-agahi H., and Monson, E. “Managing Flight Software Cost Risk”, Proceedings AIAA
Space 2003, 23-25 September 2003, Long Beach, CA.

[4] Jones, Capers. Patterns of Software System Failure and Success. International Thomson Computer Press, 1996.

[5] Hihn, J., Malhotra, S. and Malhotra, M.. “Volatility and Organizational Structure” Jourrial of Parametrics.
September 1990. pp. 65-82.

[6] Simon H. and Ericson, K., Protocol Analysis: Verbal Reports as Data, MIT Press, 1993.

Jairus Hihn has a Ph.D. in Economics with principle application areus in econometrics and mathematical
economics. He has been developing estimation models and providing software and mission level cost estimation
support to JPL’s Deep Space Network and jlight projects for thepastj f leen years, Jairus is currently the lead for
the Software Quality Improvement Project’s Measurement and Estimation (M&E) Element, which is establishing a
laboratory wide software metrics and software estimation program at JPL. M&E’s objective is to enable the
emergence of a quantitative software management culture at JPL.

In a previous incarnation, Dr. Hihn was on the Faculty at UC Berkeley in the Department of Agricultural and
Resource Economics where he co-developed a new statistical technique based on the semi variance of a probability
distribution fo r use in estimating agricultural production and income risks; was the co-author on several papers
which formally applied catastrophe theory to the analysis of political instability in third world countries using both
non-parametric and maximum likelihood methods. He has extensive experience in sirriulatiori arid Monte Carlo
methods with applications in the areas of decision unalysis, institutional change, R&D project selection cost
modeling, and process models.

Karen Lum is involved in the collection of software metrics and the development of software cost estimating
relationships at the Jet Propulsion Laboratory. She has a MBA in Business Economics and a CertiJicate in
Advanced Information Systems from the California State University, Los Angeles. She has a BA in Economics and
Psychology from the University of California at Berkeley. She is one of the main authors of the JPL Software Cost
Estimation Handbook. Publications include Best Corference Paper for ISPA 2002: “Validation of Spacecraf
Software Cost Estimation Models for Flight and Ground Systems.”

12

Erik Monson is involved in supporting cost estimating activities at the Jet Propulsion Laboratory. He holds a
Master of Business Administration degree from Claremont Graduate University and a BS in Computer Inforrnation
Science from Lock Haven University. Previously, Erik was the lead software developer fo r a Silicon Valley startup
where he developed an application using network-layer packet sniffers and automated knowledge bases to track
inappropriate usage on large distributed networks.

13

