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Abstruct- A method for the design of decentralized asyn- 
chronous controllers for spacecraft formations is presented. The 

positions of all spacecraft in the formation. Each spacecraft has a 
controller that requires only a subset of the fuii set of formation 
relative positions. Each spacecraft controller can also switch 
asynchronously between many such information subsets, allowing 
it to replace measured information by information communicated 
from other spacecraft. A two dimensional simulation example is 
used to illustrate the approach. 

- - control design problem is specified in terms of the relative 

I. INTRODUCTION 

Precisely controlled formations of spacecraft can be used 
to synthesize optical imaging instruments of greater resolving 
power than could otherwise be achieved with a monolithic 
instrument on a single spacecraft. One such example, in- 
terferometric imaging systems are our primary motivating 
application, although the work described here applies to a wide 
range for formation control problems. Several interferometric 
flight projects, based on formation flying, have been studied 
including Darwin [l], LISA [2], Terrestrial Planet Finder 
(TPF) [3] and Starlight (formerly ST-3) [4]. 

Interferometric imaging application is illustrated conceptu- 
ally in Figure 1. Each spacecraft acts as a collector, reflecting 
light from the imaging target to a combiner spacecraft. The 
light from any two collectors is combined at a detector and, if 
the optical pathlengths are held fixed and equal, an interference 
pattern can be measured. Each measurement of the amplitude 
and phase of this pattern amounts to a sample of the spatial 
Fourier transform of the image. Multiple measurements, us- 
ing either multiple collectors simultaneously or repositioning 
fewer collectors, allow reconstruction of the image. The ef- 
fective aperture depends on the collector separation and future 
mission objectives call for effective apertures of the order of 
kilometers, resulting in resolutions that cannot be matched by 
any monolithic spaceborne telescope. Multiple collectors can 
also be used to create nulls in the spatial response of the array 
thereby enabling the imaging of dim objects adjacent to bright 
ones [5].  This is a promising technology for searching for 
planetary objects in other solar systems. 

This work considers deep space missions, where the for- 
mation is in heliocentric orbit rather than planetary orbit. 
The analysis results we present are quite general and in 
applying them to our formation flying problem we make some 
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Fig. 1. Interferometric imaging configuration using multiple spacecraft in 
formation. Spacecraft separations, and the equivalent apertures, are of the 
order of tens to hundreds of meters. 

specific assumptions. The most significant of these is that 
the spacecraft can sense their relative position and not their 
absolute positions. 

The spacecraft in such a formation are free flying and their 
dynamics are coupled only through the application objectives 
and measurements of relative spacecraft positions and veloc- 
ities. To maintain the performance of the formation in deep 
space missions it is necessary only to maintain the relative 
positions and absolute orientations of the spacecraft. 

The stringent optical path length constraint-in the tens of 
nanometers-is achieved by hierarchical actuation. Depend- 
ing on the application this may include movable platforms, 
optical delay lines, and precision piezoelectric actuators on 
the individual mirrors. The optical path length requirements 
translate into spacecraft relative positioning requirements in 
the micrometer to centimeter range El], [3].  

There are many possible topologies for the sensing, control, 
and communication within the formation. Communication 
bandwidths, synchronization constraints, and sensor capabil- 
ities affect the performance of any chosen topology. These 
issues have been studied in a formation flying context; see, 
for example, [61, [71, [SI, PI, [IO]. 
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Spacecraft formation. the local and relatlve position variables are 

The emphasis of this work is on the development of 
decentralized topologies. The terms “centralized topology” and 
“decentralized topology” apply to both the control design and 
implementation. Our objective is to be able to develop con- 
trollers which can be implemented in a decentralized fashion. 
This means that each spacecraft controller requires only a 
subset of the full formation information in order to be able to 
implement their component of the formation control. See [11] 
and the references therein for a discussion of decentralized 
controi and estimation in spacecraft formations. 

A formation-wide optimal control design problem based on 
relative position measurements is posed and solved. This gives 
a global, centralized control algorithm for formation control. 
We then exploit the redundancy in relative position information 
tn develop a family of parttally decentralized controller im- 
plementations of the optimal centralized controller. This also 
allows individual spacecraft to switch asynchronously between 
relative measurement options, and this can be exploited when 
line-of-sight measurements and communication are unavail- 
able during a maneuver. The aerial formation control work 
described in [ 121 is similarly motivated, and also is formulated 
as a relative state control problem. 

The focus of this paper is the desigr, cf the asynchroncusly 
switching network of formation controllers. The theoretical 
background is described in more detail in [13], [14]. 

11. FORMATION CONTROL PROBLEM 

A. Formation deJinition and sensing 

We begin by considering a typical formation and defining 
the notation associated with the various local and relative 
position and absolute attitude variables. Consider a formation 
of N spacecraft. For simplicity it is sufficient to define on each 
spacecraft a reference attitude, di, i = 1, . . . , N ,  with respect 
to an inertially fixed direction, Figure 2 illustrates these 
definitions. 

We define a local inertial frame within which each space- 
craft is located at position pi = [xi, yi ] ziIT (where denotes 
transpose). The origin of this frame is not critical for the 
application we consider here. The relative position between 
each two spacecraft is defined as, 

xj xi 
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dimensional distances that can be defined modulo the opposite 
direction equivalences. 

In deep space an accurate measurement of (xi, yi, zi )  is 
not available. It may be possible to obtain range and direction 
information with respect to Earth, but this will be accurate 
only to the order of kilometers. On the other hand, the rij 

variables can be precisely measured, typically to the order of 
i.10 nm. 

In contrast to absolute position, spacecraft attitude can 
be measured to very high accuracy. On-board star trackers 
are typically used to provide attitude information for each 
spacecraft, and these have typical accuracies in the range 
il milliarcseconds (mas) to i 200  mas. 

We define the formation in terms of the variables that can 
be accurately measured: the relative spacecraft positions and 
the attitude of each, 

rij : i , j = l ) , . . l N )  i # j  
$hi : i = l ,  . . . ]  N .  

This definition does not locate the formation in any inertial 
frame but this is not critical for our applications. 

B. Formation control problem 
A reference tracking formulation is used to define the con- 

trol problem, where the relative position and attitude reference 
signals would be provided by a supervisory system. 

The formation specification includes the inertial attitude of 
each spacecraft. Because the formation dynamics are coupled 
only through the control objective, attitude errors on each 
spacecraft are coupled to attitude errors on the other spacecraft 
only through the control system. In the deep space mission 
application, each spacecraft is also assumed to have a local 
measurement of its attitude. This means that correcting attitude 
errors can be viewed as a strictly local control problem: only 
local measurements are required to determine the attitude er- 
ror, and only local actuation is required to attenuate the attitude 
error. Control of $i can therefore be treated as decentralized, 
both in terms of design and implementation. For this reason 
we drop control of $i from further consideration and focus on 
the more difficult problem of the control of T i j .  

Figure 3 illustrates the relative position tracking problem 
to be considered. Using this framework, we pose a relative 
position formation design problem as follows. Given the 
collected spacecraft dynamics, r j k  = P ( X , U ~ ) ~  where j = 

1 , . . .  , N  - 1, IC = j + l , . . . l N  and i = 1, 
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Fig. 3. 
provided by a supervisory system. 

Relative position control design problem for an N spacecraft formation. Reference relative position commands are denoted by crij and would be 

a stabilizing controller, u, = K(c,%, , r J k ) ,  to minimize a 
formation objective cost, J ( r J k ,  uz). This is a centrdized, or 
“global”, control problem in that it is specified in terms of the 
overall formation objectives, rather than individual spacecraft 
objectives. Problems such as this are readily handled by 
existing optimal control theory and supported by analysis and 
synthesis software. For example, K above may have been 
designed to meeting an 3-1, or RzILQG objective for the 
formation. 

C. Switched measurement topologies 

Note that there is some redundancy in the formation defi- 
nition as the N ( N  - 1)/2 relative positions are not indepen- 
dent, The full set of relative position measurements contain 
redundancies that can be expressed as algebraic constraints. 
For example, 

rij + r j k  + r k i  = 0, for all i, j ,  k ,  

and at every time t .  For the formation to be well defined these 
constraints must also apply to the relative position commands, 

The approach (detailed in [14]) is based on a subspace 
characterization of these redundancies. We note that there 
exists M such that, 

‘T,, ’ 

M T [  r: Id, 
r N - l , N  

or equivalently, M T P ( x , u )  = 0 for all u. Define a class of 
transformation matrices by, H = I - X M T ,  where X satisfies, 
M T X  = I .  The matrix H has the effect of expressing some 
of the relative positions as linear combinations of the others. 

It can be shown that for any stable and stabilizing global 
formation controller, K ,  all controllers of the form KH are 
also stabilizing and achieve the same level of formation control 
performance. The transformation matrices, H ,  have the effect 
of switching the knfolmation going into the controller amongst 
various measured and communicated information sets. 

111. RELATIVE POSITION BASED CONTROL DESIGN 

Using relative sensing as a basis for control design allows 
flexibility in the choice of measurement and communication 
topologies. We now consider the problems that arise as a result 
of this architectural choice, and provide design methods for 
developing optimal formation control systems. 

We consider a linear, state-space description of the space- 
craft dynamics, 

k = A x - { - B u ,  r =  [ C 0 ] x. 

Because the spacecraft are not physically coupled, A and B 
have a sparse block structure. The output matrix, C, gives 
the relative position measurements effectively coupling the 
spacecraft. 

A. State feedback 

The first obstacle to design is that the state, x, is not fully 
observable from the relative measurements, r.  Physically this 
arises from the fact that the position and velocity of rhe 
formation centroid cannot be determined by relative position 
measurements. To obviate this we use a similarity transforma- 
tion of the state, Tx = [ zT wT I T ,  to give, 

where (C,,A,) is observable. We note that the observable part 
of the dynamics, 

can be used to design a formation controller using relative 
position measurements. Various control design methods can be 
applied at this point. The design example presented in this pa- 
per uses an Linear Matrix Inequality (LMI) optimization [75] 
for estimator and state-feedback design. 

The state-feedback design problem is formulated in terms 
of finding a controller that drives all states within an initial 



ellipsoid, Vo = { u 1 ziTVou < 1, VO = VT > 0 }, to zero with 
a bounded cost given by, 

Finding the minimum /̂, clearly gives the optimal controller 
for solving this problem and this is solved via standard LMI 
methods. The state, zi, must be estimated from the relative 
position measurements, T .  Our formulation guarantees the 
observabi!ity of ZI and we can use a compieteiy anaiogous 
dual LMI problem to design an estimator gain matrix, L. 

B. Exploiting Input Redundancies 

The linear model of an individual spacecraft's dynamics 
is essentially a double integrator. Force actuators-typically 
thnmters-are used for the control inputs. and these may have 
additional dynamics associated with them. If each spacecraft 
has zero order or identical first order actuator dynamics, 
then the input control space contains an additional degree of 
freedom. 

Under these assumptions, B, has reduced column rank, 
which means that there is a matrix, Bl, satisfying BvBl = 
0. An SVD can be used to calculate this matrix, and we 
can define a projection, ( I  - B I B i T ) ,  such that, & ( I  - 
B I B i r )  u = B, u and B,(I - B i B i T )  u = 0. We can 
calculate control actuation signals of the form, 

which allow us to control the z and u components of the 
state independently. The input u controls the formation in the 
manner given in the previous sections and u can be considered 
as a control variable for the formation centroid (and other 
common unobservable states). We now give two relevant uses 
for this control. 

C. Minimizing formation fuel consumption 

The input null-space control variable u can be chosen to 
minimize the total formation fuel use. At each time instant, 
given the formation actuation command u, we calculate Y as 
the solution to the following linear program. 

N 

If actuator servo loops have been applied on each spacecraft 
then the u, represent commanded thrusts and these are only 
approximately equivalent to the fuel used on each spacecraft. 
Note that this approach minimizes the total formation fuel 
consumption for a given controlled maneuver. It is not neces- 
sarily a solution to the problem of finding the minimum fuel 
maneuver between specified formation configurations. One of 
the two examples considered in Section J3J uses this form of 
input null-space control. 

D. Control of the formation centroid 

We now consider the problem of using the variable Y as a 
means of controlling the formation centroid. The dynamics of 
the unobservable state can be expressed as, 

i = A, z +A,, v + B,Bi Y. 

We again take the approach of separating this control prob- 
lem into a estimator and state-feedback design. The lack of 
observabllity of z means h t  th.e estimator is now open-loop 
and given by the marginally stable z dynamics above. 

Our control of z is implemented via Y = -K, 2, where 
2 is an estimate of z .  The objective can again be speci- 
fied in terms of driving all z in an ellipse, z E ZO = 
{ z I zT&z < 1, 20 = 2; > 0 }, to zero with cost bounded 
by, 

i l w r  _.i12 I I T X T  ..112 / -.2 
/ I " " . q 2  + I l " " . ~ l l 2  1 Y,. 

This gives an LKI problem identical in form to that used to 
solve the state feedback problem. 

This controller implements both control objectives (precise 
control of relative positions via state feedback-on 6, and 
open-loop control of the formation centroid via feedback on 
2) in a manner which ensures that the objectives do not 
interact. This input decoupling approach could equally well 
be used to implement lower bandwidth and/or lower resolution 
feedback control of the formation centroid if a lower precision 
measurement of absolute position was available. 

Iv. A DESIGN EXAMPLE 

We illustrate the application of measurement switching, 
optimal relative state control design, and input null space 
control on a four spacecraft, two-dimensional, example. Each 
spacecraft is modeled in each dimension as a double inte- 
grator with first order actuation dynamics. To illustrate the 
most general application of the input null space control we 
consider the case where each spacecraft has identical actuation 
dynamics (1 .O second time constant). The spacecraft masses 
are not identical and are specified as 300, 3 10,280 and 280 kg. 

The control will maneuver the spacecraft from an initial 
position-in an arbitrary (ZJ) frame-of a square of 200 
meters on a side, rotating clockwise at 0.003 radsecond, 
to a non-rotating line in the ZJ direction with 200 meters 
separation. The initial and final formation specification, and 
the measurement vector, consists of 12 relative positions (6 
in each dimension). Each vehicle begins the maneuver using 
the measured relative positions of each of the other three 
spacecraft. The maneuver is such that line-of-sight contact is 
lost between various spacecraft at seven instances (including 
the final position), and at these times the affected spacecraft 
employ relative measurement switching, via a series of switch- 
ing matrices H, to accomplish control of the maneuver. 

We consider two controllers with differing objectives for 
the input null space control. The first maintains the estimated 
formation centroid at the saIlie position throughout the maneu- 
ver. The second allows the centroid to move to perform the 
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Fig. 4. Absolute frame s -y  plot of the trajectories for the centroid and 
minimum fuel controllers. The spacecraft initial positions are denoted by 
circles, and the final positions in each maneuver are denoted by crosses. 

maneuver with minimum fuel consumption. In each case, the 
relative positions track identical trajectories. 

Figure 4 illustrates the z-y plane motion of each spacecraft 
for each of the two input null space control options. In 
absolute coordinates there are significant differences in the 
trajectories, and in the final positions. The minimum fuel 
controller uses 3.1 % less fuel illustrating that maintaining 
the centroid invariant is reasonably efficient, but not optimal 
for this maneuver. The instances where measurement vector 
switching occurs, and the measurement topology that each 
spacecraft uses, are given in Table I. 

Figure 5 illustrates the six relative distances during 
the maneuver. Each can be associated with a measure- 
mentkommunication link, and the times at which these links 
are occluded is also illustrated. Note that the relative positions 
(shown in Figure 5) ,  and the information switching instances 
(given in Table I) are identical for both the centroid control and 
minimum fuel control cases. The measurement/communication 
link is considered to be occluded if the edge of a closer 2 
meter radius spacecraft comes within 10 degrees of the line- 
of-sight. In Table I, superscripts * and * denote information 
communicated via one and two links respectively. 

Each spacecraft has sufficient information to reconstruct 
the relative paths of all of the other spacecraft, predict when 
specific measurement and communication links will be oc- 
cluded, and determine a switching strategy using the remaining 
available links. The control design is optimal with respect to 
the chosen formation-wide criteria, and in this instance there 
is sufficient freedom in the input null space to allow additional 
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Fig. 5. Spacecraft relative distance vector, ~ % j ,  for centroid and minimum fuel 
controllers. Dotted lines indicate relative links that are occluded by intervening 
spacecraft. 

control objectives. This particular maneuver required relative 
information to be communicated between spacecraft. This is 
not always the case; simpler maneuvers may be accomplished 
without inter-spacecraft communication. 

v, CONCLUSIONS AND FUTURE RESEARCH 

Relative position based specifications are a suitable choice 
for deep space formations where absolute position measure- 
ments are inaccurate or unavailable. The redundancy in a rela- 
tive position based design allows the development of a family 
of equivalent formation controllers, where each spacecraft may 
use differing relative measurement vector components. Some 
of these may be communicated from other spacecraft and this 
allows the optimal formation control to be maintained under 
reconfiguration when certain measurement and communication 
links are no longer available. An input null space control 
approach has been outlined and allows the formation to si- 
multaneously achieve other objectives in a decoupled manner. 
The minimum fuel controller is one such example. 

If data communication latency is significant, the switching 
between measured and communicated information may require 
a more detailed stability analysis. This is an area of future 
research, along with formation control methods that are robust 
with respect to potential communication latencies. 

Our approach essentially employs a transformed state esti- 
mator in each spacecraft, and this allows each spacecraft to 
reconstruct the controls and trajectory of all other spacecraft. 
This can be done with only N - 1 relative spacecraft measure- 
ments. However, it may be possible to improve the accuracy of 
the internal estimators by transinitting additional information 
around the network and this is also an area of research interest. 
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