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ABSTRACT 

The dependence of strip antenna steady state geometric errors on member length uncertainties 
in the supporting truss beam is studied with the Monte Carlo analysis of a representative truss 
design. The results, presented in a format streamlined for practical use, can guide the specification 
for hardware fabrication of required error tolerances (for structural properties as well as member 
lengths), or they can aid the prediction of antenna performance if component statistics are available. 

The standard rms error and locally defined errors are both considered. (The latter quantify surface 
and slope discontinuities between trusdantenna bays - discontinuities that may limit the effec- 
tiveness of some electronic error compensation schemes.) Second order global error compensation 
along the antenna length is also simulated. 

The judicious definition of normalized variables leads to a straightforward set of scaling laws 
that easily relate the results to various truss dimensions and member length error magnitudes for 
trusses up to 100 bays long. The data pools on which quantitative observations are based are each 
populated by 35,000 (thirty-five thousand) to 3,465,000 (nearly three and a half million) elements. 

NOM EN c L ATU RE 

number of bays in the entire truss and in a segment (subtruss) 
truss cross section edge (batten length) 
truss, bay, and subtruss lengths 
number of subtrusses 
generic error symbol and rms surface error 
RF wavelength, antenna gain 
scaling coefficients for global dimensions and member length errors 
probability density function 
maximum member length error magnitude 
vector of reference surface parameters a, 
vector and matrix quantities for rms surface error assessment 
elements of A and b, evaluated via integration over the antenna aperture 
additional parameter for rms surface error assessment 
bay sag, bay twist, and panel twist 
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INTRODUCTION 

As is the case with all new structural applications, the engineering of long strip antennas, Fig. 1 
(a), for space to meet emerging defense and scientific needs faces a number of unique challenges. 
Among these challenges are extreme aspect ratios and dimensions (lengths L>80 m). At the same 
time, the ever increasing pressure for cost and weight efficiency has prompted the consideration 
of space-rigidized technologies for critical structural members. However, space-rigidization has a 
limited track record in precision structures. Combining this emerging technology of yet uncertain 
geometric and structural reliability with (a) extreme geometries and (b) the need for application 
accuracy keenly raises the question of how component precision affects the accuracy of the whole. 
The present work offers quantitative insight into this statistical relationship via the Monte Carlo 
method for a selected configuration and error compensation, yet in a manner relevant to many 
mission conditions and designs. Wide practical scope is achieved by the careful definition of the 
antenna error measures and of the statistical characteristics of the error sources, which contribute 
to rendering the results scalable. Further, the simplicity of the truss configuration studied renders 
the results a convenient baseline of general interest. 

Global through local antenna errors 
Two types of antenna errors are considered: the r im surface error and a few strictly local measures, 
the latter defined to assess (a) inaccuracies in the suspension of single antenna panels and (b) 
how well adjacent panels can be aligned. The nns error E,,,, is evaluated not only for the entire 
antenna, as commonly done, but also locally for antenna subsections. All subsections that can 
be possibly defined by truss bays within the entire antenna strip are statistically considered for a 
quasi-continuous view of the transition between local and global inaccuracies. 

As the response of a truss beam section to strut errors is practically independent of the inaccuracies 
outside the section itself, error statistics for one section are equivalent to those for a complete, 
shorter, truss of the same length. Therefore, the Monte Carlo analysis of a single antenna design 
with error statistics processed for all its subsections is equivalent to studying all shorter antennas 
with the same bay architecture. Accordingly, the present study directly addresses one antenna 
design only, long enough to serve as a likely upper bound on all foreseeable practical designs. 
Namely, a length of 100 bays is considered. With the bay aspect ratio defined by equal longeron 
and batten lengths, this number corresponds to a truss length to diameter ratio WD>lOO, beyond 
the range typically considered practicable in a precision context. 

Immaterial dimensions 
That antenna (truss) length in the previous section was referred to not with physical units (meter, 
foot, or similar) but with the number of bays was not accidental. Via a scaling principle (and 
associated scaling laws) presented below, it is made apparent that the error measures herein used, 
including E,.,~, depend on the number of truss bays, rather than physical length - provided that 
the strut errors are defined in absolute, as opposed to length proportional terms. This principle is 
well exploited in the present work by rendering absolute dimensions immaterial. 

The Monte Carlo study 
The Monte Carlo study, where random effects are explicitely modeled with a multitude of anal- 
yses and then the results are statistically evaluated, has been chosen for the present investigation 
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for programming and engineering convenience and for adaptability to design modifications and 
later needs, including those of final design. The reference model, systematically perturbed with 
imperfections, is the simplest possible symmetric truss beam of triangular cross section with one 
diagonal per bay on the sides but, for symmetry, two on the base where the antenna is located. 
Cross section stiffness is identical in all members, and the battens are as long as the longerons. 

The actual physical properties of the numerical model are immaterial in the context of the scaling 
laws used. Nevertheless, there are listed here for completeness: 

0 longeron and batten lengths llongelo,, = Ibatten =I m - which made the entire truss length L=1OU 

0 material Young’s modulus E=210 GPa~530 nzillion psi 
0 member cross section area A=6 1nm~~50.0093 in2 

m (for 100 truss bays) 

In the study, all member lengths were subjected to random errors of uniform distribution charac- 
terized by the same maximum magnitude along the truss. Pools of 35,000 (thirty-five thousand) 
truss models were analyzed for simulations of each of two electronic error correction schemes: ! 

0 No error compensation. The rnas surface error is simply evaluated with respect to a flat antenna 

0 Quadratic error compensation, simulated by evaluating E,,, with respect to a reference surface 
reference surface. 

parabolic in the truss axial direction. 

Among other details, the results reveal that the average expectable E,,, error is below twenty 
times the A I,,, maximum length error magnitude for individual members even in the worst case 
scenario, when no error compensation is used and the truss is 100 bays long. In the same condi- 
tion, the error associated with a 99.9% design certainty is still less than sixty times greater than 
A l,,,. These numbers greatly improve for shorter trusses (trusses of fewer bays) and as a result 
of quadratic error correction which generally reduces effective errors with more than 60%. How- 
ever, the effectiveness of compensation gradually diminishes for shorter trusses, especially under 
20 bays. 

ANTENNA ERRORS 

The advancement of signal processing and electronic error correction techniques over the last few 
decades has much decreased the critical significance of certain imperfections of the structural ge- 
ometry. Geometric errors, however, still remain of interest for two reasons. They continue to be 
a design concern, first, because the effectiveness of error compensation generally depends on er- 
ror magnitudes, spatial frequency contents, distribution, and transient characteristics. Second, the 
sufficient control of geometric errors, if possible, can potentially eliminate altogether the need for 
electronic compensation in certain applications, thereby reducing system complexity and cost. 

For the antennas herein considered, compensation is effective for error components of low spatial 
frequencies, cf. Fig. 1 (b) 2-3. On the other hand, high frequency components such as those 
dominating the illustrations in Fig. 1 (b), 4-6, cannot be corrected and are, therefore, of critical 
concern. In the present study where imperfections are accounted for via a general Monte Carlo 
analysis, low and high frequency error contributions are not artificially separated or filtered. Rather, 
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local and global errors, and the effectiveness of compensation are concurrently gauged with the 
application of two kinds of error measures: the “standard” rms surface error E,,, in both global 
and local contexts, and a handful of carefully defined strictly local measures. 

Rms surface error: definition and significance 
The “root-mean-square” recipe for error norms 

where e,,,, is some error measure (e.g., offset from the ideal surface in a given direction) and 
A is some measure of the antenna surface (e.g., the actual curved surface area of a dish) allows 
many possible error definitions. However, the only radiometrically meaningful option is 

with A i  the optical path length change due to the errors and A the aperture. With the rms surface 
error according to Eq. 2, the loss of antenna gain G due to the imperfections is 

where Go and X are the gain for the ideal geometry and the wavelength. (Note that Eq. 2 assumes 
uniform reception efficiency over the aperture. In the general context l ,  variable efficiency can be 
accounted for with a weighting-function coefficient to dA.) 

In a realistic design context (where no “absolute” surface is explicitely given and the feed position 
can be adjusted for best performance) the parameters defining the reference surface from which 
the rnzs error is taken are determined by minimizing the rms error itself. If the surface is a plane 
- as is the case for a flat strip antenna - then three parameters must be set to minimize E,,,. 

If, however, the reference surface is enriched with an extra parameter to render it parabolic in one 
direction (e.g., along the antenna length, to simulate second order error correction), then this extra 
geometric degree of freedom permits E,,, to be lowered further. 

Planar lens or phased array vs. reflector dish antennas. The derivation of Eqs. 2 and 3 is easily 
available for parabolic reflector antennas where 

with Ax the offset from the ideal surface in the dish axial direction, and Q the paraboloid meridian 
slope angle (which disappears at the apex) 2 .  However, efforts during this project succeeded neither 
to locate a derivation for strip lens and phased array antennas similar to Ruze’s l ,  nor to verify the 
validity of the fundamental gain expressions on which Ruze relies in the present context. Therefore, 
for the purpose of this work the gain expressions used by Ruze were simply assumed to apply, from 
which Eqs. 2 and 3 ultimately follow for strip antennas as well. 

However, in the present context of a flat surface antenna, the optical path change simply equals the 
AZ offset in the normal direction of the actual antenna surface Z ( Z ,  y) from the ideal z0(x, y) : 

ai = ax = Z - Z o  ( 5 )  
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if the direction of transmissiodsensing is perpendicular to the surface - the orientation that gov- 
erns the errors for phased array operation. It is not surprising that the optical path change due 
to geometric errors for a surface antenna, Eq. 5 ,  is nearly half that for a reflector, Eq. 4, because 
reflectors “fold the optical path” back over itself, and thus their surface aberrations cumulatively 
change both the incident and reflected segments of the path. 

The rms error as defined by Eqs. 2 and 5 is illustrated in Fig. 2 (a) for a symmetric parabolic 
truss camber, with no twist or other additional deformation components. The E,,, expressed as 
a function of the 6 bow, E,, ,  = 6 / (3&) ,  depends only of the deformation magnitude 6 and is 
independent of structural dimensions. 

In thin lens antennas, lens geometry errors effect wavefront errors roughly two orders of magnitude 
smaller than the surface imperfections themselves. Thus the dominating errors are not those of the 
lens but of the feed. In this case, Eqs. 2 and 5 apply to the feed surface. The context and details of 
the present work warrant that the results and observations presented below, while directly related 
to phased array operation, are also applicable to lens antennas. 

The numerical assessment of the rnls surface error. In realistic conditions the truss (slightly) 
bends and twists in all directions from bay to bay due to member length irregularities as indi- 
cated in Fig. 2 (b). The actual antenna surface, comprised of panels linked to one another and 
attached to truss joints, will depend on panel mechanics and suspension. For simplicity and gen- 
erality, no details of this dependence are addressed here when the m s  error is calculated. Instead, 
antenna panels are defined geometrically as bilinear rectangles stretched between the appropriate 
truss joints (intersections of truss member centerlines) in each truss bay, Fig. 2 e). This definition 
is a good generic approximation. The effects of its differences from any particular design scenario 
quickly diminish with the increase of the number of panels considered. 

In the frame of reference shown in Fig. 2 (b), where the axis IC points along the antenna strip and 
the latter faces in the z direction, the reference (ideal antenna) surface - from which the errors are 
measured - is a plane 

Zl(IC, y )  = a0 + a, + a, y (6) 

defined by the three coefficients no, a,, and ay. These coefficients must be determined to minimize 

(7) El,s = /- = ; g 
wherein x(z, y) is the actual imperfect antenna surface and 

M = J ( z ( z , ~ )  - a0 - a, IC - a , ~ ) ~  dA 

With the expansion of the integrand this becomes 

where the asterisk and superscript T denote the inner (dot) product and the matrix transpose, and 
the vector and matrix variables a, b, and A are - - _ _  
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with 

Minimizing E~~~~ is equivalent to minimizing nil. Accordingly requiring that the partial derivatives 
aAd/dao, aM/aa, ,  and dAd/aa, of Eq. 9 disappear, one obtains 

A * a  = b - -  - - 

Once the coefficient matrix, the right hand side, and are known (Eqs. 13 through and 15), the 
parameters ao, a,, and a, to determine the reference plane are given by Eq. 16 in the context of the 
(x) y ,  2 )  coordinate system used. The rnas surface error consequently follows from Eqs. 7 and 9. 

Pivotal to this procedure is the calculation of the integrals Eqs. 13 through 15 which must be per- 
formed numerically. In the present work, this was accomplished with two-point Gauss quadrature 
in two dimensions over each antenna panel as defined in Fig. 2 (b). This meant four integration 
points per truss bay. The accuracy of this procedure proved excellent. A comparison with the mid- 
point rule revealed that 40 x40=1600 integration points per  each panel were required in the latter 
to reduce the errors between the two approaches to below 0.1 %. 

Integration was performed over the perfect, undeformed, aperture A = La (cf. Fig. 1 (a)). 
In-plane surface error components (in the z and y directions) were ignored as higher order effects. 

Error compensation. The procedure described in the previous section addresses “absolute” sur- 
face errors, with respect to an ideally flat antenna reference surface. However, electronic error 
compensation can effectively remove some low spatial frequency components from the error pat- 
tern. This reduction of the error space can be simulated by using a reference surface with geometric 
degrees of freedom appropriately increased from the three (ao, a,, and a,) associated with the flat 
geometry and then minimizing E , , ~  with this extended set of parameters. 

A first level error correction is quadratic compensation along the antenna strip (“linear correction” 
is trivially performed by antenna orientation and is inherently accounted for in the previous sec- 
tion). For the simulation of this correction mode, the reference surface is extended with a quadratic 
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term in x 

which increases the number of surface parameters to four: no, a,, a,,,, and a,, cf. Fig. 2 (b). The 
calculation proceeds as for the planar reference surface except for changes stemming from the 
replacement of zl(x, y) in Eq. 7 with z2(x,y) of Eq. 17. Thus M becomes 

(1 8) M = / ( z ( , x )  y)  - no - a, z - a,, x 2 - ay y)2 dA 

The form of Eq. 9 does not change, but the involved quantities now become 

which include the following parameters not yet defined earlier: 

a,,, = J’z3dA 
(x,,,, = J’x‘ddA 

= J’z2ydA 
,O,. = J x 2 z d A  

The numerical integration of these quantities is as for those in Eqs. 13 through 15, and the reference 
surface parameters Eq. 19 are solved from Eq. 16, naturally interpreted in the present quadratic (4- 
dimensional) context. 

Local vs. global errors. As alluded to above, high spatial frequency (local) shape inaccuracies 
are of special concern. One way of illuminating local error magnitude is via calculating as de- 
scribed above the rnzs surface error 

Generally, several sections defined by a certain length (a certain number of bays) can be associated 
with any particular truss. As illustrated in Fig. 3 (a), a section (subtruss) can be considered to start 
at the truss end, or after the first bay, and so forth. For a truss n bays long there are exactly 

for limited antenna sections. 

N,, = n - m + l  (24) 

different (but overlapping) subtrusses of m bays each. (If subtruss length may vary from one bay 
through the entire truss length - in the last case the entire truss is the “subtruss” - then the total 
number of all possible subtrusses is 
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which grows quadratically with the total number of bays n.) 
In the error analysis below, the entire spectrum of local through global errors will be surveyed by 
evaluating for every one of the Nail possible subtrusses along each antenna model considered. 
For each of these calculations, the substructure deformations will be treated independently, stripped 
of the global structural context. The various subtrusses so defined (overlapping within each global 
truss analyzed) will then be placed into data pools according to subtruss length, to be processed as 
undistinguished statistical entities within each pool. 

The treatment just outlined ignores that, actually, not all subtrusses are independent. One form 
of interdependence is due to substructure overlap (more precisely, to the overlap of substructure 
deformation fields) within each global truss solution. Another, very subtle, flaw in the data pool is 
a possible lack of mechanical uniformity between subtrusses within a redundant truss as follows. 

If the truss is statically indeterminate then the effects on local truss deformations of a particular 
strut length error depend on the location along the truss beam: local deformations are somewhat 
better constrained by the adjacent bays near the center than near the end, Fig. 3 (b). Therefore, the 
response in a subtruss near the antenna end to a certain kinematic load pattern differs from a similar 
one near midspan. This non-uniformity of the subtruss statistical data pools is acknowledged with 
concurrently emphasizing that its effects are generally insignificant. 

Possible non-uniformities in the statistical pools and interdependence between some of their ele- 
ments, however, are not a concern for the present study because we do not seek a precise mapping 
of truss geometric errors but a generic assessment of inaccuracies over antenna segments of various 
lengths. On the level of generality pursued, there is no justification to distinguish between or to 
weight locations along the truss. Therefore, the way the statistical data pools are constructed is ap- 
propriate, and the concept of subtruss sets of various lengths is sufficiently refined to quantitatively 
illuminate the relationship between local and global rms errors. 

Some strictly local error measures 
As outlined above, the need for information on local imperfections is herein addressed with the 
rms surface error by evaluating crms both locally and globally. However, while generating the 
E ~ ~ , ~  norm, the definition Eq. 2 also works as a “mathematical filter” by concealing the details of 
the error pattern. Some of the lost information - such as individual panel deformations and the 
differences of orientation between adjacent panels - may be potentially critical for structural as 
well as electronic system design. 

Three strictly local error measures are hereby defined to statistically capture such details. As the 
purpose of these measures is not to directly support any specified design or analysis procedure but 
to capture otherwise lost technical information, their definition is not streamlined for any particular 
use or algorithm. Rather, they are crafted solely to capture all aspects of local (bay-to-bay) defor- 
mations that may be potentially relevant for yet unspecified future use. The normalization (non- 
dimensionalization) of these measures serves the convenience of definition, as opposed to that of 
agoverning algorithm. These measures provide all information possibly necessary for quantifying 
local out-of-plane errors such as 

0 The deformations of flexible panels firmly held at all corners. 
0 Out-of-plane edge and corner offsets between adjacent rigid panels with all possible patterns of 
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three-point suspension. 
0 Orientation errors between adjacent panels. 
0 Other similar imperfections. 

The errors (their statistical characteristics) presented below should be transformed (scaled and/or 
combined) to meet design needs once the latter is defined. 

These three local errors are introduced in Fig. 4 in the direct physical context, without normaliza- 
tion. The first two, the bay sag and the bay twisf, Fig. 4 (a) and (b), capture the orientation errors 
between pairs of adjacent panels in the axial and lateral directions, respectively. As indicated in 
the figure, both are defined via how (axial or lateral) centerlines in adjacent panels are oriented 
with respect to one another. (This definition reflects the features of the assumed bilinear panel 
geometry, cf. Fig. 2 (b).) 

Bay sag relates the two panel orientations with the offset Sbay in the z direction of the shared 
endpoint of the axial centerlines from the line subtended by their other endpoints. The bay twist 
Wbay, in turn, quantifies the relative error of the lateral orientations via the out-of-flatness of the 
rectangle subtended by the two lateral centerlines. This out-of-flatness, defined as shown in Fig. 4 
(b), reveals how much steeper one panel is than the other in the lateral direction. 

Note that both orientation errors are quantified via length, as opposed to angular, quantities. This is 
critical for the convenience of scaling: as to be seen below, errors so defined turn out to not depend 
on truss bay dimensions if some simple guidelines are followed. Despite their definition via length 
quantities, however, these measures are mathematically equivalent to any angular measure one 
may prefer in the sense that any angular orientation error between the panels can be calculated 
from sbay and WbaJ, (in the context of the truss geometry). 

The third error, the panel twist wWpan, captures panel out-of-flatness via how much one panel corner 
is off in the z direction from the plane subtended by the other three, Fig. 4 (c). This error shows 
how much a flexible antenna panel, firmly attached to truss joints at all comers, would twist - or, 
equivalently, what the corner offset (surface “step”) between adjacent rigid panel surfaces would 
be if the latter were attached to the truss via three-point suspension. While the sign of wpan does, 
its magnitude does not depend on which of the four corners is considered. 

MONTE CARLO STUDY 

To illuminate the statistical characteristics of the above error measures, a Monte Carlo study de- 
signed for the general applicability and the scalability of the results has been performed. 

An alternative would have been a probabilistic study either on purely theoretical grounds, or with 
some numerical assistance. Theoretical routes 3, dominant before low-cost electronic computing, 
are limited by the assumptions they invoke to enable the problem’s solution. Numerical work in di- 
rect support of probability theory, also characteristic to early statistical engineering 4, still requires 
careful mathematical manipulation for each statistical result (error measure) examined. Moreover, 
both of these options limit the statistical model of the error sources, permitting the change of 
their probabilistic distributions and key parameters only at the cost of an overhaul of the entire 
procedure. Its computational and mathematical robustness, algorithmic simplicity, and universal 
applicability to all probabilistic conditions and contexts rendered the Monte Carlo method ideal 
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for the present work. 

Modeling assumptions 
For the general applicability and scalability of results, the truss design and member length error 
distributions modeled are the simplest possible. The design, shown in Fig. 5 (a), is characterized 
by equal longeron and batten lengths, equal member cross section stiffnesses in all members, and 
left-right symmetry. (A corollary of this symmetry is the redundancy of diagonals on the lower 
face, where the antenna is located.) 

Member length irregularities in real hardware would be associated with a number of systematic 
and random error sources including 

0 imperfect member length control during fabrication, 
0 joint inaccuracies, 
0 cross section imperfections and strut out-of-straightness, 
0 material non-uniformities (e.g., variations in the thermal expansion coefficient), 
0 and random aspects of deployment and space rigidization - 

some of which influence member length only under certain environmental conditions - the latter 
not fully deterministic either. The combined impact of these influences on member length is likely 
to result in distribution similar to the normal (Gaussian) curve, shown without systematic error by 
the first inset in Fig. 5 (b). Actually, as outstanding errors are eliminated by quality control during 
fabrication, the model shown in the second inset in the same figure - standard distribution with 
the extreme values eliminated - would be more realistic. 

For simplicity and conservativeness, however, the distribution is modeled as symmetric and uni- 
form, cf. Fig. 5 (b). (Note that, if fabrication quality control is sufficiently stringent with respect to 
the error scatter controlled, then this approximation becomes increasingly realistic and its conser- 
vative edge diminishes.) 

The irregularities are modeled as length, as opposed to strain errors - which renders them abso- 
lute, rather than length-proportional. Such errors are typically due to joint and assembly imperfec- 
tions, while length-proportionality is characteristic of most other error sources. For the modeled 
truss configuration, however, where all longerons and battens are of the same length, the difference 
between the two options is not dramatic. Absolute errors are preferred in the present work because 
of the scaling convenience they offer - namely, they render the rms surface error and the other, 
local, error measures independent of the hay/strut dimensions, as discussed below. 

Scaling principle 
The conditions of (a) uniform cross section stiffnesses, (b) one given truss architecture with a 
constrained bay aspect ratio (Ibay = a), and (c) an identically uniform and symmetric absolute 
length error distribution for all members, concurrently enable a convenient scaling of structural 
responses, including error statistics. To introduce the principles of this procedure, we begin with 
relating two trusses with certain rules of proportionality between, and then apply the results to 
statistical analysis. 

Within the framework of the above conditions for structural configuration and error definition, 
take two trusses of the same number of bays and refer to one as the “reference,” the other as the 
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“companion” truss. Let the proportionality between the two geometries, guaranteed by the equality 
of bay numbers, be defined with the coefficient Ad as indicated in Fig. 6 so that a generic dimension 
d in the reference design scales with X i 1  to the corresponding companion dimension d,: 

d, = A n ’ d  

Further, subject the two trusses to sets of kinematic loads (member length errors) proportional with 
coefficient A;’ such that for corresponding length errors e and e, 

as illustrated in Fig. 6. Note that, according to scaling conventions, a A i  > 1 scaling coefficient 
corresponds to scaling down to magnitudes smaller than the original. 

A scrutiny of various possible truss responses similar to what led to the formulation of the constant 
thickness scaling laws 5, reveals scaling laws between the two trusses, some of which are listed 
in Table 1 without detailing their derivation. To better illuminate the contents of the table, consider 
that 

0 The “immaterial” nature of cross section stiffnesses means that these can be set independently 
and arbitrarily in the two trusses, without affecting the scaling laws (the rest of the table). 

0 Stresses are “underdetermined” in that they are not fully defined by the available information. 
They also depend on cross section stiffness. 

0 Various parameters of length units - displacements, the rms error, and the local antenna errors 
defined above - do not depend on Ad. This independence from how the overall geometry is 
scaled is a remarkable corollary of defining strut length imperfections as absolute, as opposed 
to length-proportional (strain) errors. 

The significance of these scaling laws for individual responses to statistical analysis is straightfor- 
ward. Namely, as the results of each analysis in a Monte Carlo study (for an appropriately designed 
truss) can be scaled to any given similar truss with different dimensions and error length magni- 
tudes, the statistical parameters scale accordingly (because all standard statistical parameters scale 
with the data pool). 

In other words, each statistical result scales according to the law in Table 1 spelled out for the 
response to which it  relates. Further, as in the present work each error measure of statistical interest 
has been defined with length units, the associated statistics depend on the strut length errors only, 
and are independent of the truss size. 

Software toolkit 
All analyses and statistical processing for the present project have been performed with software 
newly written for this very specific purpose. The integrated package included a linear FEA pro- 
gram, a truss pre-processor module, and a statistical analysis driver. All program units were written 
in the C language and run on Linux. This approach ensured very high computational efficiency, 
necessary for the massive amounts of data produced, as well as direct control over computational 
accuracy and statistical details, Graphical postprocessing (the visualization of the results, including 
generating the images of deformed trusses) was assisted by Per1 scripts and relied on the gnuplot 
plotting utility. 
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The software was designed, written, and tested with a somewhat modular approach to facilitate its 
future application to models and problems different from the present. Therefore, it can be modified 
with relative ease to model statistical error sources and/or truss architectures and properties other 
than those examined here. One possible future application is the support of the final/detailed design 
of specific long strip antenna support trusses. 

ANALYSIS, RESULTS, AND DISCUSSION 

In most cases, a few hundred analyses are sufficient in a Monte Carlo study to assess mean values 
- of errors or other parameters alike. The present study, however, aims not at simply gauging the 
direct average of selected responses, but also to guide future design with reliable data and to give 
confidence to the specification of component tolerances in light of global error requirements and 
failure probabilities. This requires a rich statistical pool, set for the present work to a total of 
35,000 (thirty-five thousand) randomly perturbed truss models for the simulation of each of the 
considered two electronic antenna error correction schemes: 

0 No error compensation. The rms surface error is simply evaluated with respect to a flat antenna 

0 Quadratic error compensation, simulated by evaluating E~~~~ with respect to a reference surface 
reference surface. 

parabolic in the truss axial direction. 

However, as i t  will be seen, even this data pool should be improved to better support some of the 
observations made. 

(Actually, the size of the analysis pool was set to 35,000 not by probabilistic considerations but 
simply by software and hardware limitations. Within the framework of the data management 
and computational approach adopted, the computer hardware and operating system permitted no 
further increase of the data set. Methods to overcome this limitation should be explored if further 
or more detailed information will be required.) 

The models’ physical properties, immaterial in the context of the scaling laws outlined above, were 

0 longeron and batten lengths IlOllg = bbat =I in (making the truss length L=100 m, for 100 bays), 
0 material Young’s modulus E=210 G P a ~ 3 0  million psi, and 
0 member cross section areas A=6 nzm2=0.UU93 in2. 

The maximum magnitude of length errors, limiting the random length errors in the positive and 
negative directions, was A I,,, = m = 0.1 mm M 4 mds in all struts. While this error 
corresponds to t = lop4  and E = 0.707 x strains in the longerondbattens and in the diagonals, 
respectively - values conservatively realistic for space thermal conditions - the value of A l,,, 
will be rendered immaterial by using it  as the basis of normalization for all responses of interest 
(cf. the scaling laws described above). 

Illustration via truss examples 
The first twelve of the 35,000 truss models generated by random strut length errors (as discussed 
above) are shown in Fig. 7 via a side view with the deformations increased hundred-fold. Also 
depicted is for each model the ideal (reference) antenna surface from which the surface errors 
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are measured for the rms error (right side). The trusses are oriented for the surfaces to appear 
horizontal. However, the linear surface appearance is simply due to the lack of graphic detail - in 
reality, the surfaces are generally also (slightly) tilted laterally to minimize E,,,. 

The geometric simulation of quadratic error correction for the trusses of Fig. 7 is illustrated in 
Figs. 8 where the reference surfaces are parabolic in 2 .  The added curvature enables these surface 
to much better approach the crooked truss shapes and thereby much better lower antenna surface 
offsets and E,,, to the values shown on the right. (As these surfaces are nearer to the truss shapes 
as the flat references in Fig. 7, their visibility is enhanced by indicating the truss shape with the 
battens only, without diagonals and longerons.) The parabolic reference surface accomplishes 
geometrically exactly what second order electronic error correction does via signal processing: the 
removal of the parabolic terms from the global error pattern. The higher order errors to remain 
after this removal are the antenna’s offset from the parabolic reference, shown in Fig. 9 via the 
distortion of the truss and reference shapes of Fig. 8 to render the latter appear flat. This effective 
residual error is dramatically lower than the uncorrected out-of-flatness, Fig. 7. 

Rms error probabilities 
As discussed above, rms surface errors have been assessed for each of the 35,000 truss models for 
all possible subtrusses up to the entire truss length, and subtrusses of identical lengths were placed 
in data sets to be treated independent of one another. By revealing crms distributions for various 
numbers of truss bays, this approach provides insight into how local and global errors relate in a 
long truss - or, equivalently, how truss length influences accuracy. 

This relationship is shown via failure probability plots in Fig. 10. In particular, plotted are for each 
truss length the (normalized) error values that divide the data pools into specific fractions, indicated 
by the percentage values associated with each plot. For example, the threshold errors plotted as 
the “99.9%” curve separate the lower 99.9% of the specimen pool (with lower m s  surface errors) 
from the top tenth of a percent (with greater errors). Such plots effectively show what error values 
correspond to certain likelihoods of success. The plots in Fig. 10 thus reveal what error limits are 
95,99, and 99.9% likely to be achieved by trusses of various lengths, and how accurate the average 
trusses will be. 

Apparently, the average expectable E ~ , ~  error is always below twenty times the A l,,, maximum 
length perturbation magnitude for individual members, and even the E,,, associated with a 99.9% 
compliance certainty is less than sixty times the Alma,. As expected, the worst case scenario 
is the longest truss (100 bays) with no error compensation. Performance greatly improves for 
shorter trusses (equivalently, shorter truss segments). The benefits of error correction can be seen 
by comparing the uncorrected results, Fig. 10 (a), with the corrected ones, Fig. 10 (b). Quadratic 
correction generally reduces effective errors with more than 60%. However, the effectiveness of 
compensation gradually diminishes for shorter trusses, especially under 20 bays. 

Note that there is an “elbow region” in the plots both in the uncorrected and the corrected cases, 
roughly between 3-7 and 8-11 numbers of bays, respectively. The steeper plot regions to the 
right from these elbows are dominated by the primarily “bending” effects of the longeron length 
imperfections, while the “shear” effects by the errors in the other members dominate the left. 

Recall that each possible subtruss, overlapping or not, is extracted for statistical processing from 
the global trusses analyzed. Consequently, the number of subtrusses increases with the decrease of 

13 



the subtruss length: the statistical data pool is increasingly richer toward the left sides in Figs. 10 
(a) and (b). On the right ends, where the only “subtruss” is the entire truss itself, the data population 
is 35,000. The 99.9% probability curves thereat separate the top 35 specimens from this pool - 
a significant, albeit perhaps statistically still weak population. However, on the other extreme 
(truss lengths of 2 bays) the data population is 3,465,000, a nearly hundred-fold increase. The 
difference in statistical quality between the two ends of the spectrum is apparent on some details 
of the probability density functions for E,,, discussed next. 

Rms error probability densities 
How the surface errors are distributed within each subtruss data set is revealed by the standard 
probability density functions, shown for trusses 100, 70, 40, and 10 bays long in Figs. 11 and 12. 
These plots reveal the proportional likelihood of a random truss to have an error in the vicinity of 
the abscissa values, and were herein generated numerically by subdividing the sorted data sets into 
like-sized groups and then assessing the surface error average in each group. This somewhat non- 
standard approach to the calculation is computationally convenient but provides data resolution 
locally proportional to the value of the density plot. The associated “jitter” in the plots in Figs. 11 
and 12 near their maxima is a result of this locally high data resolution. The statistical quality 
of the data populations (the numbers of specimens) is well revealed by the intensity of this local 
irregularity: the more populous data sets for shorter trusses are clearly smoother near their maxima 
than the others. (This trend may not be apparent on the plots from the least populous 100-bay long 
truss set because here the phenomenon is reduced with numerical damping, so disturbing was the 
irregularity without special measures.) 

The probability density plots can be seen as “vertical” slices parallel to the ordinate axis across 
the failure probability plots in Fig. 10. Accordingly, the plot values given there can be identified 
on the probability density curves and are done so in Figs. 11 and 12 by small flag-like symbols 
indicating the average, as well as the 95, 99, and 99.9% threshold errors with linen codes similar 
to those used in Fig. 10. 

The local errors 
The evaluations of the bay sag, bay twist, and panel twist are statistically and computationally 
simple in comparison to the Rms error because these measures have been defined strictly in the 
local context, see above. Their probability density plots, Fig. 13, are nearly Gaussian with no 
systematic error (with a zero mean). Their statistical characterization, therefore, can be easily 
summarized as in Table 2 and requires no explanation. 

As alluded to above, the numbers in Table 2 along with the mathematics of the Gaussian distri- 
bution enable the derivation of any possibly relevant panel deformation or alignment error. The 
actual derivation will depend on the parameters of interest and it  may require some considerations 
of probability theory and basic geometric transformations. However, no statistical evaluation will 
have to be repeated or redone for this work. 

APPLICATION EXAMPLES 

The non-dimensional presentation and the straightforward scaling laws render the application of 
the Monte Carlo results simple, as illustrated below via three examples. 
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Assessing figure error from member length imperfections - truss of 80 bays 
Consider a truss of 

0 An architecture compatible with the assumptions of the present work (square bay aspect ratios 

0 A total length of L=300 nz. 
0 Eighty bays n=80. 

lbay =a, a topology as shown in Fig. 5 (a), and uniform member cross section stiffnesses. 

Therefore, the bay length and, consequently, the truss cross section sides, are 

Let the truss be subjected to uniformly random member length imperfections A 1 which, for all 
members, are limited according to 

-Alms < A l  < Al,, = 0.5 mm (29) 

Such errors may arise from a combination of fabrication imperfections, nonuniform mechanical 
(thermal) properties, assembly (joint) errors, and environmental effects (e.g., shading). 

According to Fig. 10 (a), the normalized error thresholds (&&A 1") achievable by an 80 bays 
long truss are approximately 12, 33, and 42 for average, 99%, and 99.9% certainty. Therefore, an 
antenna attached to the example truss would most likely have a ~,,,,,~=12 xO.5=6.O mm overall 
surface error, but i t  will achieve crms,99%=33 x O.5=16.5 mm accuracy with 99% likelihood, and 
E,,,,~~ ,%=42 x O.5=21.0 mm accuracy with 99.9% likelihood. 

Quadratic error compensation will improve these numbers to E ,  ms,,vg=5. 1 x O.5=2.5 mm, 
=12x0.5=6.0 mn?, and E , . ~ ~ ~ , ~ ~  9~=16x0.5=8.0 mnz, based on Fig. 10 (b). While this performance 
may be acceptable for an L-band radar application, it should be further improved with additional 
active (geometric or electronic) correction to satisfy X-band requirements. An immediate question 
is how far cubic correction - the next step beyond the herein discussed quadratic control - would 
go towards meeting X-band needs. This question, beyond the scope of the present work, is yet to 
be answered. 

Note that the above example calculations concern figure errors over the entire antenna surface 
(length). Antenna subsection surface accuracy would be obtained from the same plots, sampled at 
the locations corresponding to the truss subsection length (number of bays). 

Assessing figure error from member length imperfections - truss of 40 bays 
Consider a truss of the same architecture (bay topology and aspect ratios), same total length L=300 
m, and same absolute member length errors A I,,, = 0.5 nzm as in the previous example, but 
consisting of forty, as opposed to eighty, bays: n=40. 

The bay length and the truss cross section sides thus are 

lbay = a = L / n  = 7.50m (30) 

Note that, in comparison to the previous example, these struts are twice as long yet have the 
same absolute length errors. Member length accuracy for this truss is, therefore, relatively better 
controlled than for the SO-bays example. 
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To assess the uncorrected global errors, take Fig. 10 (a). From the plots one obtains that the 
normalized error thresholds (&,,,/A ln,a) achievable by a sequence of 40 bays are approximately 
4.3, 12, and 15 for average, 99%, and 99.9% certainty. Consequently, an antenna attached to 
this example truss would most likely have a ~,,,,,,=4.3x0.5=2.2 mm overall surface error, but it 
will achieve ~,.,,,~~%=12xU..5=6.0 nzm accuracy with 99% likelihood, and ~ ~ , , , g g . g n l , = 1 5 ~ 0 . 5 = 7 . 5  

mm accuracy with 99.9% likelihood. Quadratic error compensation will improve these numbers 
to ~,,,,,~=2 x0.5=I.U mnz, ~~~, , , , ,%=4.3~0.5=2.2 mm, and ~,,,,~9.,%=5.6~0.5=2.8 mnz, based on 
Fig. 10 (b). 

This performance is dramatically closer to X-band requirements than the 80-bays example. Note, 
however, that the observed improvement cannot be linearly related to the number of bays or the 
bay/strut dimensions. Performance is nonlinearly governed by these parameters. 

Design for specified wavelength and accuracy 
Consider an example application at an RF frequency off=12 GHz, with a permissible mzs figure 
error of one fifteenth the associated wavelength: 

E,.,,, = X/15 w 2 mm (31) 

Further, for the truss compatible with our current structural assumptions (square bays lbay = a, 
topology as in Fig. 5 (a), and uniform cross section stiffnesses) assume that fabrication technology 
and environmental conditions limit the absolute strut length errors A 1 to 

-Alma < A1 < AI,, = 0.5 mm (32) 

regardless of strut length. The design to most economically serve the accuracy requirement is 
sought. 

The member length and accuracy specifications Eqs. 3 1 and 32 define the normalized accuracy as 

which, in turn, determines a distinct coordinate value on the normalized precision likelihood plots 
in Fig. 10. The associated horizontal lines, marked in Fig. 14 (a) and (b) for the uncorrected and 
corrected cases, are the graphical representation of the accuracy specification considered. The 
intersection points between these horizontal lines and the likelihood curves then exactly define 
how many truss bays are needed to achieve the desired accuracy with particular certainties. If no 
error compensation is used, then the number of truss bays must be no more than 15 for the desired 
E,.,~ = X/15 = 2 mm accuracy to be achieved with a 99.9% or greater certainty - the normalized 
accuracy line intersects the 99.9% certainty curve at n z 1 5  in Fig. 14 (a). Similarly, Fig. 14 (b) 
reveals that the number of truss bays can be increased to about nz32  for the same error certainty 
if quadratic compensation is used. (For a given length for the entire truss, increasing the number 
of bays means reciprocally decreasing the truss depth because the bay aspect ratio is constrained. 
This reciprocal scaling does not affect the total member lengths.) 

Finally, the design condition illustrated in Fig. 14 is also shown in Fig. 15 in an alternative manner, 
where the surface error is not normalized with the maximum member length error. The 
non-normalized certainty curves in this figure are applicable only to the present example problem 
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where A I,, = 0.5 mm, as opposed to the normalized plots in the preceding figures which are 
generally applicable to all member length error magnitudes. 

CONCLUDING REMARKS 

A simple graphical procedure has been established to guide the specification of truss member error 
tolerances or, alternatively, to aid the prediction of performance uncertainties for long antenna 
strips. This procedure is based on the results of a Monte Carlo analysis of 35,000 truss models, 
performed with dedicated FEA and statistical software. The applicability of the results, including 
the design plots, to various truss dimensions, strut length error magnitudes, and to trusses with 
different numbers of bays, is ensured by a non-dimensionalized approach and a set of carefully 
crafted scaling laws. These scaling laws are actually two sets of laws merged as they address 
the scaling of the structural dimensions and that of the member length errors concurrently, yet 
mathematically independent of one other. One striking consequence of these laws and of the 
choice of parameter definitions on which they are based is the revelation that global antenna surface 
errors (such as the rms error E , . ~ ~ )  depend only on the number of truss bays, and not on the truss 
dimensions, provided that the individual strut length errors are otherwise not changed. 

The quantitative analysis has revealed that the average expectable E , , ~  error is below twenty times 
the A I,,, maximum strut length error magnitude even in the worst considered case when the truss 
is 100 bays long and the figure errors are not electronically compensated. In the same conditions, 
the error limit associated with 99.9% design certainty is still less than sixty times A I,,,. These 
numbers greatly improve for trusses of fewer bays and as a result of quadratic error correction 
which generally reduces effective errors with more than 60%. 

The quadratic error correction has been numerically modeled by removing polynomial terms up to 
the second order of the deformed truss shape along the truss length. 

The results of the study have been summarized via certainty plots which reveal figure error proba- 
bilities as well as their dependence on strut error magnitudes, the number of truss bays, and error 
compensation. These plots are universally applicable to all truss dimensions, member stiffnesses, 
and most error sources (fabrication, thermal, or other) and are a straightforward tool for both pre- 
liminary design and error assessment. The report has concluded by illustrating the application 
of these plots to two engineering examples: one, where the likely errors and the effect of error 
compensation of a certain design were sought, the other, where the architecture to best satisfy a 
specified error tolerance was to be identified. 

It would be highly desirable to complement these compelling results with: 

0 Further error compensation schemes. 
Only one, the quadratic, error compensation scheme has been modeled. As a minimum, the 
effects of third order (cubic) compensation should also be assessed. 

Various characteristics of the statistical results are likely to be explainable with theoretical 
considerations, possibly providing practically significant insight beyond what has already been 
presented. Theoretical work should complement the Monte Carlo study. 

0 Theoretical analysis. 

0 Alternative length error distributions. 
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The effects of systematic errors and member length perturbations statistically more complex 
than the uniform distribution should be addressed. At the minimum, the truncated normal 
distribution, the best approximation available for generic fabrication and environmental error 
sources, should be included in the study. 

Preliminary considerations have shown that simple design relations similar to the scaling laws 
herein presented may be derivable to support the extrapolation of the results to truss beams of 
different bay aspect ratios (where the longeron and batten lengths are not equal). This issue 
deserves careful attention because i t  may greatly increase the scope of the design procedure to 
more general truss geometries, and i t  may do so without greatly complicating the procedure 
already derived. 

While the number of trusses (35,000) investigated has been sufficient in the contexts of most 
statistical needs, there are some exceptions with acute significance for the present design prob- 
lem. In particular, the assessment of high probability certainties (299.9%) would clearly re- 
quire more data. The computational and database limitations that forbade the present study to 
use greater data pools should be overcome. 

0 Alternative bay aspect ratios. 

0 Data pools sufficiently large for all analytical needs. 
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Description Scaled quantity xs as 
function of unscaled z 

The definition of scaling: 

global dimensions and lengths ds = X d l d  
strut length errors e, = X;le 
member cross section stiffness [immaterial] 

Structural responses: 

strain Es = Ad /!,'E 

stress [underdetermined] 
all angles of rotation a, = XdX;la. 

truss beam curvature K s  = X;X,lK 
displacements us = X,lu 
antenna ~ n z s  surface error Erms,s = X e l ~ r m s  

as defined for this work E ,  = A;% 
all local antenna surface errors 

Table 1 : Scaling the global truss geometry and the member length errors. 

normalized 
error 

data probabilistic mean standard 
population distribution deviation 

bay sag Sbay / A I,, 3,465,000 Gaussian 0.0 .7669 

panel twist wpan / A I,, 3,500,000 Gaussian 0.0 1.827 
bay twist wbay / I,,, 3,465,000 Gaussian 0.0 1.201 

Table 2: The statistical characterization of normalized local errors. 
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I .  I 

,+' lensor-'-' 
phasedarray 1 a I 

(a> Structural schematic and key dimensions. 

Fig. 1: Schematics of the structure and of some error types. 

rms error for a flat 
surface antenna: 

with A = aperture (= surface area) 
z = antenna surfce position 
zo = refr. surface 

for a parabolic camber 
in an antenna strip: 

r.. w 
sag = 6 

C x  E m s =  3k - - 0.1496 
a0 + a,x + a,,y a0 + a,x + a,x2 + ayy  

(a> Antenna strip rnzs error with example. (b) Geometric assumptions for rms calculation. 

Fig. 2: Surface error definition and the underlying assumptions. 

full truss of n bays & length L 
~ I I I I I I I I I I I I I I I I I I l l l l l l l l l l l l l l l l l l l l l l l l l l l l , l l  - -  

kinematic load 1: 
redundant 

I strut's elongation 

v>, 6 lo --++.Az the kinematic same elongation load 2: 

near the truss end 

substructures of m bays & lengths 1 = m x lbay 
Y2 

(a> Possible subtrusses of m bays each. (b) Local response may depend on location. 

Fig. 3: Subtrusses. 
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Sbay = 

01 

(a) Bay sag sbay:  longitudinal difference be- 
tween panel orientations. 

A', B,  ana C 
(b) Bay twist wbay: lateral difference between 

panel orientations. 

(c) Panel twist: panel out-of-flatness wpan. 

Fig. 4: Local errors, not normalized. 

identical 
cross section 
stiffness 
length error 
distribution 

in all members 
on lowG face 

truncated 

values outside range 
[xmin, xmax/ are discarded 

uniform 
distribution 

symmetric, with 
one parameter 

Xmin = -Xmax 

(a) Truss architecture, geometric proportions, (b) Probability density functions for absolute 
and member stiffnesses. member length errors. 

Fig. 5:  Modeling assumptions. 
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Fig. 6: The scaling of dimensions d and length errors e with Ad and A,. 

erms deformations scaled 100 : 1 __ antenna refr. surface truss 
It r. truss bays [“I 
1 
2 
3 
4 

5 
6 
7 
8 
9 

IO 
I 1  
I 2  

2.45 
2.60 
1.70 
1.11 
4.17 
2.57 
0.99 
3.53 
1.66 

2.76 
0.71 
2. I 8  

Fig. 7: Some of 35,000 trusses of n=100 bays and batten-, longeron-, and bay lengths of I m with 
random strut length errors A 1 E [-0.1, 0.11 mm. Side view with no diagonals shown. 
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Fig. 8: Parabolic reference surfaces for the trusses in Fig. 7 to simulate quadratic error correction. 
Side view with longerons and diagonals not shown to avoid graphic congestion. 

truss erms nr. deformations scaled 100 : 1 ~ linearized antenna refr. - quadr. adjusted tr. geom 
I 
2 
3 
4 

5 
6 
7 

8 
9 

IO 
I1 
12 

0.78 
0.56 
0.65 
1.07 
0.61 
0.66 
0.98 
0.53 
0.55 

0.99 
0.68 
0.56 

Fig. 9: Offsets from the reference - geometric illustration of the error correction in Fig. 8 via 
distorting (in the z direction) the truss and reference geometries to linearize the latter. 
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E r m  /A l m m  

50 

30 certainty - 
99% certainty - - 
95% certainty - - - I O  

5 
3 

I 

.5 

.3 

. I  
2 3 5 I O  20 30 50 100 

(b) Quadratic error correction: parabolic refer- (a) Planar reference surface: no error correction. 
ence surface. 

Fig. 10: The likelihood of achieving certain threshold surface errors based on a Monte Carlo 
analysis of 35,000 standard trusses of 100 bays. 

probability density f() 
.6 
.5 
.4 
.3 
.2 
.I 
0 

quadratic error correction - 
no electronic error correction - - - - 

population cut-off at 

length: 70 bays 
data population: 1,085,000 

I- .. --m---lj, I J 1 -  1 1 I 4 
.1 I 

0 I 
0 5  10 15 20 25 30 35 40 45 50 55 60 

Erms /A 

Fig. 11: Probability density functions for some normalized rms surface errors. 
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probability density j ( )  
4 quack error correction - 

no error correction - - - - 
3 population cut-off at 

99.9% - 
2 99% L., 

9.5% Irr, 
themean UUL, 

1 

0 
0.0 0.5 1.0 1.5 2.0 2.5 

Fig, 12: Probability density of normalized rnzs errors - 10 bays, data pool of 3,185,000. 

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 

Fig. 13: Probability density functions for local errors, data pool of 3,465,000. 
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99% certainty - - 
95% certainty - - - 

. I 
.05 

99% certainty - - 
95% certainty - - - 
n the average - - - - -  10 

5 
3 

v . . . ,*:------- / I  

n 
I I  

I 12 GHz application with 
required global accuracy 

.5 E~~~~ = ?dl5 = 2 mm 
and strut length errors .3 

. I  

r 

;/ . I  

.05 I '  

2 3 5 10 20 30 50 100 2 3 5 10 20 30 50 100 
(a) No error correction. (b) Parabolic error correction. 

,...* 
/ I  

n 
I ,  
I I  

Fig. 14: Graphical representation of the accuracy requirement for a 12 GHz example application. 

(a) No error correction. (b) Parabolic error correction. 

Fig. 15: The accuracy requirement as in Fig. 14 without normalizing the m s  error crms. 
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