
Modified Polar Format Algorithm for Processing 
Spacebome S A R  Data 

. Curtis W. Chen 
Jet Propulsion Laboratory, California Institute of Technology 

4800 Oak Grove Drive 
Pasadena, CA 91 109-8099 
curtis.chen@jpl.nasa.gov 

Abstract-This paper describes a modified polar format al- 
gorithm for S A R  image-formation processing. The algorithm 
focuses raw data assuming a spherical reference surface (ground 
surface), and, unlike standard polar format algorithms, it as- 
sumes spherical rather than planar signal wavefronts. The algo- 
rithm, or some variant of it based on the same geometry, might 
be suitable for spaceborne sensors for which there is significant 
curvature of the plattiorm Right track and/or curvature of the 
Earth surface. The algorithm might also provide better phase 
preservation properties than standard polar format algorithms 
for applications such as SAR interferometry. 

I. INTRODUCTION 
We present a modified polar format algorithm for processing 

spacebome synthetic aperture radar (SAR) data. The derivation 
of this algorithm is based upon the geometry of a spherical 
reference surface (ie., a spherical Earth) and a platform 
flight trajectory that can include significant radial curvature, 
corresponding to the first-order curvature of an orbiting space- 
craft. The algorithm may therefore be more accurate than 
the traditional polar format algorithm for situations in which 
the geometry of the sensor and the target scene are more 
appropriately described by a spherical model than a planar 
model. 

The traditional polar format algorithm is well known for 
processing spotlight-mode S A R  data [ 11, [2]. This algorithm 
involves the assumption that the spherical wavefronts of the 
radar pulses can be approximated by planar wavefronts around 
a central reference point in the imaged scene. The surface to 
which data are focused is also assumed to be planar when 
compensating for platform motion. While these approxima- 
tions are often quite good for small target scenes imaged by 
airborne platforms, for larger scenes, the approximations might 
lead to errors in parts of the scene far away from the central 
reference point. These errors may be of particular concem for 
applications such as interferometry, in which the image phase 
as well as the image magnitude must be faithfully reproduced 
during image-formation processing. 

Like the traditional polar-format algorithm, the modified 
algorithm we present here is based upon the Projection Slice 
Theorem [3]. The planar projections assumed by the modified 
algorithm arise not from an assumption of the far-field pla- 
narity of the signal wavefronts, however, but from the planarity 
of the intersections of the spherical wavefronts with a spherical 
reference surface. The modified algorithm thus begins with a 

space-domain resampling of the range-compressed pulse data, 
followed by transform-domain polar reformatting and inverse 
Fourier transformation. The resulting image is the projection 
of the reference-surface brightness distribution onto a plane. 

In this paper, we describe the principles and basic process- 
ing steps of the modified algorithm, then we present results of 
the application of the algorithm to real spacebome S A R  data 
from the NASA SIR-C instrument. 

11. ALGORITHM PRINCIPLES 
Define an Earth body-fixed ( i e . ,  rotating) Cartesian coor- 

dinate system (see Fig.1) such that the origin is at the Earth 
center and the positive z axis points towards the SAR location 
at a reference time t = 0. Define an image projection plane to 
be the plane containing both the z axis and the SAR velocity 
vector v' at t = 0. Let the positive z axis point in the direction 
of the component of v' perpendicular to the z axis at t = 0 
(the positive z axis points exactly in the direction of the SAR 
velocity vector at t = 0 if the orbit is circular). For some unit 
vector u', define the angles /? and y by 

(1) uz = cos /? sin y 

uy = sin/? ( 2 )  

u* = cospcosy (3) 
where uz, uy,  and u, are the z, y, and z components of C. 
In other words, is the angle of u' out of the 2-3 plane, and 
y is the angle of the projection of u' onto the z-z plane with 
respect to the z axis. Let T be the distance from the origin of 
a given point in 3-D space. 

We begin by examining the ideal case in which the SAR 
follows a circular orbit of radius a around a spherical, non- 
rotating Earth. That is, the SAR flight path is completely 
in the x-z  plane, and there is no Earth surface topography; 
assume that the S A R  look direction is into the +y half- 
space, corresponding to a left-looking sensor. We neglect any 
atmospheric or ionospheric effects, and we also assume that 
there is no S A R  motion behveen the time of pulse transmission 
and reception. 

For a given S A R  location, contours of constant range p 
form spheres centered at the S A R  location. The intersection 
of a constant-range sphere with the sphere of the Earth surface 
is a circle which lies in a plane orthogonal to the S A R  position 
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Fig. 1. Earth-centered, rotating (I, y, z)  and ( r ,  p, y) coordinate systems, 
defined with respect to the SAR position and velocity vectors at time t = 0. 

vector (see Fig. 2). Let T be the perpendicular distance from 
the origin to such a plane for a fixed SAR location and a fixed 
range p. From Fig. 3 and the (Cartesian) law of cosines, 

(4) 
a2 + Rg - p2 

2a 
T = R E C O S Q  = 

Note that the algorithm can be generalized to handle elliptical 
orbits by varying the orbital radius a for each pulse. 

For the ideal case, the algorithm begins with a 1-D space- 
domain resampling of the range-compressed complex data 
dos(p) from each pulse. The pulse data should not have 
been motion compensated to a central reference point as 
is typical in spotlight-mode polar-format S A R  processing. 
The resampling performed here maps slant range p to radial 
distance T according to Eq (4). If all targets are located on 
the reference sphere, this resampling is exact, as contours of 
constant range p coincide with contours of constant radial 
distance T .  Let the resampled pulse data be denoted d ls ( r ) .  

Suppose that for a given pulse, the SAR location-of which 
we assume perfect knowledge-is (r = a,P = 0,y = ys) 
where a is the orbit radius, assumed for now to be constant. 
The subscript ‘s’ denotes that the subscripted variable de- 
scribes a specific SAR position s along the flight path. All 
scatterers within a plane orthogonal to the S A R  position vector 
at some perpendicular distance T from the origin contribute to 
the value of d l ( r ) .  In other words, the value of d l ( r )  is the 
integral over a 2-D plane of the 3-D brightness distribution. 
The Projection-Slice Theorem [3] therefore implies that dl  ( r )  
contains only Fourier components of the brightness distribu- 

Fig. 2. The intersection of the spherical refercncc surfacc with a sphcrical 
contour of constant range from the SAR is a circle. With the origin at the 
Earth center, the circle is contained in a plane perpendicular to the position 
vector of the SAR. 

Fig. 3. Relationship of the radial distance T to the slant range p and the 
Earth-central angle a for the ideal case. Note that if a and RE were to scale 
in this figure, the spacecraft would be in a medium Earth orbit (MEO) with 
a period of approximately 12 hours. 

tion g(z, y, z )  along a line in 3-D Fourier space: 

g (z’, y’, z’) dy’dz’ exp ( --j27ru’z’) dz’ 1 
where 

G (u’, w’, w’) = 

x exp (-j27r (u’d + w‘y‘ + w’z’)) dz’dy’dz’. (6)  

While given here only for one direction in the arbitrary 
(x’, y’, z’) coordinate system, the theorem generalizes to all di- 
rections through the rotation property of the Fourier transform. 
In words, Eqs. (5) and (6) state that the 1-D Fourier transform 



of a 2-D projection integral of a distribution is a I-D line 
through the 3-D Fourier transform of the distribution along 
the same direction as the projection. This can be explained 
intuitively by noting that the projection integrals filter out all 
sinusoidal components whose wavefronts are not parallel to 
the planes of integration, as those components cycle equally 
through positive and negative values and hence result in zero 
upon integration. 

Using the Projection-Slice Theorem, we can therefore es- 
timate the original brightness distribution using tomographic 
techniques. Let fz, fV,  fz, and f r  be the frequency-domain 
(Fourier-transform) variables associated with the space-domain 
variables z, y, z ,  and T ,  with the forward Fourier transform 
defined through Eq. (6). Let y and p be defined for the 
frequency domain just as they are for the spatial domain. The 
1-D Fourier transform D l ( f r )  of d l ( r )  is thus a line sample 
of the 3-D Fourier transform G(fz, f y ,  fz )  of the desired 
3-D brightness distribution g(z,y,z), along the line in the 
frequency domain defined by ys, still assuming p = 0. That 
is, 

o l ( f r )  = G(fz = f r  sin?,, fy = 0,  fz = fr cosy,). (7) 

Because the SAR position vector does not leave the p = 0 
plane (by our assumption of the simple motion model used 
for this section), the frequency-domain data lie exclusively in 
the fz-fz plane. The collected data are therefore insensitive 
to spatial brightness variations in the y direction, and the 2-D 
inverse Fourier transform of the frequency data in the fz-fi 
plane gives the projection of the brightness data onto the x - z  
plane. We denote this projected data g(z, z). 

The modified polar format algorithm thus entails a 1-D 
Fourier transform over the variable T for each resampled 
pulse return, then a 2-D inverse Fourier transform over the 
frequency-domain variables fz and fz. This 2-D inverse 
transform requires a polar-to-Cartesian resampling of the 
frequency-domain data if Fast Fourier Transform (FFT) tech- 
niques are to be used. For efficiency, the 2-D interpolation step 
can be implemented as two I-D interpolations; furthermore, 
one of these 1-D interpolation steps can be incorporated into 
the p + T resampling. 

For the ideal case, the recovered projection is exact, as- 
suming that no errors are introduced during interpolation. 
Furthermore, because all scatterers are assumed to lie on 
the reference sphere, the recovered brightness data can be 
projected uniquely from the 5-2 plane back onto the reference 
sphere, or onto whatever output coordinate system is desired. 
(This assumes that the SAR antenna rejects all signals from 
the -y half space.) 

In the literature of traditional spotlight SAR and polar 
format algorithms [I], [2], the along-track resolution depends 
on the angular extent of the aperture as viewed from the target. 
This angle determines the width of the annular section of the 
signal energy’s region of support in the frequency domain. 
In our modified algorithm, however, the width of the region 
of support is equal to the angular extent of the aperture as 
viewed from the Earth center, as the origin of the coordinate 

system is not near the target. Bearing in mind that the effective 
wavelength is scaled when mapping p to T, though, the along- 
track resolution may still be derived in a self-consistent manner 
using a frequency-domain analysis. 

This section has so far assumed the simplified case of a 
perfectly spherical, nonrotating Earth. A more realistic case, 
of course, requires that we consider both Earth topography 
and the platform relative motion out of the f l  = 0 plane due 
to Earth rotation. These effects, if significant, will cause errors 
in the p -+ T resampling of the simplified description above 
and will therefore degrade the image focus. We will not discuss 
the details of compensating for these effects here, however. It 
suffices to note that motion-compensation techniques can, to 
first order, correct for small departures of the platform from 
the ,f3 = 0 plane. (Motion within the ,D = 0 plane, even if 
noncircular, can be compensated exactly with the algorithm 
by allowing a to vary for each pulse.) 

Note that for the ideal case, the continuous-time derivation 
above is independent of the along-track antenna pointing 
direction (or changes in it), so the basic geometry of the 
algorithm can be used for processing S A R  data acquired in 
either stripmap mode, spotlight mode, or a hybrid strimpmap- 
spotlight mode. The algorithm might also be well suited to 
the task of processing burst-mode (ScanSAR data). In real 
systems, the discrete nature of the data requires that sampling 
issues be addressed and that different acquisition modes be 
handled differently, however. These issues are below. 

111. SAMPLING 
The previous section has dealt mainly with the continuous- 

variable derivation of the modified polar-format algorithm. In 
this section, we address issues related to the discrete nature of 
SAR data. 

A.  Range Sampling 
After range compression, the first major processing step of 

the proposed algorithm is the p + T resampling of the pulse 
data. Assuming that the received data are sampled adequately 
in time, and hence equivalently sampled in slant range p, the 
spacing AT of the resampled data can be chosen so that the 
data are adequately sampled in T as well: 

Note that the near edge of the radar swath dictates AT because 
this is where samples in p will be most compressed in the 
p --f T resampling. 

Generally, the sampled pulse data will be offset from 
the origin and will have been downconverted to baseband 
from a high-frequency carrier fc. Let dos@) be the offset, 
downconverted signal, such that 

(9) 

where j = p-po and f p c  = fC(2/co),  with co being the speed 
of light. 

dos ( P I  = dos ( P )  e x p ( - P r f p c p )  
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Fig. 4 Point target spectra’ (a) as a funchon of the slant-range frequency 
f p ,  @) as a functlon of the ramal &stance frequency fr; (c) as a function of 
fr and aliased into the sampled bandwldth, gwen by  AT. 

The resampled signal as a function of r will also be offset 
from the origin and will likely also be downconverted from a 
carrier fTcs,  where, as above, the subscript s denotes that the 
carrier may vary with the pulse. The resampled signal is thus 
given by 

Jis(f) = dis(r) e x p ( - j 2 n f r c s r )  - 
= dos(P) exp( j2n( fpcp  - f r c s r ) ) .  (10) 

(1 1) 

This expression implies that in implementation, the offsets 
must be accounted for in determining the data sample locations 
(as in the w-k algorithm [4]), and a phase term must be applied 
after resampling to reinsert the carrier fpc  and to remove the 
carrier fTcs. It might be natural to choose the fr canier from 

where is the midswath slant range. To first order (k, if 
P s  = O),  

(13) 

so frcs normally has the opppsite sign as fpc. Moreover, 
because the resampling is not uniform across the swath, the 
center of a target’s spectrum will change after resampling (see 
Fig. 4). That is, depending upon the range of point target, the 
degree to which the spectrum of the target will be stretched 
and its carrier frequency scaled will vary. 

As the center of the chirp spectrum varies, it is possible that 
the spectrum will wrap within the sampled bandwidth. This 
can be avoided by oversampling the data in r or by dividing 
the range swath into multiple subswaths with different carriers 
f,.,,,. A chirp z-transform approach [5]  may also be viable (this 
will be the subject of future work). If the subswath approach 
is chosen, the subswaths can be made relatively short, as 

fi c 

Fig. 5. Fourier transfonn.of radially resampled data. When the pulscs 
are resampled as described in the text, their I-D Fourier transforms form 
a ‘keystone’ as shown when laid out at thcir rcspective angles 71~. The 
frequency samples of each resampled pulse transform are evenly spaced in 
fi and centered on tic. 

the resampling operation is not performed until after range 
compression. In fact, it may be desirable to partition the swath 
into multiple subswaths in order to use short FFTs during the 
subsequent parts of the algorithm. Spectral wrapping is most 
problematic as the chirp fractional bandwidth decreases and 
the fractional swath width (i.e., the ratio of the swath width 
to the midswath slant range) increases. 

In implementation, the 2-D frequency-domain polar-to- 
Cartesian resampling operation can be performed as two sets 
of I-D interpolations, with the first interpolation carried out on 
the spectrum of each pulse. For efficiency, this interpolation 
step can be carried out in the space domain and incorporated 
into the algorithm’s p + T resampling (see Fig. 5 ) .  In order 
to do so, the sample spacing AT, for a given pulse should be 
chosen through 

Ar, = Az cos(yls) (14) 

where AZ is a selected output pixel spacing in the z direction; 
Az should be small enough that Eq. (8) is satisfied every- 
where. The carrier fro for each pulse used in Eq. (1 1) should 
be chosen through 

where fzc is a selected reference carrier. If all the echoes have 
the same number of points, the transforms of the discrete data 
will be sampled at the same positions in fi, as is desired in 
preparation for azimuth resampling. 

B. Azimuth Sampling 

An analysis of data sampling in the along-track direction 
depends upon the mode of S A R  operation. Regardless of the 
chosen processing algorithm, however, the radar instrument 
must operate at a pulse repetition frequency (PRF) that is 
high enough to sample the instantaneous received Doppler 
spectrum. We now derive this condition from the frequency- 
domain framework of the proposed algorithm. 

Assuming that y does not vary much over the a p e m e  and 
that there is little squint, it is evident from Fig. 5 that the 



frequency-domain sample spacing in the fx direction is given 
by 

Afx = - fzAy.  (16) 

A sample spacing A f x  in the frequency domain gives a spatial 
extent xeXt in the space domain given by 

Because fi N f T ,  substitution from Eq. (12) gives 

and substitution from Eq. (1 3) gives 

The slant range frequency fp is equal to the inverse of half 
the radar wavelength X/2, and aAy = Ax, so 

The width of the antenna footprint, given by p (AIL) where 
L is the antenna length, should be less than xeXt in order to 
avoid ambiguities: 

or r 
l.J 

AX 5 -. 
2 

This is the well-known result that the distance that the radar 
moves between pulses must be less than half the antenna 
length if the instantaneous Doppler spectrum is to be ad- 
equately sampled. The centroid of the Doppler spectrum 
depends on the antenna pointing direction, however. 

In terms of our frequency-domain analysis, the spectra of 
point scatterers are multiplied by linear phase terms in the fx 
direction depending on their x coordinates with respect to the 
reference coordinate frame. The derivation above shows that 
the fx sampling rate is sufficient to separate the instantaneous 
responses of scatterers within a width xext, but if the scatterers 
are all displaced from the z axis by an amount z,, their 
spectra will be mixed with a complex carrier. The manner with 
which this carrier is dealt depends on the S A R  mode. We now 
examine the specific case of spotlight-mode acquisition. 

Ideally in spotlight SAR, the same limited region ('spot') 
on the ground is illuminated for the duration of the acquisition 
(ie., over the entire synthetic aperture). The spot may be offset 
from from the z axis by an amount x, due to antenna squint, 
but we assume that x, is known from information about the 
antenna pointing or can be determined through an examination 
of the data. 

In this mode of operation, the frequency domain data are 
sjmply the 2-D Fourier transform of the desired brightness 
distribution, mixed with a complex carrier exp(-j2nfxzc). 
This carrier may be removed with the multiplication of the 
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Fig. 6 .  
proposed algorithm. 

Block diagram summarizing the major processing steps of the 

conjugate complex exponential before azimuth resampling, the 
effect of which is to shift the space-domain coordinate system 
by an amount 5,. Inverse Fourier transformation then yields 
the desired brightness distribution for an extent xeXt about a 
scene center 5,. Fig. 6 shows a block diagram of the various 
processing steps required. 

IV. EXAMPLE DATA 
This section illustrates the results of applying the proposed 

algorithm to spotlight-mode SAR data from the NASA SIR-C 
radar flown on the Space Shuttle Endeavor. The data shown 
here were acquired of Sydney, Australia and surrounding 
regions on 30 September 1994 from an altitude of 223 km. 
During this datatake, the instrument acquired both C- and L- 
band data in both W and VH polarizations. The synthetic 
aperture lengths for both frequencies correspond to an angular 
extent of 1.5" when viewed from the ground, giving along- 
track resolutions of 1 .1  m and 4.6 m for the C- and L- 
band channels. The pulse bandwidth is 20 MHz for both 
frequencies, leading to slant and ground range resolutions of 
7.5 and 11 m. 

The images produced by the algorithm appear to be well fo- 
cused, although no comer reflectors or calibration targets were 
found in the data. The urban areas imaged during the datatake 
contain a large number of bright, point-like targets, but most of 
the targets examined were not sufficiently discrete (ie., point 
like) for evaluating the performance of the processor. That 
is, while many features appear point like at low resolution, 
closer inspection of the data reveals that these features are at 
least somewhat distributed in space. Thus, although the results 
are promising, the performance of the processor cannot be 
verified completely from this data set. Earlier application of 
the algorithm to simulated point-target data (not shown) gave 
excellent results, however. 

Except where noted, all images presented in this section 
are shown in the output coordinate system of the processor. 
This coordinate system maps the brightness distribution of 
the assumed spherical reference surface-nominally, the local 
Earth surface-nto the x-z plane. The processor nominally 
outputs the images such that slant-range increases from left to 
right, though the horizontal pixel spacing is still constant in z 
rather than in slant range p. 



Fig. 7. Portion of the L-band W image of Sydney Bay. The image is 
flipped such that range increases towards the left in order to more closely 
match natural ground coordinates. 

Fig. 7 shows a portion of the L-band VV image containing 
Sydney Bay. The image is arranged such that range increases 
towards the left in order to more closely match natural ground 
coordinates. North is towards the upper right. 

Fig. 8 shows an upsampled portion of a C-band W image 
from the datatake. The bright scatterer shown behaves almost 
like a point target, but it is only somewhat stronger than the 
surrounding area. Cuts through the response of this target are 
shown in Fig. 9; the -3 dB widths of the target-response 
main lobe in both dimensions are within a few per cent of 
the expected resolutions for the system. The first sidelobes in 
both cuts are at approximately -13 dB, as expected from the 
uniform spectral weighting used during processing. Unfortu- 
nately, because the target is not bright enough compared to its 
background, a more detailed evaluation of the target sidelobe 
structure is not possible. 

Note that while much of the original motivation of this 
work was to investigate the phase-preservation properties of 
the proposed algorithm, we have not performed any analysis 
on the phase behavior of the SIR-C results. The algorithm 
offered predictable phase behavior on simulated point-target 
data, however. 

V. CONCLUSIONS 

We have presented a modified polar-format algorithm for 
processing S A R  data. The algorithm may be well suited to 
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Fig. 8. 
W image of the datatake. 

Normalized, upsamplcd rcsponsc of a selectcd target from a C-band 
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Fig. 9. 
azimuth response. 

Cuts through the target response of Fig. 8: (a) range response; (b) 

cases in which there is significant curvature of the platform 
trajectory and/or the reference surface, and it may also offer 
better phase-preservation properties for applications such as 
SAR interferometry. 
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