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ABSTRACT 

The performance of a coherent free-space optical communications system is investigated. Bit 
Error Rate (BER) performance is analyzed, and laboratory equipment and experimental setup 
used to carry out these experiments at the Jet Propulsion Laboratory are described. The key 
components include two lasers operating at 1064 nm wavelength for use with coherent 
detection, a 16 element (4x4) focal plane detector array, and data acquisition and signal 
processing assembly needed to sample and collect the data and analyze the results. Combining 
of the signals out of phase from the focal plane is accomplished using the least-mean-square 
algorithm (LMS). 
Keywords: Coherent optical communications, Pulse Position Modulation, focal plane array. 

1. INTRODUCTION 

Optical space communications systems are becoming more practical as technology develops 
and offer significant advantages over radio frequency communications. The main advantages 
are the ability to concentrate power in extremely narrow beams, the potential increase in 
modulation bandwidth and the drastic reduction in component sizes. Optical wavelengths are 
very short, and correspond to very high carrier frequencies. Increasing the carrier frequency 
theoretically increases the available transmission bandwidth, and therefore the information 
capacity of the system. As a result, frequencies in the optical range may have potential 
bandwidths of approximately lo5 times that of a carrier in the RF range [ 11. 

Intensity modulation with direct detection is currently used for optical communications 
systems. Under ideal transmission and detection conditions, the probability of detecting n 
photons in a pulse train having an average of N ,  photons per pulse obeys the Poisson 

distribution [ 1,2] 

The probability of an erasure is defined as the detection of no photons during the pulse, and 

For example, an average of 21 detected photons per pulse would be needed to achieve an 
erasure probability of This limit is rarely reached since it assumes no dark or background 
counts whatsoever in the receiver. In the presence of background radiation, performance of 
direct detection receivers degrades significantly, as shown in [2].0ne way to overcome the 
effects of background radiation is to use coherent detection. With coherent detection, a beam of 
light (the local oscillator) mixes with the modulated wave at the photodetector as shown in Fig. 

given by PE = exp(-N,) (2) 

1 [31. 
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Figure 1. Combining of the transmitted signal and local oscillator beams 

If the LO is the same wavelength as the received optical signal, and in addition is in phase with 
the optical carrier, the detection is called homodyne detection. If the frequencies of the LO and 
received signal are different, then it is called heterodyne detection. The heterodyne detector 
converts phase changes in the optical carrier to phase changes in the optical intensity, which are 
reproduced in the detected current waveform. The following analysis shows how the heterodyne 
scheme permits detection of the incoming signal beam. If beams are spatially well aligned, there 
is optical interference on the photodetector surface, resulting in the intensity 

(3) 

This inherent squaring operation of the photodetector produces a detector current at the 
intermediate frequency which contains the signal modulation. If the carrier and local oscillator 
beams are aligned perpendicular to the photodetector surface, the expression of the field 
incident on the detector is: 

z = ( E ,  + E,)' 

E ( t )  = E, ( t ) cos [W, t+~ , ]+E, ( t ) co~[W, t+g) , ]  (4) 
The photodetector output current is proportional to the detector responsivity and the optical 
intensity. The responsivity is given by 

(5 )  
is the detector quantum efficiency, h is Planck's constant 

%=-- e ' q  [amps I watt]  
h v  

where e is the electronic charge, 

and V = 1 21t is the optical frequency. Therefore, 

i ( t )  = 3 [ E  ( t ) r  
2h v 

E 2 ( t )  = [ E , ( t ) c o s ( ~ , t +  4,) + E,(t)co~(W,t+ #,)I' (7) 

High frequency intensity components that oscillate near twice the optical carrier frequency are 
eliminated from the receiver as that frequency is much greater than the frequency response of 
the detector [4]. Therefore, we can write the intensity as: 

1 1 
2 2 

Z ( t )  = E 2  ( t )  = - EL2 ( t )  + - E, ( t )  + E ,  ( t )E,  ( t )  COS[(W, - W, )t + 4, - 4, ] (8) 



Detected current is proportional to the average optical intensity, where the average is taken over 
a time interval long compared to the optical period, but short compared to the period of the IF. 

i(t) = i , ( t)  + i, ( t )  + 2Ji,(t)i,  ( t )  COS[(W, - W, ) t  + 4, - 4s I (9) 

Where iL = % EL2 /2 and is = % E,’ /2 are the dc contributions from the local oscillator and 
signal beams. Expressing in terms of the signal fields: 

(10) 
( t )  = E , ~  ( t )  + E , ~  ( t )  + 2 ~ , ( t ) ~ ,  ( t )  COS[(W, - W, ) t  + 4, - 4, 11 

If the local oscillator power is much greater than the signal power, the second term of Eq. (10) 
can be neglected. The first term represents a large and continuous signal that carries no 
information but generates a shot noise contribution. The third term represents the signal 
modulation. If the signal is coupled to a detector of responsivity % and ac-coupled to eliminate 
the local oscillator signal, 

(11) 

The two sources may oscillate at nominally different frequencies, the difference being labeled 
the intermediate frequency. If this intermediate frequency is zero, the detection process is 
termed homodyne detection. When there is a difference frequency for postdetection processing, 
it is called heterodyne detection. 

i(t> = 

i ( t )  = E 2 ( t )  = _ 2 E , ( t ) E , ( t ) c o s [ ( ~ ,  - q ) t + @ ,  -4,)] 

In coherent communications the optical frequency and the phase of the signal relative to those of 
the local oscillator are preserved, including the phase and frequency fluctuations whenever the 
oscillator has enough stability. The local oscillator preamplifies the signal, improving the signal- 
to-noise ratio in the limit of local oscillator power. For the shot-noise limited case, when effects 
of dark current and thermal noise are eliminated by raising the optic power and with e=l, the 
resulting signal-to-noise ratio for heterodyne detection is: 

N h v A v  
Therefore, the minimum detectable signal (signal input power leading to an output signal-to- 
noise ratio of 1) is [5 ] :  

In the case of homodyne detection, the signal-to-noise ratio is: 

In the case of direct detection [6] ,  

The shot-noise limited SNR obtained in homodyne detection is a factor of two better than the 
heterodyne receiver and a factor of four (6dB) better than the SNR of a direct detection system. 

The case of heterodyne optical detection is studied in this case as quantum-limited performance 
can theoretically be obtained and receiver sensitivities of the order of 10-20 dB higher than 
direct detection systems are possible under high background conditions [7]. 



2. PERFORMANCE ANALYSIS OF A COHERENT OPTICAL RECEIVER 
FOR M-ARY PPM SIGNALS 

When heterodyne detection is used, digital bits could also be encoded directly on the phase or 
frequency of the laser carrier itself. The received modulated laser carrier can be translated to a 
lower RF frequency, where the digital modulation can be decoded using standard RF decoding 
techniques [ 81. 
Pulse Position Modulation (PPM) is used in the heterodyne detection system proposed. PPM is a 
form of block encoding in which bits are transmitted in blocks instead of one at a time [8]. 
Optical block encoding is achieved by converting each block of b bits into one of M=2k optical 
fields of transmission. At the receiver end, decoding of each block is performed by determining 
which one of the M fields is received per block time. For the PPM case, a PPM frame contains 
M slots and an optical pulse is placed in one of those M slots. The data word is determined 
based on the position of the optical pulse in the frame. The PPM format is shown in Figure 2. 

1'' PPM frame with M slots 2nd PPM frame 

Figure 2. Pulse Position Modulation format. 

The receiver decides on the basis of a maximum likelihood symbol detection probability; it 
selects the slot with the greatest voltage and the symbol that contains a signal pulse in that slot 
location is the transmitted symbol. 

If A is the aperture area of the detector, a=q,/hu, and EL>>Es, the time average of the statistical 
average of the resulting intensity counting rate process (i(t)) of the photodetector, T from 
(J3q.11) is [l]: 

i = dla(t )12 = d E 2  + d 2 E , E L  COS[(@, - us ) t  + qL - eS )I 
(16) 

The local power alone sets the shot noise level of spectral level N42. In case of perfect phase 
tracking, (bL - @s =0, and if homodyne detection, WL - W, =O. 
Under shot-noise limited conditions, the received optical signal at the detector is: 

(17) 

Where n(t) is a Gaussian noise voltage of spectral level N, / 2 = &E; 
The variance of the shot-noise voltage is calculated integrating for T seconds (duration of the 
PPM pulse in the ith slot) resulting 0: = d E 2 T  
The value of the signal voltage for homodyne detection is obtained integrating as well for T 
seconds for a signal slot is: 

The signal-to-noise ratio is therefore: 

= i, + is (wL - W, ), @L t 4, 

r(t)  = i(t) + n( t )  

vd = 2 E , E , d z  (18) 

Psignal [ 2 E , E L d  rp 
= 4 d E 2 2  = 4 K ,  - SNR = - 

Pnoise d E ; Z  
where K, = rx4EZzis the average number of signal photons that would be detected over the 
same time interval (by direct detection). 



For the case of heterodyne detection and following the previous equations, the only difference is 
that now (0, - Us) # 0 and the values obtained are as follows: 

= ~ E , E , ~ Z = J Z E , E , ~ ; ~ Z  2 
Vd = v, 

= 2&E;z = 2K,  Psignal - - [&E, EL& rp 
Pnoise &E;Z 

SNR = 

A high count rate at the detector output is assumed due to the local field condition, which 
determines the Gaussian nature of shot noise. Therefore, heterodyne detector outputs are 
assumed as Gaussian processes in most cases with the signal term corresponding to the 
modulated carrier, and all other spectral components considered as additive Gaussian noise with 
the spectra given [l]. The resulting S N R  could be taken as coming from a constant signal of 
voltage value v, = m, observed in the presence of noise voltage with zero mean and 
variance equal to 1. As the photodetected mixed field can be modeled as a Gaussian process, the 

probability density of this signal would be psIGNAL SLOT ( x )  = - 1 J21te 
- ( x - m ) * / z  

And for the remaining slots with no signal, the process could be modeled as a Gaussian random 
1 -x2/2 variable with zero mean and unit variance psLoT No s,GNAL(x) = - JGe 

These expressions are accurate under strong local field condition and weak background 
radiation [I. Since PPM signals are a type of orthogonal signals, for the homodyne detection 
case, the probability of correct symbol could be expressed as [ 101, [ 111: 

(25) 

If equal a-priori transmission probabilities are assumed for each symbol, the probability of 
symbol error can be expressed as: P(SE) = 1-P(SC) 

1 - ( * - m ) 2 / 2 &  1 -y=/2  
p(sc)= rIGe [I-=' dyh 

Finally to obtain the bit error probability for homodyne detection as Pe=[(M/2)/(M-1)]P(SE) [ 11: 

And for heterodyne detection could be expressed as: 

The union bound for the case of homodyne detection can be derived following [ 101 and the bit 
error probability can be approximated as 



The bit error probability for heterodyne detection approximated with the union bound would be 

A r r q . m d p ” r  

Figure 3.1. BER for optical homodyne detection Figure 3.2. BER for optical heterodyne detection 

2. EXPERIMENTAL RESULTS AND ANALYSIS 

The experimental setup of the optical coherent combining experiment consists of two Nd:YAG 
lasers operating at 1064 nanometers, whose outputs are aligned and combined on the surface of 
a 4x4 Fermionics InGaAs detector array. One of the lasers serves as a local oscillator (high 
output power, 50 mW), while the other simulates the received signal (2-3 mW output). The two 
lasers are operated at slightly different wavelengths, yielding a relatively stable difference- 
frequency tone of approximately 6 MHz in the detected signal. The difference-frequency tone is 
generally observable in several array elements simultaneously, but usually with different phases. 
If the detector element outputs were simply summed, the addition of out-of-phase tones could 
result in significant cancellation, yielding a weak signal tone at the output. Non-coherent 
addition of signal components from different elements of the detector array is analogous to 
detection with a single large detector: this is the prime reason why a single large detector is not 
effective for coherent detection of signal fields under turbulent conditions. However, if small 
areas of the detector surface over which the signal field is essentially coherent are processed 
separately, then the outputs can be phase-aligned prior to addition, recovering the lost signal 
power. 

Figure 4. Coherent 
combining experiment at 
the Jet Propulsion 
Laboratory, NASA. 



In the current coherent combining experiment, each of the 16 outputs of the detector array are 
amplified, and input to a 16-channel data-acquisition assembly (the data-acquisition is currently 
carried out using GaGe cards). The analog signals are digitized to 8 bits at a sampling rate of 25 
mega-samples per second (MSPS). The data-acquisition system is capable of synchronously 
“grabbing” up to 1 megabyte of data per channel (or one million 8-bit samples), however we 
have elected to work with only 104128 samples per channel for these tests, in order to simplify 
the data-transfer fro the data-acquisition computer to the signal-processing computer. At a 
sampling rate of 25 MSPS, this sample-stream represents 4.16512 ms of elapsed time. We have 
identified four channels that contained significant signal, and at a certain time synchronously 
collected 104128 samples from each channel (in a realistic communications scenario, the 
combining algorithm would automatically select the “signal” pixels for processing).The 
modulation format for the transmitted laser signal is PPM using an external Electro-optic 
Modulator (Pockle cell). At the GaGe scope we can see the PPM modulated beatnotes (Fig. 5) at 
a rate of 97.65 kHz. The PPM frame period is exactly 10.24 ps. The slot width is approximately 
300ns, obtaining approximately a 32-PPM system. 

The nominally 6 MHz signal-tones were downconverted to complex baseband, and input to the 
least-mean-square algorithm, or LMS, currently under development. This adaptive algorithm 
automatically estimates the complex weights required to reconstruct the signal, then it applies 
the weights to the complex signal in each channel, and combines the “phased-up” signals in 
order to maximize power, or SNR. A rotating pre-distorted plexiglass plate was incorporated to 
simulate atmospheric turbulence. Intensity distributions of signal beam at the input to the focal- 
plane array with and without simulated turbulence are shown in Fig. 6. 

The LMS Algorithm 
The discrete complex version of the LMS algorithm can be described by the following recursive 
equation as described in references [131, [14]: 

w , ( n + l ) = ~ ( n ) + ~ ~ * ( n ) ~ ( n )  (31) 

The LMS algorithm is a recursive equation that allows the value of each weight at the (n+l) 
sample to be calculated form its value at the nth sample, using the signals at the nth sample. The 



sampled error signal in Eq. (32) is obtained from the sampled reference signal and array output, 
is as follows: 

N 
E(n)  = r(n> - s(n)  = r(n> - c up, mf, ( n )  (32) 

In our case, the reference signal that we use is a constant value calculated based on the addition 
of the magnitude of the signal in the four channels, of value 0.06 (Fig. 13) in our case. 
Therefore, the error signal obtained is a complex number that contains the phase information 
required. The error signal has to be minimized in order for the phase weights to converge; at that 
point, the four signals will be phased up for perfect combining and therefore the combined 
output is maximized. The weights transients are computed from Eq. (31) starting with zero 
initial values. Depending on the p, called “step-size”, the slope of the combining output changes 
as it is higher for greater values of the step-size. Varying p, it is possible to control what fraction 
of the latest weight-estimate is applied to the current weight during each update, providing 
additional smoothing to the weight estimates. Small step-size tends to produce good weight 
estimates under static conditions, however generally leads to greater “weight misadjustment” 
under dynamic conditions (such as severe Doppler, or severe differential drift between local and 
signal wavelengths) as the weight estimates cannot keep up with the dynamics. Therefore, there 
is typically a best step-size to use for each situation. After some experimentation, we have 
determined that for this data-set good results could be obtained by correlating over 10,OOO 
samples, and using a step-size of 1,OOO. We can see that after approximately 30 samples, the 
weights converge as we obtain the maximum combined power and minimum error; that 
translates in 1 . 2 ~ s  of acquisition region. 

j=1 

Referring to Figs. 7, 8, and 9 with p=lO, we see that when the step-size is so small that the LMS 
algorithm cannot keep up with the phase variations in the beatnote, the combining output signal 
shows that the four channels are not perfectly combined as it is oscillating and it has not reached 
its maximum value. We observe that the weights have a sawtooth shape, which is due to 
changing phase in the downconverted output, which are not exactly at zero frequency, but very 
close to it. When we plot the error versus the number of samples, we can see that at first the 
error is quite sinusoidal, but as the adaptive filter learns to cancel the sinusoidal component, the 
error becomes increasingly random. 

Figure 7. Combined output signal with p=10. Figure 8. Phase of the weights with p=lO. 
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Figure 9. Error signal for p=lO. 

Regarding Figs. 10, 11 and 12, we observe that as we increase the value of the step-size, now 
with p=lOO, we get greatly improved performance. The combined output shown in Fig. 10 has 
increased in value approaching its maximum, which will be accomplished for even higher 
values of p. The error signal as we can see in Fig. 12 has drastically decreased showing the 
convergence of the weights. 

Figure 10. Combined output power with p=100 Figure 11. Phase of the weights with p=100 



Figure 12. Error signal with p=lOO 

Finally, when the stepsize is large enough so that the LMS algorithm is able to keep up with the 
phase-rotation of the complex downconverted beatnote, at p=lOOO, we see that the combined 
output signal reached its expected maximum value of 0.06 as we already calculated in advance 
as we explained earlier and that we used in Eq. (32) when applied to our algorithm code. With 
this optimum value of p, the error drops to zero and we can conclude that the signals are phased 
UP. 
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Figure 13. Combined output signal with p=lOOO 



LMS Weights 

0.06 

0.05 

0.04 
0 

.- 
0 
= 0.03- 

I I I I I 1 
0 500 1000 1500 2000 2500 3000 

t 

.. 

.' 

" I  I 

I I I I I I 
0 500 1 000 1500 2000 2500 3000 

I I I I I 

0 500 1000 1500 2000 2500 3000 

-5'  I I I I I I 
0 500 1000 1500 2000 2500 3000 

Sample Index 

Figure 14. Phase of the weights of the four different channels with with p=lOOO 
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Figure 15. Error signal with p=lOOO 

n, 

These results illustrate as we expected, that increasing the step-size allows the LMS to be able to 
follow and track the phase-rotation of the complex downconverted beatnote and experimenting 
we found out that the optimum value of J.I for the particular case discussed here is 1OOO. For this 
value there is a perfect tracking of the phase of the weights and accordingly, the error signal 
drops to zero. 



It is important to note that usually books and papers, the step-size is shown to be much smaller 
than one, but that is because the signal is assumed to be of unity amplitude In our experiment, 
the signal level that we are dealing with is very small as there is not enough amplification after 
detection and as we mentioned earlier the signal is coupled to a detector and ac-coupled to 
eliminate the local oscillator signal. 

4. CONCLUSIONS AND FUTURE WORK 

We have completed the laboratory setup for testing optical coherent communications using PPM 
modulation under simulated turbulence conditions. We have been able to track the phase of the 
beatnote signals coming out of the photodetector using the LMS algorithm producing an 
optimum signal combined output. We plan to modulate the signal with PPM in the future 
maintaining the pulse-to-pulse coherence of the optical fields (because of the external 
modulator) enabling the use of the LMS. It has to be mentioned too, that as we relax the 
requirements for inter-pulse coherence, there will be a need to use other combining algorithms 
that do not depend on temporal coherence on a short time-scale, using only the “geometrical” 
phases to combine the signal, such as suitably modified versions of a “constant modulus 
algorithm” (CMA) or other appropriate algorithms that we will develop to work also under 
turbulent conditions. 
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