
Q
)

Q

a 3

- L

s cn S

a

m

S

S

Q
)

x

t)
m

m

0

!?
z

0

.Q
)

Why Use Reconfigurable Technology in Space?
Reconfigurable technology, especially the Field
Programmable Gate Array (FPGA), allows hardware design
to be changed easily.

FPGAs are relatively low cost and can be “programmed”
individually. Therefore, they are cost effective for small
quantity production such as spacecraft manufacturing.

Modern FPGAs have several million gates and are capable
to implement a significant portion of the avionics system of a
spacecraft

Some of the FPGAs such as Xilinx’s Videx CI have sufficient
radiation tolerance for many space applications

FPGAs have been used in space systems.. However, their
uses have been limited to replacing ASKS so far.

Future Applications of Reconfigurable
Technology in Space

In-Flig ht Hardware Design Correction

In-Flight Reconfiguration for Fault Recovery
- Allows hardware design error to be corrected-after launch

- Provides “generic” spare components that can be programmed to
replace any failed components, so that the number of redundant
components required by fault tolerance can be reduced.

In-Flight Reconfiguration for Resource P-lanning in Different
Mission Phases c

- Allows the trading between performance and power in different
mission phases by changing the amount of hardware required.

ardware Enable Multiple Science Objectives onSa

different purposes. - -

Technology Upgrade During Long Life Missions

- Allows reconfiguration of the electro

- Allows new generations of processor technology to be uploaded to the
spacecraft.

. , , - , . . .
. . - . .

I . . .
. . . . , . :

, . . .
a . . . , : &

. . . _ - . . . , I

I : * , , . , -

State-of4 he-Art of Reconfig u ra ble Tech nology
Types of Reconfigurable Technologies
- Programmable logic device (PLD)
- Programmable Logic Array (PLA)
- Programmable Array Logic (PAL)
- Complex PLD (CPLD)
- Field-Programmable Gate Array (FPGA)

State-of-the-Art FPGA
. . . . ~. ., . - . . _

.,. .
. . .

, . ._

State-of-the- I Number of 1 Connection 1 Embedded 1 Embedde 1 Flight Parts Availability 1 Art Devices System Gates Technology Processor Core d SRAM
Xilinx 1 Virtex II Pro 1 5 Mgates 1 SRAM 1 4 PC 1 10 Mbits 1 Projected 200KTID

(XC2VP125)

FPGA Reconfiguration Process
For in-flight reconfigurability, SRAM based FPGA has to
be used
SRAM based FPGA has to load the configuration of the
interconnections of its internal logic from an external flash
memorv to its configuration 'memorv at svstem start up.
To illustrate:

Address

Con fi g u ration
File

Flash
Memory

00001 I 1 1
+ *

0

0

. . . - .-., . ! * > . : .
.I :, i f ' . ' .

. 1 . 6 . .
. & . . :

_- -

ration Memory Cells

- ' %, . ? . 1

Loading of the Configuration Memory
Master Mode:
-The configuration file is permanently stored in a non-volatile flash

-Upon reset, the FPGA reads the flash memory and puts the
memory .

configuration file data into its configuration memory.

.Slave Mode:
-The configuration file data is permanently stored in a flash memory

or supplied by an external source (e.9. processor, microcontroller).
-Upon reset, the external source either load the configuration file

data directly into the configuration memory of the FPGA or drive the
FPGA to read the configuration data from the flash memory.

-The FPGA reads the flash memory through the JTAG interface
IEEE 1149.2, a test interface standard). It requires specialized
hardware and software support and will not be used here

_ : . JTAG: < -

(i.e.,

Architectural Requirements to Support
In-Flig ht Reconfiguration

SRAM based FPGAs with writable non-volatile
configuration memory (e.g., flash memory)

Direct interface from Telecommunication
Subsystem to configuration memories of the
FPGAs that implements critical functions

Hardware command decoder in
Telecommunication Sub-system to control the
loading of the Configura~j~n.Nlem~~y-;

* - -

Guarded upgrade of the configuration memories
(see next slide) . . .

. ,-
. A

. - - _ _ -.

Mission Operations to Safe Guard and
Validate In-flight Hardware Reconfiguration

I. In the flight system, use two redundant FPGAs, one active and the
other inactive. Only the active FPGA has access to 110 or system
memory.

2. During in-flight reconfiguration, a commend is sent to the
spacecraft to load a new configuration file to the- configuration
memory of the inactive FPGA.

3. The inactive FPGA is then enabled but put in observation mode. It
executes the operations but just compare- its results -with the active
FPGA and does not send any output to the I/O or memories.

4. The mission operator has to verify that the new FPGA is able to
perform all the correct operations of the old FPGA

5. The mission operator has also to verify the functional changes in
the new FPGA by performing on-board emulation.

6. The new FPGA is promoted to the active role and the old FPGA is
retired when there are sufficient evidences that the new FPGA is
ready.

3

P
)

=. s
0

0

2 a X

W

n

r
 1

.
,

.
 -I,

,< b
..

,

. ',

In-flight Reconfigurable Example #I

1 L I

Loading Configuration
Memory of New FPGA:

I

Config
comi

1 I 1 I A

I

In-Flight Reconfigurable Example #I

New FPGA start up in
observation mode:

I I I I I

In-Flight Reconfigurable Example #I

Safe-guard the hardware
update and validate the
n ew FPGA:

. . .

N

In-flight Reconfigurable Example #I

ew FPGA takes over:

I I I I

$.
I

I
A

I

t

.
.

..
..

 .

..

In-flight Reconfigurable Example #2
Load conficluration

V

memory of spare FPGA
with hardware command:

Hardware command to
invoke reconfig uration

I Controller I I Mem I

I (Retired) I

In-Flight Reconfigurable Example #2

1

Hardware command to
select the spare FPGA as
new processor:

Hardware command
to

. ~ . .- . .. j . . *. , .. , -. ,
. : .

--
a

In-Flight Reconfigurable Example #2
Spare FPGA becomes
active processor upon
svstem reset:

Load FPGA from
configuration memory
with master mode

I

H

Mission Operation Commands for
In-Flig ht Reconfiguration

Sequence Commands:
Load configuration memory (FPGA ID)
Load FPGA with slave mode (FPGA ID)
Downlink FPGA configuration memory data (FPGA ID, starting address,
range)
Set FPGA to observation mode (FPGA ID)
Set FPGA to active mode (FPGA ID)
Reset FPGA (FPGA ID)
Set FPGA to inactive mode (FPGA ID)

Hardware Commands:

- -
- 2

1 .

Load configuration memory (FPGA ID)

Downlink FPGA configuration memory data (FPGA ID, starting address,
range)
Reset FPGA (FPGA ID)

Load FPGA with master mode (FPGA ID). - I .

Summary and Conclusion
In this paper, we have discussed:

The advantage and future applications of reconfigurable
technology in space

The state-of-the-art reconfigurable technologies

The application of reconfigurable technologies in avionics
architectures to enable in-flight hardware reconfiguration

The mission operations to safe guard and validate in-flight
hardware recon fig u rat ion

In-flight hardware reconfiguration examples

Sequence commands and hardware commands for in-
flight hardware reconfiguration

0

S

c
,

S

0

m S

.- CI L

cn
a

3

cn S

0

m 0 S

.- CI
.- E

0

0

a,
a,
a,
r

a,

-

c
,

c
,

c
,

S

.- 6
I
.

cn
U

S

E E

0

0

a,
m
U

r

a,
c

L

3

5

c
,

E
 m

.- cn a, 0
S

a,
3

m

a,
cn
U

S

E E

0

0

a,
cn
>

a,
.- n

0

S

0

0

a,

.
I

c
,

L

6
c> S

m

cn
a,

a,

.- n

2 3
U

m
I
 I L

a

a,
cn
m
L

a. S

0

cn
cn
.- .
I

2
 ?E

!E n

C
I

S

a,

S

0
)

S

S

S

m
a. a,
0

3

0

cn

.- .- -
 L

2 I

a,
m
U

m
I

L

3

L

E m m

S

0

cn
a,
>

0

a,

.
I

c
,

3

0

a,
0

S

a,
0

m

a,
Q

.
I

-

.- c,

-

2 m

S

.
I

a

m S

W
 I

m
i
=

S
O

0

0

