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Abstract 
This paper describes MEXEC, an implemented micro executive that compiles a device model into an internal 
structure. Not only does this structure facilitate computing the most likely current device mode from n sets 
of sensor measurements, but it also facilitates generating an n step reconfiguration plan that is most likely to 
result in reaching a target mode - if such a plan exists. 

Introduction 
Over the past decade the complexity of spacecraft has exploded with increasingly ambitions mission 
requirements. Relatively simple flyby probes have been replaced with more capable remote orbiters, and 
these orbiters are slowly becoming communications relay satellites for even more ambitious mobile 
landers like the current Mars Exploration Rover, the planned Mars Science Lab, and the suggested 
aerobot at Titan. With this increased complexity there is also an increased probability that components 
will break and in unexpected ways with subtle interactions. While traditional approaches hand-craft 
rule-based diagnosis and recovery systems, the difficulty in creating these rule bases quickly gets out of 
hand as component interactions become more subtle. Model-based approaches address this issue, but 
their acceptance has been retarded by the complexity of their underlying evaluation systems when 
compared with a simple rule evaluator whose performance is guaranteed to be linear in the number of 
rules (Darwiche 2000). 

This paper combines ideas from Livingston (Williams and Nayak, 1996) with results in knowledge 
compilation for diagnosis (Darwiche 1998) and planning (Barrett 2004) to create MEXEC, a micro 
executive that is both model-based and has an onboard evaluation system whose simplicity is 
comparable to that of a rule evaluator. This involves taking a model specified in a language like 
Livingston’s and compiling it into an internal form that can be used in linear time to determine both a 
system’s current mode and how to reconfigure to a desired target mode. Thus the system’s architecture 
consists of an offline device-model compiler and an online evaluator (see figure 1). 

In addition an online performance guarantee, MEXEC whittles away at the restrictions required by 
Livingston’s real-time planner. The surprising 
result is that the same compiled structure can be 
used to for both mode identification and t 
planning. Evaluating it one way facilitates 
computing the most likely current mode given n 
sets of measurements, and evaluating it another 
way facilitates computing an n step 
reconfiguration plan with the highest probability 
of success given the current and target modes if 
such a plan exists. 

Figure 1 : Online/Offl&e architecbL for MExEc 



This paper starts by defining the device representation language and compares it with Livingston’s 
language. It next presents a simple device example and shows how to compile it into an internal 
representation that can be evaluate in linear time either plan or diagnose. The subsequent se tion shows 
how the structure is evaluated for both planning and diagnosis. alism, the 
implementation is described with a number of experiments. Finally the paper ends with a d cussion of 
future work and conclusions. 

To provide some t 
Representing Devices 

MEXEC’s modeling language is called the Connection Model Programming Language (CMPL). CMPL 
is a simplified yet equally expressive variant of Livingstone’s MPL. CMPL models a device as a 
connected set of components, where each component operates in one of a number of modes. Essentially, 
each mode defines the relationships between a component’s inputs and its outputs. More precisely, 
CMPL has five constructs to define: types of connections, abstract relations, components with modes 
and relations between inputs and outputs, modules to define multiple component subsystems, and the 
top-level system being diagnosed. The following conventions facilitate defining CMPL’ s syntax. 

A word in italic denotes a parameter, like value. 
Ellipsis denotes repetition, like value.. . 
Square brackets denote optional contents, like [value]. 
A vertical bar denotes choice between options, like false I true. 

With these conventions the entire language’s syntax is defined in figure 2, which has constructs to 
respectively define connection types, well-formed formulas with arguments, user defined relations, 
components, modules, and a system. Just like Livingstone, system name’s structure is a connected set 
of components and modules with inputs and outputs, but unlike Livingston these inputs and outputs are 
statically defined in :connections. While the use of subsystems (Chung and Barrett 2003) is also a 
divergence from Livingston, they are outside of the scope of this paper with the exception of pointing 

(defvalues ctype ( value.. . )) 
wff+ :not wt7) I (:and wff... ) I (:or M... 

arg + wffl cname I value 
(defrelation rname (parameter ... ) wft) 

cname value) I I== cname cname) I (rname arg.. . 1 alse) I (:true) 

int]). . . )I). . . )) 
(defmodule stype 

[:inputs ct pe cname . . . )] 
:outputs 1 \cfpe cname\. . . I  
:connections c ype cname . . . 
:structure 

(defsystem name 
[:subsystems 
:connections 
:structure ( ...I ) ( cname. .. )) ... )) 

( stype sname ( [cname ...I ) ( cname ... )) ... )) 

[cname ... I )) ... )I 

Figure 2: Syntax of Connection Model Programming Language (CMPL) 
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* out that the two argument lists of each subsystem respectively denote the sensed connections (sensors) 
and the commanded connections (effectors). 

The third divergence from Livingstone involves the modeling of components. While the syntax is 
similar, the semantics revolves around the concept of cost. Essentially a mode’s cost denotes now 
unlikely it is irrespective of any information, and a transition’s cost denotes how unlikely it is when its 
preconditions hold. While getting costs from Livingston’s probabilities is a simple matter of taking a 
probability’s negative log, CMPL makes users directly specify costs to reflect that the number specified 
is manually guessed, just like a probability. 

Model Compilation 
To provide an example of CMPL in use, consider the following system, which has a single siderostat for 
tracking a star within an interferometer. This system is kept as simple as possible in order to facilitate its 
use as a running example in the rest of the paper. It starts by defining the values and then defines a 
component using the values and finally defines a system in terms of the component. One semantic 
restriction not mentioned in the syntax is that a definition cannot be used until after it has appeared. This 
keeps modelers from crafting recursive definitions. 
(defvalues boolean (false true)) 
(defvalues command (idle track none)) 

(defcomponent siderostat 
:inputs ( (command in) 
:outputs ( (boolean valid) ) 
:modes ((Tracking :cost 20 

:model ( =  valid true) 
:transitions ( (Idling (=  in idle) ) ) 

:model ( =  valid false) 
:transitions ((Tracking ( =  in track)))))) 

(Idling :cost 5 

(defsystem tst 
:connections ((boolean 0 )  (command c)) 
:subsystem ( (main (c) ( 0 )  ) ) 
:structure ( (siderostat sw (c) ( 0 )  ) ) ) ) 

Model to CNF 
Compiling a device model starts by taking a system definition and recursively expanding its modules 
using the definodules until only components are left. Since the example lacked any definodules, this 
step results in a single component called “sw” which is a siderostat in the following list, where c is a 
command effecter and o is a Boolean observation sensor 

((siderostat sw (c) ( 0 ) ) )  

As the example implies, name substitution occurs during the expansion. Inputs and outputs are 
replaced by actual parameter names - in and valid respectively become c and 0. While not visible in 
this example, components are uniquely named by prefixing each structure element name with the current 
module name. For instance, if tst were a module, sw would become tst*sw, and the connection 
names would be similarly prefixed. 

This involves building an equation with the following form, where sname is the component’s name, 
After determined components, their mode definitions are converted into a Boolean expression. 



and each disjunctive entry is for a different mode mname with model wff. Within this form, notice the 
subscripts that vary from 0 to n- 1 depending on the user supplied parameter n. 

Wffi) ... ) 
( :and ( :or ( :not (=  mode*snamei mname) ) 

For example, if n were one in our example the resulting equation would be the following. 
(:and ( :or (:not (=  mode*swo Tracking) ) 

(=  o true)) 

( =  o false))) 

For higher n, the disjuncts are replicated for each step and extra disjuncts are added to characterize 
the transitions between steps. These transitions take on the following form, where sname is the 
component name, X denotes the Xth transition in the component, frm,/to, respectively denote the 
transition’s source/destination, and wf f ,, denotes its precondition at step i. 

(:or ( :not ( =  mode*swo Idling) ) 

( :or (:not ( =  trans*snamei X )  ) 
( :and ( =  mode*snamei frm,) 

( =  mode*snamei+l to,) wffx,i) ) 

Finally, these user defined disjuncts are supplemented with system defined disjuncts for not 
transitioning at all and transitioning to an unknown mode. They look respectively as follows, where the 
noop equation’s size depends on the number of transitions in order to avoid choosing no transition when 
some transition is enabled. 

(:or (:not ( =  trans*snamei noop) ) 
( :and (==  mode*snamei mode*snamei+l) 

(:or ( :not (=  mode*snamei frm,) ) 
( :not wff,,i) ) ... ) ) ) 

(:or (:not ( =  trans*snamei to-unknown) ) 
( =  mode*snamei unknown) ) 

Finally, with these constructs the compiler turns the a set of components into a single Boolean 
equation to subsequently flatten into a CNF form. 

CNF to DNNF 
Unfortunately finding a minimal satisfying assignment to a CNF equation is an NP-complete problem, 
and more compilation is needed to achieve linear time evaluation. Fortunately results from knowledge 
compilation research (Darwiche and Marquis, 2002) show how to convert the CNF representation into 
Decomposable Negation Normal Form (DNNF). It tums out that this form of logical expression can be 
evaluated in linear time to compute either the most likely diagnosis or an optimal TI level plan. 

DNNF has been defined previously in terms of a Boolean expression where only literals are 
negated and the literals appearing in sub-expressions of a conjunct are disjoint. The following definition 
slightly extends Boolean DNNF to variable logic equations, where the negation of a variable assignment 
has been replaced by a disjunct of all other possible assignments to that same variable. 

Definition 1: A variable logic equation is in Decomposable Negation Normal Form if (1) it contains no 
negations and (2) the subexpressions under each conjunct refer to disjoint sets of variables. 



, 

Just as in the Boolean case, there are multiple possible variable logic DNNF expressions equivalent 
to the CNF and the objective is to find one that is as small as possible. Since Disjunctive Normal Form 

exponentially larger than the CNF. Fortunately much 
smaller DNNF equivalents can often be found. The 
approach here mirrors the Boolean approach to finding a 
d-DNNF (Darwiche, 2002) by first recursively 
partitioning the CNF disjuncts and then traversing the 
partition tree to generate the DNNF. 

The whole purpose for partitioning the disjuncts is 
to group those that refer to the same variables together 
and those that refer to different variables in different 
partitions. Since each disjunct refers to multiple variables, it is often the case that the disjuncts in two 
sibling partitions will refer to the same variable, but minimizing the cross partition variables 
dramatically reduces the size of the DNNF equation. This partitioning essentially converts a flat 
conjunct of disjuncts into an equation tree with internal AND nodes and disjuncts of literals at the leaves, 
where the number of propositions appearing in multiple branches below an AND node is minimized. 

Mirroring the Boolean compiler, partitioning is done by mapping the CNF equation to a hyper- 
graph, where nodes and hyper-arcs respectively correspond to disjuncts and variables. The nodes that 
each hyper-arc connects are determined by the disjuncts where the hyper-arc’s corresponding variable 
appears. Given this hyper-graph, a recursive partitioning using a probabilistic min-cut algorithm 
(Wagner and Klimmek 1996) computes a relatively good partition tree for the disjuncts, and generalizing 
this algorithm by weighting the hyperarchs with associated variable cardinalities does even better. See 
Figure 3 for an extremely simple example with two disjuncts and three variables whose cardinalities are 
2. From the equation tree perspective, there is an AND node on top above disjuncts at the leaves. The 
branches of the AND node share the variable b, which is recorded in the top node’s Sep set. 

Once the equation tree is computed, computing the DNNF involves extracting each AND node’s 
associated shared variables using the equality 

. is also DNNF, the largest DNNF equivalent is (and 

Figure 3: Example of partitioning CNF 

eqn= V, ( v = c n e q n \ { v = c ) ) ,  
CE domain( v) 

where eqn\{v=c) is an equation generated by replacing disjuncts containing v=c with True and 
removing assignments to v from other disjuncts. If a disjunct ever ends up with no assignments, it 
becomes False. 

More formally, the DNNF equation is recursively defined using the following two equations, 
where the first and second equations apply to internal and leaf nodes respectively. In the first equation 
instunces(NSep,a) refers to the set of possible assignments to the vector of variables in NSep that are 
consistent with a. For instance, running these equations over Figure 3’s partition starts by calling 
dnnf(root,True), and the instances are b = t  and b=f since only b is in root.Sep, and both assignments 
agree with True. In general the number of consistent instances grows exponentially with N.Sep, leading 
to the use of min-cut to reduce the size of NSep for each partition. 



While walking the partition does provide a DNNF equation that can be evaluated in linear time, 
two very important optimizations involve merging common sub-expressions to decrease the size of the 
computed structure and cachmg computations made when visiting a node for improving compiler 
performance (Darwiche 2002). With respect to Figure 4, there were no common sub-expressions to 
merge, and the resulting DNNF expression appears below. 

(o r  (and b= t  c=t) (and b=f a = f )  ) 

Onboard Evaluation 
To illustrate a less trivial DNNF expression, consider the Figure 4 for the siderostat DNNF. Actually 
this is a slight simplification of the generated DNNF - a third top level branch for unknown state 
reasoning was omitted for space reasons. This expression’s top rightmost AND node has three children, 
and each child refers to a unique set of variables. From top to bottom these disjoint sets respectively are 

{mode*swl}, {oI}, and {mode*swo, trans*swo, 00, CO}. 

Given that DNNF AND nodes have a dlsjoint branches property, finding optimal satisfying variable 
assignments becomes a simple three-step process: 

1. 
2. 

3. 

associate costs with variable assignments in leaves; 
propagate node costs up through the tree by either assigning the min or sum of the descendents’ 
costs to an OR or AND node respectively; and 
if the root’s cost is 0, infinity, or some other value then respectively return default assignments, 
failure, or descend from the root to determine and return the variable assignments that 
contribute to its cost. 

Mode Estimation 
Evaluating a DNNF structure to determine 
component modes starts by assigning costs to the 
mode*nameo variables, where these costs come 
from the :cost entry associated with each mode 
in the original model, and missing cost entries are 
assumed to be zero. For instance, none of the 
transitions have associated costs in the model, 
resulting in assigning zero to the trans*nameo 
leave costs. Finally, sensed values are assigned 
either zero or infinity depending on the value 
sensed. In this case the sensed values for oo and 
o1 were both true. 

Following the simple propagation step, the 
associated node costs appear above the nodes in 
Figure 4. Note that the cost is of the top level 
node is 20. This value is used to prune the search 
when descending down the tree to determine the 
assignment to mode*swl, which is the most 
likely siderostat mode that matches the 
observations. 

0: 
0: 

20: 
0: 
0: 

i d .  
0: 
5 :  

inf: 
inf: 

0: 
0: 

inf 
5 :  
0: 

i d  
inf: 

0: 
20: 
inf: 

0: 
0: 

[mode*swl = Idling] 

Figure 4: Evaluating a 2 level DNNF structure to 
determine the mode from 2 sets of observations. 



While this approach assumes forgetting of old state information, it can be enhanced to either 
remember the most likely last state or a set of likely last states using a particle filter approach. Since the 
only difference between such approaches revolves around leaf cost assignments, the requisite changes 
are very manageable. 

a 

Reconfiguration Planning 
When evaluating a DNNF structure for a reconfiguration plan, a cost is assigned to each variable using a 
number of planning dependent preferences. First, not performing an action has zero cost. This results in 
associating zero with all leaves that set transitions to noops. Second, leaves denoting other transitions 
are assigned costs that come from :cost entries associated with transitions. In the example all of these 
costs are assumed to be zero. Finally mode*nameo and mode*name, entries are assigned costs that 
depend respectively on the current and target mode. those leaf assignments that are consistent with these 
modes will cost zero and inconsistent leaves get an 
infinite cost. For instance, Figure 5 documents the 
evaluation to take a currently tracking siderostat and 
make it idle. In this case the cost is propagated up 
and then it is used to guide the descent to find the 
desired cost of co, the effecter variable. 

While a need to keep this example simple 
motivating not tagging transitions with costs, such 
tags reflect the likelihood of a transition once its 
preconditions are met. Thus, multiple transitions 0: [trans*swo = 21 
can have consistent preconditions and the 0: [mode*swl = Idling] 

underlying evaluation will actually adjust the 
preconditions to maximize the likelihood that the 
triggered transitions will result in attaining the target 
conditions. This implies that the planning algorithm 
finds n step solutions to probabilistic planning 
problems like those of BURIDAN (Kushmerick, 
Hanks, and Weld 1994). From this vantage point 
MEXEC's compiled internal structure can be 0: [trans*swo = I] 
viewed as a limited policy for solving P o m p  
problems if a solution can be found in n steps, but 
this perspective has yet to be fully explored. 

inf: [mode*swl = Tracking] 
0: [ol=true] 

0: [oo = false] 

inf: 0: [o ,  [mode*swo = false] = 

Figure 5 :  Evaluating a 2 level Dm structure to 
compute a reconfiguration plan. 

Implementation and Experiments 
The system is currently implemented in Allegro Common LISP with under 500 lines to compute a 
device's associated CNF, under 500 lines to compute a CNF equation's associated DNNF, and less than 
80 lines to evaluate a DNNF equation to find all minimal cost satisfactions. 

In addition to testing MEXEC on various switching circuit examples, there has been some work on 
developing and experimenting with models of a Space Interferometer Mission Test Bed 3 (STB-3) 
model (Ingham et al. 2001) as well as the Formation Interferometer Test Bed (FIT) model, which is an 
extension on the STB-3 model. While STB-3 represents a single spacecraft interferometer, FIT 
represents a separated spacecraft interferometer. As illustrated in Figure 6 ,  FIT is composed of combiner 
(right) and collector (left) spacecraft. The collector spacecraft precisely points at a star and reflects the 
starlight beam to the combiner spacecraft. While the combiner spacecraft also points at the star to 



collect the starlight, it also accurately points at the collector spacecraft in order to combine the starlight 
from the collector spacecraft with its own. 

Domain 
STB-3 

Comps Vars Sensors n = 1 n = 2  
7 26 13 144 1294 

I FIT I 17 I 64 I 12 I 292 I4883 I 
Table 1: DNNF sizes (in nodes) of interferometers with various numbers of components, variables, 
sensors, and n 

Laser Counter 

Figure 6: A simplified schematic of the Formation Interferometer Testbed (FIT). The left side of the 
dotted line represents the collector spacecraft and the right side of the dotted line represents the 
combiner spacecraft. 

Compiling these two models for instantaneous (n=l) and single step (n=2) DNNF structures results 
in the generation of Table 1. The initial message to pull out of this exercise is that instantaneous DNNF 
structures, for diagnosis only, tend to be extremely compact, but as n increases so does the DNNF size. 
Still, work on planning (Barrett 2004) and strict DNNF compilation (Darwiche 2002) leads one to 
suspect that the scaling issue can be addressed. 

Related Work 
While others have made the leap to applying compilation techniques to both simplify and accelerate 
embedded computation to determine a system’s current mode of operation, they are more restricted than 
MEXEC. First, DNNF equation creation and evaluation was initially developed in a diagnosis 
application (Darwiche 1998), but the resulting system restricted a component to only have one output 
and that there cannot be directed cycles between components. MEXEC makes neither of these 



’ restrictions. The Mimi-ME system (Chung, Van Eepoel, and Williams 2001) similarly avoided making 
these restrictions, but it can neither support distributed reasoning nor provide real-time guarantees by 
virtue of having to collect all information in one place and then solve an NP-complete problem, called 
MIN-SAT, when converting observations into mode estimates. MEXEC supports linear performance 
guarantees. 

The closest related work on real-time reconfiguration planning comes from the Burton 
reconfiguration planner used on DS-1 (Williams and Nayak 1996) and other research on planning via 
symbolic model checking (Cimatti and Roveri 1999). In the case of Burton our system improves on that 
work by relaxing a number of restricting assumptions. For instance, Burton required the absence of 
causal cycles, no two transitions within a component can be simultaneously enabled, and that each 
transition must have a control variable in its precondition. MEXEC has none of these restrictions. On 
the other hand, our system can only plan n steps ahead where Burton did not have that limitation. 
Similarly, the work using symbolic model checking lacked the n-step restriction, but it compiled out a 
universal plan for a particular target state. Our system uses the same compiled structure to determine 
how to reach any target state within n steps of the current state. 

. 

Conclusions 
This paper presented the MEXEC system, a knowledge-compilation based approach to implementing an 
offline domain compiler that enables embedded real-time diagnosis and reconfiguration planning for 
more robust spacecraft commanding. 
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