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Abstract 

In this paper, we present a tensorial (Le., coordinate-free) 
derivation of the equations of motion of a formation consist- 
ing of N spacecraft each modeled as a rigid body. Specifi- 
cally, using spatial velocities and spatial forces we demon- 
strate that the equations of motion for a single free rigid 
body (Le., a single spacecraft) can be naturally expressed 
in four fundamental forms. The four forms of the dynamic 
equations include (1) motion about the system center-of- 
mass in terms of absolute rates-of-change, (2) motion about 
the system center-of-mass in terms of body rates of change, 
(3) motion about an arbitrary point fixed on the rigid body 
in terms of absolute rates-of-change, and (4) motion about 
an arbitrary point fixed on the rigid body in terms of body 
rates-of-change. We then introduce the spatial Coriolis 
dyadic and discuss how a proper choice of this non-unique 
tensor leads to dynamic models of formations satisfying the 
skew-symmetry property required by an important class of 
nonlinear tracking control laws. Next, we demonstrate that 
the equations of motion of the entire formation have the 
same structure as the equations of motion of an individ- 
ual spacecraft. The results presented in this paper form 
the cornerstone of a coordinate-free modeling environment 
for developing dynamic models for various formation flying 
applications. 

1 Introduction 

The ability to  accurately capture the dynamic behavior 
of separated spacecraft formations in both deep space 
and in orbit around a central body is critical t o  the 
success of many planned and future NASA missions. 
For example, the development and assessment of high- 
precision formation flying control laws will require a 
spectrum of spacecraft dynamic models ranging from 
point mass models to multi-flexible body models. 

To this end, we develop a tensorial formulation of the 
equations of motion of formations consisting of N sep- 
arated spacecraft. In addition, by utilizing the con- 
cept of a spatial vector (viz., a vectrix consisting of 
both rotational and translational vector quantities) it 
is possible to unify formation translational and rota- 

tional dynamics into a single framework. The coordi- 
nate free approach using spatial vectors allows one to 
have maximal physical insight into the structure of for- 
mation dynamics with a minimum of notational over- 
head. The coordinate-free approach discussed here is 
based on the use of direct tensor notation to formu- 
late the equations of motion of the system. This ap- 
proach is especially powerful in applications where a 
large number of observers (Le., reference frames) are 
involved in the dynamic analysis. Further, once a spe- 
cific set of generalized coordinates has been chosen, the 
tensorial equations admit a concise matrix form which 
is amenable to computer simulation. The coordinate- 
free modeling architecture developed in this paper also 
facilitates the design of nonlinear tracking control laws 
for separated spacecraft formations. 

The primary focus of this paper is on the application 
of the coordinate-free approach to  develop the equa- 
tions of motion for formations consisting of N space- 
craft, where each spacecraft is modeled as a single rigid 
body. Much of the research done to date in the area 
of formation flying dynamics has concentrated on the 
development of 3 degree-of-freedom (3DOF) transla- 
tional equations of motion along with associated dis- 
turbance models. For example, the linearized trans- 
lational motion equations of one spacecraft relative 
to  another spacecraft in a circular orbit (commonly 
called the Clohessy-Wiltshire-Hill equations) has been 
addressed by many researchers; e.g., see [lo]. The as- 
sumption of a circular reference orbit has been relaxed 
in a number of papers; e.g., see [I] for an overview. Us- 
ing coordinate-free notation, [ll] discusses the relative 
translational dynamics of formations in deep space and 
provides insight into the validity of utilizing linear dy- 
namic models ( “double integrator models”) fox control 
law design. A unified 6 DOF description of formation 
flying dynamics (as well as guidance and control) has 
been elusive; notable exceptions are [SI and [14]. 

The rest of this paper is organized as follows. First, we 
discuss material from rigid body kinematics and ten- 
sor analysis that are needed in the sequel. Then, using 
the concept of spatial velocities and forces (i.e., com- 
bining linear/angular velocities and forces/torques into 



a single entity), we demonstrate that the equations of 
motion of a rigid body can be naturally expressed in 
four distinct forms. Although each form is an exact 
description of the dynamics of a single rigid body, each 
form is not equivalent for developing dynamic models 
and control laws for separated spacecraft formations. 
To this end, we then discuss the proper selection of the 
spatial Coriolis dyadic, which is required in an impor- 
tant class of adaptive control laws used for the control 
of systems of bodies including underwater vehicles [2], 
flexible space structures [7],  and robotic systems [12]. 
Next, we demonstrate that the absolute equations of 
motion of the N individual spacecraft can be concate- 
nated to  form the motion equations of the entire for- 
mation. Moreover, it is shown that the equations of 
motion at the formation-level have the same structure 
as the equations of motion of a single rigid spacecraft. 
The final form of the absolute equations of motion pro- 
vide the first step toward a complete description of the 
dynamics of formations and can be tailored to applica- 
tions in various dynamic environments. 

2 Differentiation of Vectors in Rotating 
Frames of Reference 

In this section we discuss background material from 
rigid body kinematics and tensor analysis that is re- 
quired in the sequel; see [4] and [6] for further informa- 
tion. Consider a geometric vector s describing some 
physical quantity (e.g. velocity, force, angular momen- 
tum, etc.) of interest. Here we are making the impor- 
tant distinction between geometric or Gibbsian vectors 
and column matGces or 3-tuples of real numbers. A ge- 
ometric vector Q is a quantity possessing magnitude, 
direction, and obeying the parallelogram law of addi- 
tion in three dimensional Euclidean point space, de- 
noted E3. A geometric vector should be thought of as 
an arrow or directed line segment in E3.  In particular, 
a vector 0 is a geometric object that exists indepen- 
dently of any particular basis chosen for E3 while a 
column matrix of numbers Q = [QI, Q 2 ,  Q3] E !R3'l 

is the representation of a geometric vector in a partic- 
ular basis. It follows that a column matrix Q depends 
on both the underlying vector and the particular frame 
of reference. 

.i. 

In rigid body kinematics we limit our attention to  a 
special class of basis vectors for E3 called reference 
frames. A reference frame consists of a right-handed 
set of three mutually orthonormal vectors located at  
an arbitrary point (called the origin of the frame) in 
E3.  The basis vectors associated with a reference frame 
can be easily accounted by defining a vectrix as fol- 

Although this notational device apparently goes back to the 
1960's, the phrase vectrix (i.e., part vector, part matrix) was 
popularized by Hughes in [4]. Specifically, a vectrix is a matrix 

- A  
lows: FA = [a'l a'2 & I T .  In other words, the elements 
of the vectrix f~ are the basis vectors characterizing 
the given frame of reference. In the sequel, a reference 
frame will be denoted as and the vectrix associated 
with the frame as ?A. 

Once a reference frame 3.4 has been defined, a-ge- 
ometric vector can be represented uniquzly as,& = 
Qla'l + Qza'2 + Q& or equivalently as Q = ~ Q A .  
The real numbers Qi = . i;i are called the compo- 
nents of s relative to FA. In short, Q A  is the col- -8 

umn matrix whose entries are the components of Q 
in FA. Note that when a different reference frame 
FB is chosen, the same underlying geometric object 

will admit a different column matrix representation 
QB = [Q:,Qh,&SlT E !X3'l. 

Physically, a reference frame can be identified with an 
observer who is rigidly mounted along the three mutu- 
ally orthogonal axes of FA. In this paper, all observers 
are assumed to measure the same absolute time irre- 
spective of their state of motion. 

A fundamental result that will be used in the sequel is 
the Transport Theorem for geometric vectors [6]: 

A , ?  
Q=Q + [Ai jB]  0 

f 

Here 0 denotes an arbitrary geometric vector, [a']b = 

a' X b', A 3 B  denotes the angular velocity of 3 B  in FA, 
A 
@ Qla'l+ Q&2 + Q&, and Q= Q',& +Q$2 + Q&&. 

The term Q (resp. Q )  can be interpreted physically as 
the rate of change of 0 as seen by an observer rigidly 
mounted to the axes of FA (resp. FB).  As a conse- 
quence, if s is a vector fixed in FA (resp. FB)  then 
A, 
Q= 0' (resp. s= 8). 

In the sequel we will also consider tensors of second 
rank, called dyadics. In complete analogy with a vec- 
tor, a dyadic T is a geometric object that is indepen- 
dent of any observer. For our purposes, we regard a 
dyadic as a linear operator T: E3 H E3; i.e., a dyadic 
is a linear mapping on the space of geometric vec- 
tors. However, once a reference frame FA has been 
introduced, a dyadic can be represented uniquely as 
?= ETA~A where the elements of the 3 x 3 matrix 
TA are called the components (or matrix representa- 
tion) of T relative to  FA. In short, TA is the 3 x 3 
matrix whose entries Tij are the representation of T 
in FA, Note that when a different reference frame 3 B  

is chosen, the same underlying geometric object T will 
admit a different matrix representation, given by a dif- 
ferent 3 x 3 matrix TB E !R3x3 with entries Tlj. 
whose elements are geometric vectors. 

B-a 

A, B, 

B 

t) 

+-+ 
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t) 
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Table 1: Four Forms of the Dynamic Equations 
I Form 11 Reference Point I Vector Derivatives I 

Inertial 

The following generalization of the Transport Theorem 
for dyadics will also be used in the sequel: 

A B  

A 
* *A 

Here T denotes an arbitrary second rank tensor, T= 

Ti j i i iZ j ,  T= Tlj&6j and the notation &S;j (resp. b ib j )  
denotes the dyadic (or tensor) product. Note that we 
have employed the summation convention in the above 
expressions. The reader should consult [5] for further 
information. 

-.-. B 
-A 

Spacecraft Equations of Motion: 
Rigid Body Models 

In this section we show that the equations of motion 
of a spacecraft modeled as a single rigid body can be 
naturally expressed in four different forms. To obtain 
maximum insight into the structure of the equations of 
motion, coordinate-free vector/dyadic notation will be 
utilized throughout. The four forms of the equations of 
motion are classified as follows: (1) motion equations 
about the system center-of-mass in terms of absolute 
rates-of-change, (2) motion equations about the system 
center-of-mass in terms of body rates of change, (3) 
motion equations about an arbitrary point fixed on the 
rigid body in terms of absolute rates-of-change, and (4) 
motion equations about an arbitrary point fxed on the 
rigid body in terms of body rates-of-change. The four 
forms2 of the equations of motion are summarized in 
Table 1. 

Euler's Fundamental Laws of Mechanics 
The following independent laws of mechanics, due to 
Euler in 1775, characterize the momentum balance of 

2Note that other forms of the equations of motion result when 
inertial derivatives are expressed with respect to an obsever hav- 
ing arbitrary motion relative to the body. See Greenwood [3] for 
further details. 

a single rigid body3: 

5 
h, = 7', (3) 
5 
Pc = f (4) 

where fiC is the absolute linear momentum of the body, zc is the absolute angular momentum about the mass 
center of the system, f i s  the resultant external force 
acting on the body, ?,, is the resultant torque about 

the system center-of-mass, and ( 0 )  denotes the rate-of- 
change relative to an inertial frame (i.e., an inertially 
k e d  observer). Equation (3) is called the balance of 
angular momentum and (4) is called the balance of lin- 
ear momentum. We now define the spatial momentum 
and spatial force vectors4 as follows: 

N 

- A  F, = 151 
(5) 

L J  J 

As a result, Euler's Laws of Mechanics (3)-(4) can be 
expressed in the concise form 

N, 
H ,  = Pc (7) 

The use of spatial vectors (i.e., the combination of lin- 
ear and angular quantities) not only leads to a sim- 
plified set of motion equations and deeper insight into 
the dynamic behavior of rigid bodies, but also allows 
the unification of translational and rotational motion 
within a single framework. The spatial momentum vec- 
tor (about the center-of-mass) of a rigid body is related 
to the spatial velocity as follows 

where the spatial velocity is defined as 

and the spatial inertia dyadic5 is 
* *  

0 m l  

(9) 

Here m denotes the (assumed constant) mass of the 
body, 5, denotes the absolute velocity of the center-of- 
mass of the body, J,  denotes the inertia dyadic of the 
body about its center of mass, 1 is the unit dyadic, 0 
is the null dyadic, and w' = N3B is the angular velocity 
of the body in FN. Note that the spatial inertia dyadic 
M ,  is symmetric. 

* 

tt CI 

* 

3More generally, Euler's laws can be used to describe the mo- 
tion of a finite, arbitrarily deforming body; see [5] and [13] for 
further information. 

4Note that the spatial velocity, spatial momentum, and spa, 
tial force are vectrices. 

5A spatial dyadic is a matrix of dyadics. 
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First (Fundamental) Form of the Equations of 
Motion 
In this section we obtain the equations of motion of a 
single rigid body about the center-of-mass in terms of 
absolute derivatives. 

Substituting the expression for the spatial momentum 
(8) into the momentum balance (7) and performing the 
inertial derivative we find 

N 
t i  

In order to determine M c  we generalize (2) for use with 
spatial dyadics: 

N B  

Gc=Gc + p] iic - Gc p] (12) 

where 
t+ p]& [ O ] 
[GI 

B 
t + *  

Noting that Mc=O for a rigid body of constant mass, 
we find that the equations of motion are 

where 

Expanding out (14) we find 

Equation (17) (resp. (14)) will be called the fundamen- 
tal form of the equations of motion for a single rigid 
body. 

Second Form of the Equations of Motion 
In this section we develop the equations of motion 
about the center-of-mass in terms of body rates-of- 
change. 

Applying the transport formula (1) to the vectors L3 

and v', we find 3=3 and Gc=v', +[L3]GC. Note that in 
terms of spatial velocities the above equations can be 

N B  N B  

where R is as defined in (13). Also [3]3 = 6 has been 
used in (18). 

Substituting (18) into (14) results in 

[ -1 

G, (;c + p] E)+ El vc = Pc (19) 

Rearranging we find 

where 

= p] iic (22) 

Expanding out (20) the explicit form of the equations 
of motion are 

u 

[ '++I [ ] + [ m ['I [w'] ' c ' ]  v', = [ 71 (23) 
V C  0 m l  

Third Form of the Equations of Motion 
In this section we derive the equations of motion of a 
single rigid body about an arbitrary point fixed on the 
body in terms of inertial rates-of-change. 

For an arbitrary point, denoted 0, k e d  to a rigid body 

v', = 77, + [ 3 ] F c / ,  (24) 

7, = 7 c  + [FC/,]S (25) 

where FC/, denotes the vector from point o to point 
c. Using spatial velocities and forces (24)-(25) can be 
expressed concisely as follows 

- 4  

gc = T v, (26) 

(27) 
t-+ 

4 

F, = TT Pc 
where 

(28) 
1 

and 
that 3, = 3, = L3 and f, = f7, = f i n  (26)-(27). 

= -[FC/,]. + Note that have used the fact 

The absolute derivative of (26) is given by 

N N !Y * 4  

Vc=T vo+ ?v7, (29) 

Substituting (29) and (26) into (11) and pre- 

multiplying by T we find 
t+T 

- 2  u 
M,V, + Cs Vo = Z', (30) 

P. 4 
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+-+ u T - u  * U T * + +  

where M,=T M c T ,  C3=T M,T + T CIT, and 
UT U 

r', =T 2c. Expanding out the expression for M ,  
we find 

U 

To find an explicit formula for C3 note that 

B 
u u  

where T= 0 since Fclo is fixed in the body. Substituting 
(32) into the above expression for c3 and expanding 
yie ds 

H 

We immediately find 

Fourth Form of the Equations of Motion 
In this section we derive two useful representations of 
the equations of motion of a rigid body about an ar- 
bitrary point fixed to the body in terms of body-fixed 
rates of change. 

First Representation: Applying the trans- 

[ -1 ? e  
port formula Vo=V, + R v, to (30) we obtain 

- B ,  * +  

MoVo + C4 Vo = Po (37) 

where 
t+ 

c 4  = c3 +Go p] (38) 

Substituting (33) into (38) and expanding we find 

(39) 
It follows that 

The following fact will be used to simplify (34): 

Proposition 1 If a' and b' are arbitrary vectors then 
[Z][b7[qZ = -[b][Z][a']G. 

- 

- - 
Proof: For any vector 2, [@'= 0. Letting z'= Zx b = 
[qg we find [Z x q[a']g = 0'. Upon using the identity 
[Zx b] = [a'][q - [q[q and the fact that [Z]6 = -[qZ the 
result follows. 

-4 

Applying Proposition 1 to (34L 
We find m[Fc/,] [GI [GI ?,/, = -m [GI [F,~,,][Fc~,]G. As 
a result, 

U H  

Note that J,=Jc -m [FC/,] [F,..,] by the parallel axis 
theorem. 

Collecting together (31) and (35), the equations of mo- 
tion of a rigid body about an arbitrary point fixed on 
the body in terms of inertial rates of change is 

Applying Proposition 1 to the term m[FCc/,] [GI [W] ?,,I: 
in (40), we find that the equations of motion about an 
arbitrary point on a rigid body in terms of body-fixed 
rates-of-change are 

Note that (41) can be also be derived by applying the 
transport formula directly to (36). 

Second Representation: An alternate repre- 
sentation of (41) results from applying the Jacobi iden- 
tity a' x (6 x + b' x (Z x a') + c' x (a' x b') = 0' to the 
term m[F,/,] [GIG,: 

m[Fc/o][G]Go = -[3][50]Fc/0 - [50][Fc/o]3 (42) 
= [w'l[Fc/o]Go - [50][Fc/o]w' (43) 

We immediately find 
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Adding the zero vector in the form of m[i70]i70 to (44) 
yields 

ml 

After some manipulation the above equation can be 
expressed as follows 

- 2  * 
M o V o  + C4 Vo = Po (45) 

where 

and 

(47) 

Equation (45) is a coordinate-free version of the Lie 
group based equations of motion of a single rigid body 
described in [9]. 

Kinematic Equations 
In order to provide a complete description of the mo- 
tion of a single rigid body (i.e., a single spacecraft), a 
set of kinematic equations for each body is required. 
For a single unconstrained rigid body the kinematic 
differential equations (relative to the center-of-mass of 

the body) are given by r:= GC and R= [3] R. Here 
R denotes the rotation dyadic describing the orienta- 
tion of .FB (with origin at  the center-of-mass of the 
body c) relative to FN, FC denotes the position of the 
center-of-mass of the rigid body relative to the origin of 
the inertial frame, and GC denotes the absolute velocity 
of the center-of-mass of the rigid body relative to an 
inertially fixed observer. Note that a set of kinematic 
equations similar to those given above can be developed 
about an arbitrary point o fixed on the rigid body. 

tt 
N 

N * 

Ct 

The Spatial Coriolis Dyadic 

In the last section we developed the following four al- 
ternate forms of the equations of motion of a single 
rigid body: 

* * u  * c ) H  

where Ml=M2=Mc and M3=M4=Mo. Although the 
products C1 VclC2 Vc,C3 VolC4 Vo are certainly 
unique, the spatial Coriolis dyadic Ci i = 1 , 2 , 3 , 4  
is not. As will be shown, this is a consequence of the 
fact that Cg is itself a function of the spatial velocity. 

* tt * tt 

c) 

tt 

For the purpose of dynamic modeling and simulation, 
the non-uniqueness of the spatial Coriolis dyadic is not 
an important issue as any admissible choice of Ci leads 
to the correct linear/angular accelerations. However, 
when developing nonlinear tracking control laws for 
separated spacecraft (see [2] for applications to under- 
water vehicles) the choice of the spatial Coriolis dyadic 
is critical. Specifically, Ci must be defined in such a 

way that it renders M i  -2 Ci skew-symmetric. For ex- 
ample, in [12] a globally stable adaptive control law for 
robotic vehicles is designed that results in asymptotic 
tracking of a desired reference trajectory q d ( t )  E !Rn 
where qd denotes specific generalized coordinates. The 
stability proof of the adaptive control law requires that 
sT(U - 2C)s = 0 where s E !Rn is a function of both 
q and q and M is the system mass matrix [12]. As a 
result, the matrix representation of the Coriolis dyadic, 
denoted C, must be constructed in such a way to ren- 
der the matrix (U - 2C) skew-symmetric6. The ex- 
plicit relationship between the matrices M and C and 
the dyadics M and C for a multibody spacecraft is dis- 
cussed in [9]. 

It is also known [9] that the equations of motion of a 
multibody spacecraft (i.e., a spacecraft consisting of a 
collection of hinge connected rigid bodies) inherit the 
skew-symmetry property from the equations of motion 
at  the individual body level. As a result, it is important 
to define the appropriate spatial Coriolis dyadic Ci at 
the level of each individual rigid body. To this end, the 
following result is useful. 

c) 

* 

e-* 
N 
CI 

c) * 

c) 

N * * 
Proposition 2 If Ci is  skew-symmetric then M i  
-2 Ci is skew-symmetric. 

c) 

N 
Proof: Recalling Gi= [d] Gi - Gi p] it fol- 

N 
*T 

lows immediately that Mi= - M i  . Observing that 
the difference of two skew-symmetric tensors is skew- 
svmmetric establishes the result. 

N * 

'It is important to note that if s = q ,  then qT(k - 2C)q = 0 
irrespective of the skew-symmetry of A4 - 2C. This statement is 
a property of finite-dimensional natural systems; see [9] for addi- 
tional details and references. As a result, it is only in situations 
where (M - 2C) is pre- and post-multiplied by a column vector 
different from q (the typical case in control design) that C should 
be carefully defined. 



We now discuss some specific choices of the spatial 

Coriolis dyadic that render Mi -2 Ci skew-symmetric. 
Beginning with the fundamental form of the equations 
of motion (14) we find from expanding (16) that 

u 
N 
u 

* 
Noting that C1 is skew-symmetric, it follows that the 
fundamental form of the equations of motion are man- 
ifestly skew-symmetric. We will denote C1 in (52) by 

c1 * 

u 

CI ss 

The Coriolis dyadic associated with the second form 
of the equations of motion (20) is not skew-symmetric. 
In order to develop a skew-symmetric representation 
we expand (22) and find 

(53) 

A skew-symmetric Coriolis dyadic results by modifying 
(53) as follows 

[w'] J1: - J1: [d] 0 - ] (54) c 2  = [  u 

u ss 

0 77431 

Note that although we have modified the Coriolis 
dyadic, the second form of the equations of motion (20) 

has not changed since C2 V, =C2 V,. The above tech- 
nique of adding the zero vector in a judicious fashion is 
the key to developing the appropriate spatial Coriolis 
dyadic for use in nonlinear spacecraft control. 

The fourth form of the equations of motion leads to 
several admissible skew-symmetric forms. For example, 
although (39) is not skew-symmetric, a skew-symmetric 
representation of the fourth form of the equations of 
motion results from the following modification of (39) 

*ss u 

The skew-symmetric spatial Coriolis dyadic given in 
(55) can be used to construct another skew-symmetric 
form of the equations of motion. To this end consider 
the product 

Applying the identity [Z][@ = [Z x 6]Z to the term 
[w'] [Fc/O] 3, using the identity [Z]b = -[b]Z, and sub- 
tracting the zero term m[GO]GO yields 

... ... 

To simplify (57) the following result is required: 

Proposition 3 If Z, 6 and c' are arbitrary vectors then 
[Z][[b7c'= -[6x dc'+ [Zx 216 

Proof: We find from rearranging the Jacobi ide_ntity 
a' x (6x E') + 6 x  (Zx Z) 4 + c'x (a' x 6) = 0' that. ... [Z][b]c'= 
- [q [qZ-  [ q [ Z ] b  = - [ b ] [ q Z +  [q [qZ = -[b](:c' x Z) + 
[ q 6 x  Z) = [Zx Z ] L  [6x Z]Z. a 

+ 

Applying Proposition 3 to  the term [Fc/o][d]fjo in (57), 
we find after some rearranging 

The form of the Coriolis dyadic given in (58) is similar 
to  the result obtained by Fossen in [2]. 

3 Equations of Motion for Formations 

In this section we demonstrate that the equations of 
motion of an entire formation of N rigid spacecraft has 
the same structure as the equations of motion of a sin- 
gle rigid spacecraft. In order to  discuss collections of 
rigid bodies, the previous notation introduced for a sin- 
gle rigid body (cf. equation (48)) must be modified. To 
this end, the equations of motion of the ith spacecraft 
i = 1 , 2 , .  . . , N are denoted 

E Gi (PI  vi (PI+ Ei (p)E(p) = Ft(p)  (59) 

where point p is either the center-of-mass c or a general 
point on the body o of the ith spacecraft7. Here the 
Coriolis dyadic Ci ( p )  is assumed to be any admissible 
skew-symmetric dyadic (consistent with the point p )  as 
discussed in the previous section. 

u 

we immediately find that the global equations of motion 
of the formation can be expressed as: 

-2  u _ .  

MV+CV=T (64) 
7Strictlv p = p ;  because the equations of motion of each bodv 1 u 

G- J,  [GI W' + m [GI C, - m[Co]Co c, VI = 
-m [w' x W' - m [go] G - - -  ~. 

(57) can be expressed with respect to different reference points. 
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Note that equation (64), describing the global dynam- 
ics of the formation, has the same structure as the equa- 
tions of motion of a single rigid body. Although we have 
used inertial derivatives in (64), body fixed derivatives 
can also be used. The following property of the forma- 
tion equations of motion is of interest for the design of 
formation control laws: 

u 
Proposition 4 If ci ( p )  is skew-symmetric for i = 

1,2, .  . . , N then M -2 c is also skew-symmetric. 
N * t-) 

Proof: The proof follows from applying Proposition 
2 directly to the definitions of M and c given above. 

u et 

As will be demonstrated in a later paper, the global 
(absolute) formation equations of motion (64) form 
the starting point for describing a formation as a vir- 
tual multi-body system with a branched-chain (or tree) 
topology ’. For example, once a particular spacecraft 
has been designated as the leader (i.e., the basebody of 
the virtual multibody chain), the remaining spacecraft 
are analogous to the rigid links of a multibody chain. 
Each follower spacecraft is “attached” to the basebody 
spacecraft via a 6DOF free-free joint. Here, a free-free 
joint represents unconstrained motion between bodies; 
i.e., a free-free joint consists of a free 3 DOF prismatic 
joint and a free 3DOF spherical joint. As a result, in 
the virtual multi-body framework, the relative equa- 
tions of motion of the formation become the primary 
concern. Due to  space limitations, the relative equa- 
tions of motion will be developed in a future paper. 

4 Conclusions 

In this paper we have developed a tensorial (i.e., 
coordinate-free) derivation of the equations of motion 
of a formation consisting of N spacecraft each mod- 
eled as a rigid body. The results presented here are 
the first step toward developing a coordinate-free ar- 
chitecture for formation flying dynamic modeling and 
control. Future work will address (1) characterizing the 
relative dynamics of formations using the concept of a 
virtual multi-body system, (2) developing the appropri- 
ate environmental disturbance models, (3) developing 
explicit techniques to linearize and perform sensitiv- 
ity analysis on the formation equations of motion, and 
(4) developing the equations of motion for formations 
where each individual spacecraft is itself a multi-body 
system. 

*A multibody system is called branched-chain or tree topology 
if it consists of a set of serial chains of bodies, each connected to 
a central basebody. 
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