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The Role Of Invariant Manifolds In Low Thrust Trajectory Design 

Martin W. Lo*, Rodney Andersont, Gregory whiffen’, Larry Romans* 

An initial study of techniques to be used in understanding how 
invariant manifolds are involved in low thrust trajectory design for 
the Jovian moon missions was performed using a baseline 
trajectory from the Europa Orbiter studies. Poincark sections were 
used in order to search for unstable resonant orbits. The unstable 
manifolds of these resonant orbits were computed, and they were 
found to provide an indication of how the EO trajectory was able 
to transition between resonances. A comparison with the stable 
and unstable manifolds of Lissajous orbits around the Jupiter- 
Europa L2 Lagrange point provided evidence that the Europa 
capture utilizes invariant manifolds of quasi-periodic orbits. 

INTRODUCTION 

Invariant manifold theory and low energy orbits may play a significant role in the 
design and optimization of low thrust interplanetary trajectories (see Lo’). This is the first 
of a series of papers where we plan to demonstrate first, that invariant manifolds do 
indeed play such a role, second, explain how the dynamics of low thrust interplanetary 
trajectories interact with invariant manifolds. Our plan is to analyze and characterize the 
dynamics of the trajectories of the Europa Orbiter (EO, see Johannessen and D’Amario2) 
and of the Jupiter Galilean Moons Tour (JGMT see Whiffen3). The idea is to first study 
the role of invariant manifolds for a trajectory which uses impulsive maneuvers which is 
simpler to analyze, then apply the knowledge gained to the low thrust trajectory where 
the analysis is much more complex. In this paper we will introduce the various concepts 
we will use and focus on the analysis of the EO trajectory. 

The fact that there may be a significant connection between low thrust interplanetary 
trajectories and invariant manifold theory is su gested by two seminal work in the mid 
1990’s. The first work,by Bolt and Meiss 1995 , described an algorithm to construct a 
very low energy transfer trajectory from the Earth to the Moon using recurrence of 
chaotic trajectories generated by the invariant manifolds of unstable periodic and 
quasipeirodic orbits around the Earth-Moon system. Although this approach required 
many years for the transfer to occur, one can infer from this work that chaotic trajectories 
may play a role in low thrust interplanetary trajectory design and optimization. The 
second work continued Bolt and Meiss’ work but instead of using the random recurrences 
of intersecting chaotic trajectories, Shroer and Ott 19975 targeted the invariant manifolds 
of unstable resonant orbits between the Earth and the Moon. This greatly reduced the 

% 

* Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA. ’ Colorado Center for Astrodynamics Research, University of Colorado, Boulder, CO. 

1 



- 0  

L 1  I 

.7 io 

M 
E 

h '  
8 '  
54 
4, 
- 8  

v) 

8 4 4 0 ¶ . 0  44 LO 4.0 6 LZ 64 SO 68 6 
x (AU. Sun-Jupter mtatmg frame) x (AU. Sun-Jupiter mtalmg frame) 

1 a. 1 b. 
Figure 1 .a. A homoclinic-heteroclinic chain within the Jovian system. These are a 
special set of trajectories linking the S, J, X regions of Jupiter via two of its periodic 
orbits at LI and L2. 1 .b. The orbit of comet Oterma superimposed on the chain 
showing how closely the comet orbit is guided by the chain. 

flight time to less than 1 year. The maneuvers for the targeting were miniscule in both 
approaches since chaotic orbits were used. These two papers suggested to us that 
invariant manifolds do play a very important role the dynamics of low thrust 
interplanetary trajectories. 

A second stream of research which feeds into the current series of papers is the 
understanding of the role of invariant manifolds in resonances and ballistic captures. For 
this, we take our cue from the heavenly bodies which have exploited this low energy 
dynamics for eons. It has long been observed that comets frequently change their orbits 
from one resonance to another. Here resonance refers to that between the orbital period of 
a comet or asteroid with that of a planet such as Jupiter or Saturn. For example, the Hilda 
Asteroid Group is in 3:2 resonance with Jupiter, meaning that the asteroid group makes 3 
revolutions around the Sun for every 2 revolutions which Jupiter makes around the Sun. 
The comets Oterma, Gehrals3, and Helin-Roman-Crockett all exhibit this resonance 
transition phenomena going between the 3:2 and 2:3 resonances with Jupiter. 

Some have proposed the weak stability boundary to explain the resonance transition 
(see Belbruno and B. Marsden6), but there have been no computations or proofs known to 
the authors using the weak stability boundary to demonstrate this conjecture. Lo and 
Ross7 proposed the invariant manifolds of unstable orbits around L1 and L2 as a 
mechanism for this transition. Koon, Lo, Marsden, and Ross 899, using semi-analytical 
methods, demonstrated the transition between the 3:2 and 2:3 resonance of Jupiter is 
effected by heteroclinic orbits between Liapunov orbits around JL1 (Jupiter L1) and JL2 
and the intersection of invariant manifolds between an unstable 2:3 resonant orbit with 
the manifolds of a Liapunov orbit around JL2, and the intersection of invariant manifolds 
between an unstable 3:2 resonant orbit with the manifolds of a Liapunov orbit around JL1 
(see Figure 1 above). See Yamato and Spencer" for further developments of the Petit 
Grand Tour concept.These computations were performed in the restricted 3-body 
problem. Howell, Marchand, and Lo' showed that the orbits of the comets mentioned 
above do indeed closely followed the invariant manifolds of halo orbits around Jupiter's 
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LI and LZ Lagrange points computed with the JPL ephemeris model of the Solar System. 
Using interval analysis methods, Wilczak and P. Zgliczy’nski l2  provided a computer 
assisted proof of the existence of the heteroclinic connections computed in Koon et a1 *. 

This excursion into celestial mechanics actually has some compelling consequences 
for new mission concepts. Using these transitions via invariant manifolds, Koon, Lo, 
Marsden, and Ross 899proposed a “Petit Grand Tour” to serially capture and orbit the 
Galilean Moons using the invariant manifolds to provide low energy intersatellite 
transfers and ballistic captures to reduce the total AV required. This approach reduced the 
AV from the Hohmann Transfer by roughly 50%. However, the performance of the EO 
was even better by using repeated resonant flybys. In fact, using repeated resonant flybys 
for a Petit Grand Tour mission, extending the total mission elapsed time from 10’s of 
days to 10 years, the total AV may be reduced to less than 20 m/s (see Ross, Koon, Lo, 
MarsdenI3) Clearly, resonant orbits are important for lowering the energy required for 
interplanetary transfers, although it is at the expense of longer flight times. This opens the 
mission trade space by giving mission designers the freedom to balance the AV budget 
with the total flight time. 

We provide a heuristic description of how low thrust trajectories may interact with 
invariant manifolds. We begin by with the energy surfaces within the 3-body problem 
which is itself an invariant manifold. A spacecraft with a given energy (Jacobi constant) 
will move on that energy surface. If we turn on a low thrust engine, the spacecraft will 
move onto a nearby energy surface, layer after layer, piercing a family of energy 
surfaces. However, we know much are about the structures in phase aside from energy 
surfaces. For the spatial circular restricted 3-body problem, the phase space is 6- 
dimensional and the energy surface is 5-dimensional. But the unstable periodic and 
quasiperiodic orbits have stable and unstable manifolds of dimensions 2 and 3 
respectively. They themselves M e r  partition the energy surface and restrict the motions 
of the spacecraft. But as the thrust level is low, the spacecraft is traversing these layers of 
manifolds slowly. The manifolds themselves are also changing slowly locally, assuming 
we are not close to singularities. Thus overall, the spacecraft will appear to be traveling 
along the invariant manifolds. This is frequently seen in trajectories optimized by the 
MYTSTIC tool at JPL, even though neither MYSTIC nor the initial guess solution to 
start the optimization process do not explicitly incorporate a prior knowledge of invariant 
manifolds. 

Our ultimate goal is to combine our knowledge of invariant manifolds in the Solar 
System (those generated by unstable orbits) and the theory of transport through 
resonances and libration orbits, using the heuristic plan above as a guide to first develop 
an empirical and semi-numerical understanding of the dynamics of low thrust 
interplanetary trajectories. From this numerical foundation, we may be able to build a 
more systematic and theoretical approach to understand the dynamics of low thrust 
interplanetary trajectories. 

For low thrust trajectories in the two body problem, the dynamical systems approach 
is also be very useful. There, the picture is slightly different. Instead of invariant 
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manifolds associated with unstable orbits, the stable orbits are organized into families of 
concentric tori, hence the spiraling of low thrust trajectories to escape the gravity well of 
a planet. These tori are also invariant manifolds, albeit stable. It is remarkable that still 
today, the problem of optimizing spiral escape and capture orbits in the two-body context 
is an unsolved problem. See for a description of the current research in this deceptively 
challenging problem. 

JGMT AND LOW THRUST TRAJECTORIES 

An initial examination was made of the Jupiter Galilean Moons Orbiter trajectory 
generated by Gregory Whiffen using the MYSTIC optimization software for a spacecraft 
traveling from Ganymede to Europa in the Jovian system'. The trajectory covers a span 
of approximately 83.5 days (from JED = 2457225.9 to JED = 2457309.4) using the JPL 
DE405 ephemerides for the planets and moons. A plot of the trajectory including the 
thrusting directions in Jupiter centered inertial coordinates is given in Figure 2. A plot in 
rotating flame of the same trajectory is given in Figure 3. 

However, we quickly discovered that many of the standard techniques such as 
Poincarb sections are very difficult to use in the Jovian system due to the strong 
perturbations of the multiple moons in resonance with one another. Instead, we decided 
to attack a simpler problem by first examining an impulsive version of a Jovian satellite 
tour, the Europa Orbiter (EO) trajectory. It is well known that EO uses a ballistic capture 
into Euorpa orbit. We had long surmised that this capture follows the invariant manifolds 

Figure 2 JGMT Trajectory with Thrusting Directions (inertial frame) 
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Figure 3. JGMT Trajectory in the Europa Rotating Frame in various projections 

of some J L z  libration orbit. Moreover, the resonant flybys provide EO with an extremely 
efficient intersatellite transfer. Although we know that for JGMT, the final capture 
mechanism uses an unstable retrograde orbit instead of a libration orbit. Nevertheless, 
resonances and invariant manifolds are the keys to the trajectory design of both EO and 
JGMT’s. 

MODELING THE EUROPA ORBITER TRAJECTORY IN THE CR3BP 

A Europa Orbiter trajectory was obtained fi-om Jennie Johannesen at JPL to use as the 
baseline for this study’. The capture into an orbit around Europa was currently the 
primary focus, so only the last portion of the trajectory was used here. This portion 
began with a flyby around Europa on September 12,2009 and ended with Europa Orbit 
Insertion (EOI) on October 19,2009. There were two intermediate AVs which divided 
the trajectory into three segments. A view of the trajectory in the inertial coordinate 
system is shown in Figure 4., and views in the rotating coordinate system are plotted in 
Figure 5. A list of events is given in Table 1. 

As a first step, the selected portion of the trajectory was imported into the CR3BP in 
order to eliminate extraneous effects and focus on the dynamics of the problem. 
Specifically, an understanding of how the trajectory uses invariant manifolds to transition 
between the different segments was desired. This process required several steps and 
utilized a differential corrections scheme implemented in JPL’s Libration Point Mission 
Design Tool (LTool). As a first step, the original Europa Orbiter baseline trajectory 
integrated using the ephemerides for each of the bodies was imported into LTool as an 
SPK file. Several points on this trajectory were then selected at regular intervals and 
used as “patchpoints” in the differential corrector. Refer to Roby or Howell for an 
explanation of the algorithms used in this differential corrector’. Using these patchpoints 
the differential corrector quickly converged on a solution when Jupiter and its four major 
moons (Io, Europa, Ganymede, and Callisto) were included in the integration with their 
ephemerides. The differential corrector was unable to converge when the trajectory was 
imported directly into the CR3BP from this point, so the trajectory was transferred to the 
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Figure 4. EarthMeanEcliptic2000 Inertial Europa Orbiter Trajectory. 

CR3BP in stages. A large number of patchpoints seemed to keep the differential 
corrector from converging, so code was written to eliminate patchpoints by visual 
inspection where they appeared to be unnecessary. With these points eliminated, each of 
the moons, except Europa, were removed one at a time, and the differential corrector was 
allowed to converge each time before removing the next moon. For some reason, 
removing Io caused the greatest difficulty, and the trajectory only converged if it was 
removed last. Once the trajectory had converged using only Jupiter and Europa, the 
trajectory was imported into the CR3BP. Because the final portion of the trajectory 
approached Europa, the patchpoints were imported into the CR3BP relative to Europa. 
Once this procedure was completed, the trajectory finally converged in the CR3BP. It 
should also be mentioned that the primary consideration in the differential correction 
process was retaining the shape of the trajectory with the expectation that this would be 
most likely to preserve the dynamics that were of interest. This made the process more 
difficult since the differential corrector tended to converge to a very different type of 
trajectory. The ability to edit the patchpoints was especially important for preserving the 
shape. As can be seen from comparing Figures 5 and 6, the CR3BP trajectory retained 
the same general characteristics as the original baseline Europa Orbiter Trajectory. 
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Figure 5. Europa Orbiter Baseline Trajectory in the Jupiter-Europa Rotating Frame 
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Figure 6. CR3BP Europa Orbiter Trajectory in the Jupiter-Europa Rotating Frame. 
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A comparison of the AVs is provided with the trajectory events in Table 1. Since one 
area of interest was the final approach to Europa, which moved out of the xy-plane 
significantly, the trajectory was left as a three-dimensional trajectory. In future studies 
that will focus on the resonances, an attempt will be made to force the trajectory to 
remain in the xy-plane since most of the trajectory far from Europa was nearly planar. 

Date 
09/12/2009 15:06 
09/20/2009 02: 14 
09/27/2009 03:05 
10/08/2009 02:46 

Table 1 Comparison of Trajectories Before and After Differential Correction 

Event Original Traj. CR3BP Traj. 

AVI 11 8.4 m/s 133.5 m / s  

AV? 91.6 m / s  150 m/s 

Initial Epoch - - 

Europa Swingby - - 
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RESULTS AND DISCUSSION 

Resonant Orbits 

In the analyzed portion of the Europa Orbiter Trajectory, there appear to be two 
primary resonances with Europa. These can be observed by computing the osculating 
period of the trajectory relative to Jupiter using the usual two-body equations. The 
results of this calculation, with the period of the trajectory divided by that of Europa, are 
shown in Figure 7. 
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Figure 7. Normalized Period of the Trajectory as a Function o Time. 
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Segment 
1 
2 
3 

By examining the period, it can be seen that there appears to be a 3:4 resonance for 
the first segment of the trajectory which corresponds to a value of 1 .z for the 
normalized period in Figure 7. It should be noted that the resonances in this paper will be 
given in the form [Europa period]:[S/C period]. The next resonance appears to be a 5:6 
resonance, which is simply a normalized period of 1.2 in Figure 7. 

Jacobi Constant 
2.9845569261 3 
2.99720409688 
3.00247993226 

In order to examine these resonances, a series of Poincark sections were computed. 
Each of these Poincard sections were computed for a specific Jacobian energy in the 
planar CR3BP using the Euopa rotating frame. In each case, a grid of initial conditions 
was used to initialize the Poincare calculations. In each grid, x and i were incremented 
across a selected range, and each trajectory was started with y = 0. The value of vy was 
specified by the Jacobi energy. The first three intersections of the trajectory with the y = 
0 line were not included so as to remove the effect of the grid. The question of the 
quantities to use in computing the Poinark section was also examined. Malhotra” uses 
the Delaunay variables for canonical momentum and mean anomaly (M) as well as 
simply x and x . Koon et al. use the quantities L = & and E, the argument of periapse 
relative to the rotating axis’. Calculation of L and 
preferred method for this study, since the focus was on the resonances or the period, and 
thereby the semi-major axis. Initially the quantities L and M were used as shown in 
Figure 8. to search for a 3:4 unstable, resonant orbit. 

was ultimately determined to be the 

An unstable orbit was the subject of this search since it was expected that the unstable 
manifold would provide a means for the spacecraft to move between resonances. 
Although f h r e  work will include the development of techniques to search for these 
unstable, resonant orbits, a visual search with a trial and error method was used for this 
initial investigation. In this procedure, a point was visually selected near the area where 
an unstable orbit of the desired period (L value) was expected to exist. For a given value 
of L, this point was expected to be n radians away from the stable resonant orbit at the 
center of the ‘open’ areas in the Poincard section (seen Koon et al.’). Once a point was 
selected, the monodromy matrix after one period (in the rotating frame) was computed. 
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The eigenvalue of the monodromy matrix with the maximum absolute magnitude was 
examined in order to obtain a measure of stability of the chosen resonant orbit. An orbit 
for the 3:4 resonance was found in this manner at the point specified by the red dot in 
Figure 8. It has L = , M = . The resulting orbit is shown in the rotating coordinate frame 
in Figure 10, and it is shown with its unstable manifold in Figure 1 1. The stable manifold 
followed the original orbit to the resolution of the plot. It can be seen that the unstable 
manifold is gradually drifting away from the 3:4 resonance. Currently, this research is 
using the computation of L and 
manifolds. 

as shown in Figure 9 to search for additional unstable 
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Figure 8. PoincarC Section using L and M for the 3:4 Resonance (red indicates 
selected orbit) 
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Figure 9. PoincarC Section using L and for the 3:4 Resonance 
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Figure 10. Unstable 3:4 Resonant Orbit Corresponding to Red Point in Figure 8. 
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Figure 11. Unstable 3:4 Resonant Orbit (Blue) with Unstable Manifold (Red) 
(Stable Manifold Follows Resonant Orbit) 
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Figure 12. PoincarC Section using L and for the 5:6 Resonance (red indicates 
selected orbit) 

I 1 I I I I I 

1 

0.1 

* a  

-0.6 

-1 

I I I I I I I 

-1.5 -1 -0.5 0 0.5 1 1.5 
X 

Figure 13.5:6 Unstable Resonant Orbit in the Jupiter-Europa Rotating Frame 
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A procedure similar to that used in finding an unstable orbit for the 3:4 resonance was 
used to search for an unstable orbit at the 5:6 resonance. The Poincar6 section in Figure 
12. was computed for this purpose using L and S . 

The selected orbit is shown in the Poincare section as a red dot and is plotted in 
Figure 13. This orbit had the largest maximum absolute eigenvalue of the tested orbits, 
which was important in order to determine whether an unstable manifold of the resonant 
orbit could be found that would approach the Europa Orbiter trajectory as it came near to 
Europa. The results for the most unstable resonant orbit currently obtained are shown in 
Figure 14. The black dashed line is the Europa Orbiter trajectory, and the red line is the 
unstable manifold of the selected resonant orbit. On the first pass by Europa (the 
uppermost loop), the unstable manifold has not yet traveled very far from the resonant 
orbit (not shown). The second pass falls on the other side of Europa, and the third pass 
comes closest to the Europa Orbiter trajectory. Remember that the trajectories taken 
from the Poincare section were planar, so some differences would be expected. This 
portion of the study is in its early stages, so even closer matches with the Europa Orbiter 
are anticipated. An additional avenue of research will involve a comparison with a planar 
version of the Europa Orbiter trajectory. 

Europa Capture 

A primary interest of this study was to understand the Europa Orbiter’s final approach 
to Europa. After examining the orbit, it was suspected that the Europa Orbiter may 
closely follow the stable and unstable manifolds of a quasi-periodic orbit at the Jupiter- 
Europa L2 Lagrange point. This hypothesis was initially tested by choosing a point on 
the Europa Orbiter trajectory and performing a AV. The trajectory that traveled through 
this new point in phase space was then examined. The AV was modified until the 
trajectory appeared to come fkom a nearly periodic orbit around L2 as shown in Figures 
15 and 16. 
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The characteristics of this trajectory were then used as initial guesses to find a quasi- 
periodic Lissajous orbit around L2 with the same energy as the Europa Orbiter trajectory. 
Several different Lissajous orbits were computed using a Richardson-Cary expansion (put 
in??) along with their stable and unstable manifolds. A simple interpolation algorithm 
was used to compute the Lissajous orbit with the desired Jacobian energy once the initial 
guess had been obtained. First, a comparison of the unstable manifold of the selected 
Lissajous orbit was made with the incoming Europa Orbiter Trajectory. The best fit 
obtained is shown in Figures 17 and 18. From the different views it can be seen that the 
Europa Orbiter trajectory appears to follow the surface of the stable manifold of the 
Lissajous orbit. A slightly different Lissajous orbit was used to compute the unstable 
manifold for comparison with the Europa Orbiter trajectory as shown in Figures 19 and 
20. The Europa Orbiter trajectory appears to have a shape similar to many of those that 
comprise the unstable manifold, and although it starts out at some distance from the 
unstable manifold, it approaches it as it comes closer to Europa. The similarity in shape 
and difference in position suggests that some other type of quasi-periodic orbit may 
provide a better fit. 

17 

--- 



Figure 17. Stable Manifold of L2 Lissajous Orbit (green) Compared to the Incoming 
Europa Orbiter Trajectory (orange) 

Figure 18. Stable Manifold of L2 Lissajous Orbit (green) Compared to the Incoming 
Europa Orbiter Trajectory (orange) 



,\ \ 
Figure 19. Unstable Manifold of L2 Lissajous Orbit (red) Compared to the 
Incoming Europa Orbiter Trajectory (orange) 

Figure 20. Unstable Manifold of L2 Lissajous Orbit (red) Compared to the 
Incoming Europa Orbiter Trajectory (orange) 

CONCLUSIONS 

Examination of the Europa Orbiter trajectory has provided a means to test many of 
the concepts that it will be necessary to understand in the low thrust problem. It was 
found that Poincad sections allowed the determination of unstable resonant orbits, 
although a more rigorous technique will probably be needed. In combination with the 
calculation of the eigenvalues of the monodromy matrix, it was possible to compute 
resonant orbits with varying degrees of instability. By using the most unstable orbits, this 
study gave an indication that the unstable manifolds might be used to transition to 
different resonances and capture around Europa. During the approach to Europa, the 
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proximity of the Europa Orbiter trajectory to the stable manifold of an L2 Lissajous orbit, 
and the similarity in shape to the unstable manifold of a Lissajous orbit provide insight 
into how the Europa capture may be using invariant manifolds. This knowledge suggests 
that we can use pieces of the invariant manifolds associated with Lissajous or halo or 
unstable resonant orbits as initial guesses for a low thrust trajectory. This is, in part, our 
approach to providing better initial guess for tools like MYSTIC to optimize complex 
low thrust trajectory more quickly and provide more control. 

FUTURE WORK 

The richness of this problem suggests may possible approaches for future work. We 
will describe a few that we consider the more accessible and potentially more hitful. An 
even simpler model is to consider a planar version of the EO trajectory. In the case of the 
coupled 3-body problems (to model the Gallilean satellite system), the invariant 
manifolds of the individual 3-body problem are much better understood and simpler to 
work with due to the lower dimensionality of the problem. 

The problem of computing Poincare sections of highly perturbed systems such as the 
Gallilean satellite system is very challenging. Is the situation simply chaotic and random, 
or is there still structures at much smaller timescale than the period of an orbit around the 
primary? For example, we might think of the invariant manifold tubes of the unstable 
orbits pulsating with the dynamics instead of being completely destroyed. In other words, 
can we think of the invariant manifold structure as a time-varying system? This means 
that tubes have short life time, but their structure still plays a role in the dynamics. What 
techniques can we use to recover this structure? Perhaps some type of lifting of the 
problem into higher dimensions to unfold dynamics in some sense. In this regard, the 
planar problem mentioned above is clearly the place to start such an analysis. 

From the purely numerical point of view, in order to accomplish our research goals, 
we must have access to families of invariant manifolds and the ability to easily work with 
them, computing intersections, volumes, and surface areas, etc. Parallelism is likely to be 
required to perform so many calculations. Data structures must be carehlly designed to 
represent these objects so that they can be easily manipulated and operated upon. 

ACKNOWLEDGEMENTS 

This work was carried out at the Jet Propulsion Laboratory of the California Institute 
of Technology under a contract with the National Aeronautics and Space Administration 
and at the Colorado Center for Astrodynamics Research, University of Colorado, 
Boulder, C 0. This work was funded in part by the Jupiter Icy Moons Orbiter mission 
design tool development task. The second author was also funded partially by the John A. 
Vice Graduate Student Excellence Award from the University of Colorado at Boulder. 
The Euorpa Orbiter trajectory was provided by Jenny Johannesen and was the joint work 
of Jenny Johannesen and Eugene Bonfiglio. 



REFERENCES 

1. Lo, M.W., “The Interplanetary Superhighway and the Origins Program”, IEEE. 

2. Johannesen, J., L.A. D’ Amario, “Europa Orbiter Mission Trajectory Design,” 
AAS Paper 99-360, AAS/AIAA Astrodynamics Specialist Conference, Girdwood, 
Alaska, August 16-19,1999. 

3. Whiffen, G.J., “An Investigation of a Jupiter Galilean Moon Orbiter Trajectory,” 
AAS Paper 03-544, AASIAIAA Astrodynamics Specialist Conference, Big Sky, 
Montana, August 3-7,2003. 

4. Bollt,E. and J.D. Meiss, “Targeting Chaotic Orbits to the Moon.” Physics Letters 
A 204,373-378,1995. 

5.  Schroer, C.G. and E. Ott, “Targeting in Hamiltonian systems that have mixed 
regular/chaotic phase spaces”, Chaos Vol7(4) pp. 5 12-5 19. December 1997 

6. Belbruno, E., B. Marsden 

7. Lo, M., S. Ross, Monterey paper 

8. Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross, “Heteroclinic Connections 
between Periodic Orbits and Resonance Transitions in Celestial Mechanics,” 
Chaos, Vol. 10(2), 2000, pp. 427-469. 

9. Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross, “Comet paper. 

10. Yamato, H,, and D.B. Spencer, ‘Trajectory Design of Spacecraft Using Invariant 
Manifolds,” ISTS 2002-s-16, Intemational Symposium on Space Technology and 
Science, Matsue, Japan, May 2002. 

11 .  Howell, K.C., B. Marchand, M.W. Lo, “Temporary Satellite Capture of Short- 
Period Jupiter Family Comets fkom the Perspective of Dynamical Systems”, JAS, 
Vol. 49, No. 4, October-December, 2001, pp. 539-557. 

12. D. Wilczak and P. Zgliczy ‘nski, Heteroclinic Connections between Periodic 
Orbits in Planar Restricted Circular Three Body Problem - A Computer Assisted 
Proof, Commun. Math. Phys. 234,37-75 (2003). 

13. Ross, S., W. Koon, M. Lo, J. Marsden 

14. Wilson, R.S., “Derivation of Differential Correctors Used in GENESIS Mission 
Design,” JPL IOM 312.1-03-002. 



15. Malhotra, R., “The Phase Space Structure Near Neptune Resonances in the 
Kuiper Belt,” The Astronomical Journal, Volume 1 1 1, Num. 1,  January 1996, pp. 
504-5 16. 



REFERENCES 

1. Lo, M.W., “The Interplanetary Superhighway and the Origins Program”, IEEE. 

2. Johannesen, J., L.A. D’Amario, “Europa Orbiter Mission Trajectory Design,” 
AAS Paper 99-360, AAS/AIAA Astrodynamics Specialist Conference, Girdwood, 
Alaska, August 16-19, 1999. 

3. Whiffen, G.J., “An Investigation of a Jupiter Galilean Moon Orbiter Trajectory,” 
AAS Paper 03-544, AAS/AIAA Astrodynamics Specialist Conference, Big Sky, 
Montana, August 3-7,2003. 

4. Bollt,E. and J.D. Meiss, “Targeting Chaotic Orbits to the Moon.” Physics Letters 
A 204,373-378,1995. 

5.  Schroer, C.G. and E. Ott, “Targeting in Hamiltonian systems that have mixed 
regular/chaotic phase spaces”, Chaos Vol7(4) pp. 5 12-5 19. December 1997 

6. Belbruno, E., B. Marsden, “Resonance Hopping in Comets”, Astronomical 
Jo~rnal, 113(4), 1433-1444. 

7. Lo, M., S. Ross, “Low Energy Interplanetary Transfers Using Invariant Manifolds 
of L1, L2, and Halo Orbits”, AAS/AIAA Space Flight Mechanic Meeting, 
Monterey, CA., Feb. 9-1 1, 1998.1 

8. Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross, “Heteroclinic Connections 
between Periodic Orbits and Resonance Transitions in Celestial Mechanics,” 
Chaos, Vol. 10(2), 2000, pp. 427-469. 

9. Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross, “Comet paper. 

10. Yamato, H., and D.B. Spencer, “Trajectory Design of Spacecraft Using Invariant 
Manifolds,” ISTS 2002-s-16, Intemational Symposium on Space Technology and 
Science, Matsue, Japan, May 2002. 

11 .  Howell, K.C., B. Marchand, M.W. Lo, “Temporary Satellite Capture of Short- 
Period Jupiter Family Comets from the Perspective of Dynamical Systems”, JAS, 
Vol. 49, No. 4, October-December, 2001, pp. 539-557. 

12. D. Wilczak and P. Zgliczy’nski, Heteroclinic Connections between Periodic 
Orbits in Planar Restricted Circular Three Body Problem - A Computer Assisted 
Proof, Commun. Math. Phys. 234,37-75 (2003). 

13. Ross, S. D., Koon, W. S., Lo, M. W. and Marsden, J. E. [2003] Design of a Multi- 
Moon Orbiter. Inl3th AASIAIAA Space Flight Mechanics Meeting. Ponce, 
Puerto Rico. Paper No. AAS 03-143. 

21 




