XML Hierarchical Database for Missions and Technologies

Jon Neff, Matthew Marshall
The Aerospace Corporation

Raphael Some, Akos Czikmantory
Jet Propulsion Laboratory

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Topics

- Introduction
- Functional Block Diagram
- Requirements and Desirements
- Relational Database Limitations
- XML Database Advantages
- Architecture and Organization
- User Interface
- Sample Database Schema
- Status and Plans
Introduction

- NMP charter
- TCA identification and prioritization
- Quantitative, traceable, defensible ROI
- Two tasks
 - ROI evaluation
 - Database
- Hierarchical, XML-based database
Requirements and Desirements

- Hierarchically organized data
- Machine-readable entries
 - explicit definition of data types
 - conceptual meanings and relationships (ontology)
- User interface
 - Web-based
 - intuitive and obvious
- Security model
 - access control (authentication)
 - multiple concurrent users (authorization)
 - undo feature
- User not required to populate entire structure
- Efficient and fast
- Historical record of requirements, technology changes
Relational Database Limitations

<table>
<thead>
<tr>
<th>Technology Requirements Data Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Last Modified: 2/13/2002</td>
</tr>
<tr>
<td>Acronym: MMS</td>
</tr>
<tr>
<td>Science Theme: SEC</td>
</tr>
<tr>
<td>Cognizant Center: GSFC</td>
</tr>
<tr>
<td>Product Breakdown Structure (PBS)</td>
</tr>
<tr>
<td>TSG PBS1: 3.0 Guidance, Navigation, and Control</td>
</tr>
<tr>
<td>TSG PBS2: 3.5 Precision Control and Distributed Spacecraft</td>
</tr>
<tr>
<td>TSG PBS3: 3.5.3 Formation/Constellation Control</td>
</tr>
</tbody>
</table>

Mission Attributes Affecting This Technology: Multi-scale examination of the magnetosphere

Technology Item (Record Name): MMS/ Constellation Control

Performance Metrics:
- 5 s/c in loose tetrahedral configuration
- Position knowledge 1% separation (as low as 100m): orientation to 15°

Potential Solution Technologies (funded):
- Ground tracking
- GPS at high altitude
- Inter spacecraft ranging (IRAS)

Funding start year: 2000

Additional Cost to Complete Total Cost: 2340

Estimated Funding Required: $K: 240 600 500 1000 0 0 0

Status of Funding Estimate: Grass-roots

Theme Technologist Priority: Highly Enhancing

Mission Priority For Technology: Highly Enhancing

Need date

Need Date Tied to

Begin phase C/D for NMS

Comments

- Hierarchical structure isn’t intuitively displayed or navigable.
- Important data is buried in a text field. This does NOT encourage consistency, completeness or easy access to the data.
- Technology links are buried in a text field.
- Difficult to determine a complete set of common data fields and to modify this set for all entries. No customization for entries.
XML Database Advantages

- Inherently hierarchical
- Flexible
 - sparsely populated data structures
 - easier to add performance metrics
- Quantitative matches between requirements and technology capabilities
- Taxonomy can grow and evolve more easily
Architecture and Organization

Web GUI

JSP

Tomcat Application Server

Web Service

Java API

Tamino Database Server

Excel Analysis Tool
User Interface

Name: Acquire Relative Range 1

Description: Determine the relative range to another spacecraft.

Type: Acquire Relative Range

DataSource: http://origins.ipl.nasa.gov/library/techreports/TPF_response.pdf

Metrics:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Operator</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Operational Range</td>
<td>Maximum Operational Range</td>
<td>eq</td>
<td>0.1</td>
<td>km</td>
</tr>
<tr>
<td>Minimum Operational Range</td>
<td>Minimum Operational Range</td>
<td>eq</td>
<td>15</td>
<td>m</td>
</tr>
<tr>
<td>Range Accuracy</td>
<td>Range Accuracy</td>
<td>eq</td>
<td>0.01</td>
<td>cm</td>
</tr>
</tbody>
</table>
Sample Database Schema

CapabilityNode
- **type**
 - This is a data type that stores mission capability requirements data. It also stores instances of the NASA management hierarchy and high-level science and technology requirements.

description
- **type** *xs:string*
 - *description*

nodeType
- **type**
 - *nodeType*
 - reference: points to a TaxonomyElement in the mission structural or functional taxonomy.

dataSource
- **type**
 - *dataSource*
 - reference to a DataSource document.

requirements
- **type**
 - *requirements*

budgets
- **type**
 - *budgets*
 - 0..∞ reference to a Budget document

schedules
- **type**
 - *schedules*
 - 0..∞ reference to a Milestone document

metrics
- **type**
 - *metrics*
 - 0..∞ reference to a Metric document

metric
- **type**
 - *metric*
Status and Plans

- Alpha testing
- Ongoing taxonomy development
- Standard software interface to analysis tools
- Common data repository for several tools
- Two tools in development to assess impact of technologies
 - ROI Analysis: science goals
 - CoMET: system mass, power, cost