
The Coverage of Elliptical Orbits Using Ergodic Theory 
Martin W. Lo 

Jet Propulsion Laboratory 
California Institute of Technology 

4800 Oak Grove Dr., MS 301/140L 
Pasadena, CA 9 1 109 

Martin.Lo@jpl.nasa.gov 
8 18-354-7 169 

Abstract-One of the key performance metrics for satellite 
constellations is the statistics of the visibility periods 
between the satellites and points on the ground. Associated 
with this are other desirable communications statistics such 
as data through-put, link qualities, etc. Typically, the 
computation of coverage statistics requires the propagation 
of the trajectories. For orbits with non-repeating ground 
tracks, this may require orbit propagation for tens of years 
per spacecraft. Lo [ 11 proposed an approach using ergodic 
theory which replaced the need to compute the statistics 
from integrated trajectories by a definite integral over the 
circular region of the elevation mask of a point on the 
ground. The effects of J2 due to the non-spherical shape of 
the Earth are included in the definite integral. The definite 
integral can be implemented in Excel for quick trade studies. 
But the simple geometric methods used to derive the integral 
for circular orbits cannot be readily extended to elliptical 
orbits. In this paper a new algorithm using differential 
geometry enables us to extend this theory to elliptical orbits. 
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1. INTRODUCTION 

The Satellite Coverage Analysis Problem is the study of the 
statistics of interactions between a satellite and other objects 
in space. The most common example of this problem is the 
analysis of the visibility of satellites to ground stations on 
Earth. A more complex problem is the analysis of the 
coverage between a rover on Mars and the Deep Space 

Network on Earth through a telecommunications spacecraft 
orbiting Mars, such as the Mars Telecommunications 
Orbiter. Lo [ 11 and [2] proposed the use of ergodic theory to 
compute satellite coverage performance. This simplified the 
computation of quantities such as the total time for which a 
ground station can see a satellite without integrating the 
trajectory. More over, for any quantity which is an integra- 
ble function of the satellite position or ground track, its 
average may be computed similarly without the integration 
of the trajectory. For example, the data rate for a simple 
telecom system is a function of the distance between the 
satellite and the ground station (see Lo [3]). However, these 
results required that the satellite orbits be circular. In this 
paper, we extend these results, theoretically, to elliptical 
orbits using a new approach with differential geometry. The 
numerical implementation of this approach will be treated in 
subsequent papers. 

The Coverage Analysis Problem, at its simplest, is the study 
of the visibility properties of a satellite in orbit around the 
Earth from a point on Earth. In Figure 1, we depict the 
satellite ground track of a circular inclined orbit and the 
circular region of visibility from a point P (at the center of 
the circle) on the Equator in the Pacific Ocean. 
Geometrically, whenever the satellite ground track enters 
this circle, it is in view from the station on the Equator. We 
define the following variables for this discussion. Let D be 
the circular region of visibility of a spacecraft from a ground 
station centered on the Equator in the Pacific Ocean. Let A 
be the annulus region defined by the ground tracks of the 
spacecraft. Let x(D) denote the area function, in this 
example, the area of the region D on the sphere (the Earth). 
See Figure 1. 

Simplistically, one may think that the percentage of time T 
spent by the satellite in the circle D would be well 
approximated by the area of the intersection between the 
circle and the annulus defined by the ground track, divided 
by the area of the annulus defined by the ground track, Le., 
T would be equal to the expression: N ( A n D ) 1 x ( A ) . 
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In fact, this is a very bad approximation. A clue as to why 
this is a bad approximation is given by the density of the 
ground tracks which depends on the latitude and is quite 
uneven. Moreover, the speed of the nadir of the satellite 
along the ground track is not constant because the Earth is 
rotating. Also, the orbital plane is precessing due to the J2 
gravity harmonic. But all is not lost. 

The heuristics of this reasoning is intuitively correct. But, 
instead of the ratio of the geometric areas of the two regions 
mentioned earlier, we need to weigh the area depending on 
the ground velocity and some how account for the expansion 
and contraction of the ground tracks. This new weighted 
area function is technically called an “invariant measure” 
usually denoted by “p.” Measure is a generalization of the 
concept of area and volume for sets of arbitrary dimensions. 
As a weighted area element (an infinitesimal piece of the 
sphere) following the satellite nadir along the ground track, 
the area of the element is preserved. Hence the weighted 
area element is invariant under the motion of the satellite 
ground track. When such a measure of the area is available, 
then indeed the percentage of time spent by the satellite in 
the circular region is given by the measure of the 
intersection of the circular region with the annulus, divided 
by the measure of the annulus, i.e., T is equal to the 
expression: p ( A n D ) / p ( A ). 

Such a measure was constructed in Lo [ 11 and [2]. However, 
for this to work, it is necessary that the ground tracks not be 
periodic. But it is shown that even when the ground track is 
periodic, provided the repeat cycle is not too small, this 
approximation is fairly good. This methodology means that 
instead of finding the view periods from a propagated 
trajectory to compute the amount of time a satellite is in 
view of a ground station, also called the “time average”, we 
can replace this by a simple area integral with a weighted 
area. This weighted average is called the “space average.” 
This method in essence is an application of the Ergodic 
Theorem that we can replace time averages by space 
average. Typically, time average is more difficult to 
compute since it requires the solution of differential 
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Figure 1. The ground tracks of a satellite in circular orbit 
forming the annulus A and the circular coverage region D 
of a fictitious station P in the Pacific on the Equator. 

equations, whereas space average is much easier to compute 
as it requires only a single area integral. Note, for the space 
average, J2 is only used for the verification that the orbit 
ground track is not periodic, it never enters into the area 
integral. 

We should note here that we are assuming that the satellite 
orbit is being maintained so that effects of the Earth 
gravity’s higher harmonics, the luni-solar perturbation, solar 
radiation pressure, and drag are being compensated. The 
maneuvers will perturb the orbit node, but the orbital 
elements such as semimajor axis and eccentricity are 
essentially preserved. Assuming the maneuvers are 
sufficiently random without a bias that would cause the 
ground tracks to become periodic in some fashion, then this 
theory applies to the coverage problem. 

2. ERGODIC THEORY 
Ergodic theory has its origins in the study of statistical 
mechanics in the 19” century. Maxwell, Boltzmann, Gibbs, 
and PoincarC were the first to propose a statistical approach 
to study differential equations. A classical problem is the 
following: Given a particle moving randomly within a 
closed and bounded box B; at time 0 the particle is known to 
be in the subset C of our box B; how frequently will this 
particle visit the subset C within our box as the time goes to 
infinity? PoicarC’s Recurrence Theorem tells us that the 
particle will repeatedly visit the set C infinitely often (see 
Sinai [4] and [5]. In fact, the probability that the particle can 
be found in C is given by the volume of the set C divided by 
the volume of the box B. This is geometrically intuitive. 

The fact that the probability the particle can be found in the 
set C is given by the quantity Volume( C ) / Volume ( B ) is 
a profound result. Our original question is about the time 
average of the particle visiting the set C; our answer is that it 
is given by the space average of the set C, Le., its volume 
normalized by the total volume of the box B. This 
equivalence of “time average” with “space average” is at the 
heart of ergodic theory. The reason this is so powerful is 
because we can replace knowledge of the time history of a 
particle (its trajectory) in a dynamical system (a set of 
differential equations) by a definite integral over subsets 
within the phase space (such as the 6-dimensional state 
space of position and velocity for a satellite). In other words, 
without integrating the differential equations, we can obtain 
valuable statistical information about the dynamical systems 
by computing definite integrals which are often much easier 
to do. 

In order to apply ergodic theory to a dynamical system 
described by a set of differential equations, one must first 
obtain a volume function on the phase space which is 
invariant under the trajectory flow cp,(x) prescribed by the 
differential equations. The flow cp t(x) is the solution to the 
differential equation at time “t” with initial condition “x” in 
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the phase space. It describes the complete set of solutions to 
the differential equation. The analogy is to streamlines in a 
fluid flow. This is known as an “invariant measure”; it is just 
a volume element weighted by a h c t i o n  to compensate for 
the contractions and expansions of the trajectories in the 
phase space. In our case, the trajectory flow is the ground 
tracks of the satellite and the phase space is replaced by the 
spherical surface of the planet. The measure is ordinary 
spherical area multiplied by a weighting function. The 
construction of the invariant measure is the hard part of the 
problem. For our problem, this has been done in Lo [l]. We 
denote this measure, or the volume function by p, which is 
normalized to give a total volume equal to 1. We indicate 
the differential volume element by dp. We now define more 
precisely what we mean by time and space averages. 

The time average < f > of a function f is defined by: 

- X E  M , t e  R. 
The space average of a function f is defined by: 

Here x is a point in the phase space M, and R is the set of 
real numbers. The fundamental theorem of ergodic theory is 
the Birkhoff-Khinchin theorem (Theorem 6.4 in Amold [6 ] )  
which simply states that the time mean (1) is equal to the 
space mean (2) for ergodic dynamical systems. In other 

words, that < f > is equal to f . We will not get into the 
details of the necessary conditions for this theorem to hold; 
suffice it to say that for satellite motion under the gravitation 
of an oblate planet, these conditions are satisfied. 

- 

The expression for the invariant measure itself, dp, does not 
include the Jz coefficient. The long-term station view period 
ratio p is defined by Lo [ 11 as 

(3) 
pm p = lim -, 

T+- T 

where P(T) is the total time the satellite is in view of the 
ground station from time 0 to time T. In other words, p is the 
fraction of time the satellite can see the ground station; and 
pT gives a good approximation for value of P(T) for 
sufficiently large T. 

In this case, the function f (x) is the characteristic function 
of the station mask, D (e.g. see Figures 1 and 2). In other 
words, f (x) is 1 when x is in D and 0 otherwise. The set D is 
the circular region on the planet centered around the ground 
station defined by the minimum elevation angle E of the 
ground station. For details see Lo [ 11. 

Figure 3 shows the power of this approach. We are able to 
provide the global coverage properties of all circular orbits 
at 3900 km altitude to every point on the Earth using the 
visibility ratio, p. computed from the space average integral. 
This required a few seconds to compute. Whereas if we were 
to compute this using the integration of trajectories, it would 
require many hours, perhaps even days of computation to 
provide such a result. The simplicity of the equations allows 
analysts to use them in tools such as Excel or Mathematica 
for quick studies of coverage analysis. At 90” and critical 
inclinations, the result still holds even though the nodal 
regression due to J2 is absent, the rotation of the planet 
continues to spread the satellite ground track around the 
planet where ergodicity of the ground tracks is possible. 
However, the condition for the commensurability of the 
orbital period with the rotation of the ground tracks will no 
longer include the J2 term which is 0 for these cases. 

3. CIRCULAR ORBIT CASE 

We first review the results from Lo [ l ]  for the view period 
problem. Given a ground station located at “x” on Earth, we 
want the amount of time the ground station is in view of the 
satellite. We assume the satellite is moving in a circular orbit 
about an oblate planet with Jz perturbation resulting in the 
drifting of the ascending node of the orbit. However, to 
compute the station visibility, we treat the planet as a sphere. 
In order for the Birkhoff-Khinchin Theorem to apply, we 
must further assume that the orbital ground track is not 
repeating. Although this excludes some of the most 
important satellite orbits, all is not lost. For those orbits with 
short ground track repeat cycles, the statistics may be 
quickly computed using the standard trajectory integration 
approach. For those orbits with long repeat cycles, the 
ergodic theory provides a reasonable approximation for 
quick analyses as noted in Lo [l]. The interesting thing is 
that the only place where the value of 52 is needed is in the 
verification that the satellite ground track is non-repeating. 

Figure 2. Definition and geometry of the visibility 
mask and angles for a station at the top of the Earth to 
a spacecraft (SIC). 
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Figure 3. The total visibility for any satellite at 3900 km 
altitude to every point on the Earth. The X-axis is orbital 
inclination, the Y-axis is station latitude, and the Z-axis 
is the total visibility period in minutes per day. 

These results, such as in Figure 3, have been compared with 
conventional view period computations using propagated 
satellite trajectories. The difference between the view period 
predicted by the ergodic theory and by the conventional 
method is less than 1%. For orbits with repeat ground tracks 
of larger periods (around 10 days), the accuracy is less than 
2%. But, for elliptical orbits even with e=0.05, the errors can 
be more than 16%, see Lo [ 11. A new formulation is needed 
for elliptical orbits. 

4. ELLIPTICAL ORBIT CASE 

For the circular orbit case, it is convenient to work with the 
ground tracks of the spacecraft. However, for elliptical 
orbits, this becomes a problem because of the extra 
dimension introduced by the variation in the altitude and the 
motion of the periapsis. Hence, we no longer look at the 
ground track. Instead we look at the orbital tracks in 3- 
space as viewed from the earth. In other words, we go into 
the earth-fured rotating frame and consider the orbit from 
that perspective. We call this the sky-tracks. For circular 
orbits, this will reduce to ground tracks. Given a ground 
station, G, we can draw the cone of visibility over G, call it 
C(G). Let d t )  denote the sky tracks of the satellite. What 
we want to know is how often is p(t) in the region C(G). If 
the tracks d t )  were evenly distributed over C(G), ergodic 
theory can be applied immediately. But, just like the 
circular case, the tracks are not evenly distributed. Thus the 
solution is that we must distort the volume to compensate for 
the unevenness so that the tracks become evenly distributed. 
In other words, we need to find a measure or volume which 
is invariant under the flow of dt) .  See the Appendix for a 
more geometric explanation of this concept. 

Going back to vector calculus, recall that if the divergence 
of a vector field, Z, is 0, then volume is conserved by the 
flow of the vector field. In other words, if we think of the 
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trajectories generated by E as a fluid flow, the fluid is 
incompressible. So the problem is reduced to finding a new 
volume, s, in which div(z) is 0, where Z is the vector field 
associated with our flow or the sky-track, d t ) .  This 
approach allowed us to find a partial differential equation 
which fortunately reduces to an ordinary differential 
equation for the volume, s. The derivation and the equations 
are shown in the Appendix. 

To obtain the invariant measure, we need the equations for 
the flow d t ) .  For this we can use the linear approximation 
for the regression of the node and the argument of periapsis 
caused by J2. We then transform it into the Earth-fixed 
coordinate system to produce dx ) .  One other technical point 
is that we need to treat the ascending and descending 
trajectories separately in order for the trajectories in the flow 
not to intersect one another. This issue is discussed for the 
circular orbit case in Lo [ 11. 

5. CONCLUSIONS AND FUTURE WORK 

In this paper we extended the theory for computing the long- 
term station view period ratio, p, of circular orbits to 
ellipcital orbits without integrating the trajectory. The 
fundamental idea is to change the volume where the 
trajectory moves to provide a new volume which is invariant 
under the flow the trajectories. This then allows one to apply 
the Ergodic Theorem. In the case of circular orbits, 
elementary geometric methods enabled one to solve this 
problem. For elliptical orbits, this is much more difficult. By 
implementing the idea using differential geometry we were 
able to construct a new volume function as detailed in the 
Appendix. 

Numerical implementation of the algorithm remains to be 
completed. Another exercise would be to use this new 
formulation to derive again the ergodic coverage integral for 
the circular orbit case. By general ergodic theory, this new 
integral for elliptical orbital periods can be used to compute 
the average of many other functions which depend on the 
orbit. An example is the data throughput of telecommunica- 
tions systems on the satellite which depends on the orbital 
parameters. 
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APPENDIX 
In this section, using differential geometry, we show that 
given a vector field E on {R", u}, there exists a volume 
function, s, on R" which is invariant under the action of E. 
In other words, the new volume, s, is conserved under the 
flow of Z. The volume function is frequently referred to as 
the volume form, since the volume differential, dx dy dz, is a 
differential form. For references on differential geometry, 
see Hicks [7]. For our problem, the vector field E is the 
orbital tracks of the spacecraft in 3-dimensional space, i.e., 
R3, and "u" is the standard volume on 3-space. The orbital 
tracks create a flow in R3 ; in other words they provide the 
paths for imaginary particles moving in space as if for a 
fluid. Using the standard volume function denoted by 't", a 
volume element containing a small group of these particles 
will expand and contract as they move along the satellite 
tracks in 3-space. The new volume function "s" will average 
these expansions and contractions to provide a constant 
volume for any group of particles flowing along the satellite 
tracks in 3-space. This is the geometric meaning that the 
volume function, s, is "conserved under the flow". 

Assumptions and Notation: 

1.  
2. 

3. 

4. 

5. 

6. 
7. 

All objects are smooth. 
Let {R", u} be our manifold of dimension n with 
volume form u. In our case, n = 3 and u = dx dy dz (i.e., 
dx A dy A dz, in differential form notation). 
Let Z be our vector field with flow cp(x,t) or At). The 
flow is the trajectory starting at x at time 0 which has 
tagent vectors given by Z, i.e. cp'(x, t) = E( q(x, t) ) 
whee the derivative is with respect to "t" only. 
LE (f u): Lie derivative of fcu in the direction of E, this 
is the directional derivative of fcu along the flow of Z. 
div(u, Z) : divergence of the vector E under the volume 
form, u. Divergence is a real valued function defined 
with respect to a metric which in this case is given by 
the volume form, u. 
dig : partial derivative of g with i* coordinate, xi. 
R" : Real vector space of dimension n which is 3 here. 

Given a vector field E on {W", u}, there exists a volume 
form, s, on M which is invariant under the action of Z. In 
other words, volume is conserved under the flow of 2. Using 
basic differential geometry, we can show this to be true. For 
references on differential geometric identifies and notations, 
see Hicks [ 71. 

The action of Z on a volume form, s, is completely specified 
by the Lie derivative of s. For s to be invariant under E is 
the same as: 

volume form s. Thus, the problem becomes finding a 
volume form s under which the divergence of E is 0. The 
volume form s will be specified by some positive function f: 

s(x) = f(x) u(x) (5) 

This reduces the problem to finding the function Qx) which 
is specified by the following first order PDE: 

div( f u, E) = div(u, E)+ LE (f)/f = 0 (6)  

Let g = In(f), well defined since f > 0, we have Lz(f)/f equal 
to LE (g), thus (6) becomes: 

LE (g) = - div(u, E) (7) 

In coordinate form: 

Ei aig = - div(u, E) (8) 

where Zi is the i" component of E, dig is the partial of of 
with the ith coordinate xi. As this is a first order PDE, from 
the theory of characteristics, it is solved by the following 
ODE: 

dddt = - div(u, E( cp(t))) (9) 

which is readily integrated numerically, thereby yielding g: 

g( cp(t)) = z(t) (10) 

and Qx) is just exp(g(x)). This gives the desired volume 
form. 

LE (s) = div(s, E) s = 0 . (4) 

(4) is just the definition of divergence for a manifold with 
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