Cerebellar Dynamic State Estimation for a Biomorphic
Robot Arm

Christopher Assad
Bio-Inspired Technologies and Systems
Jet Propulsion Laboratory
Pasadena, CA, USA

chris.assad@)jpl.nasa.gov

Sanjay Dastoor'
Mechanical Engineering
UC Berkeley
Berkeley, CA, U.S.A.
sanjayd@berkeley.edu

Abstract - The cerebellum has been called the brain’s
“engine of agility”. This paper presents a cerebellar-
inspired neural network that performs dynamic state
estimation and predictive control. The model combines
two types of learning within a radial basis function
network. Its performance was demonstrated on a 2-link
robot arm built with antagonistic pairs of McKibben air
muscles. The arm has a gripper end effector to hold and
throw a tennis ball. Trajectory data was collected during
multiple throwing trials and used to train the model
offline. The data were projected onto 2-dimensional state
space maps, from which the network learns to estimate
state variables and decision boundaries. It successfully
learned to trigger the grip release at the proper state for
the ball to hit a target. This algorithm should generalize
to benefit a wide variety of biomorphic robots.

Keywords: Cerebellum, biomorphic robotics, dynamic
state estimation, McKibben actuators, state space methods

1 Introduction

Animals are very good at maneuvering and
manipulating objects in unstructured complex
environments, tasks still not achievable with state-of-the-
art robotics. They typically possess dynamic, nonlinear and
high degree-of-freedom (DOF) bodies that are intractable to
conventional control methods. The field of Biomorphic
Robotics looks to gain inspiration to build more
dexterous, agile robotics by emulating the biomechanics
and highly effective nervous structures and nonlinear
control algorithms found in biology. Important differences
from conventional robotics include (1) exploiting the
body’s natural dynamics, (2) “springy” compliant actuation
for efficient force control and energy recovery, (3) no
precision sensors; instead, large arrays of fast and cheap
“sloppy” sensors, for over-sensing for kinesthetics and
proprioception, (4) no precision machining; instead,
reliance on adaptive control to learn dynamics and adapt to

Salomon Trujillo'
Mechanical Engineering Dept.
Stanford University
Stanford, CA, USA
sjtrujil@stanford.edu

Ling Xu'
Computer Science
Carnegie Mellon University
Pittsburgh, PA, USA
lingx@andrew.cmu.edu

changes over time, and (5) intelligent coordination of
feedforward and feedback control strategies.

Research on biomorphic robots has been largely
inspired to date by examples from insects, other
arthropods, and spinal reflexes in vertebrates. Biomorphic
control algorithms include central pattern generators for
gait coordination and low-level reflexes such as muscle
stretch reflexes and balancing reflexes [1-4]. While these
low-level controls may be sufficient for insect locomotion,
they do not scale up sufficiently for larger animals or
robots, because the dynamics become more important due
to greater mass, length, and required forces (e.g., moments
of inertia scale as length to the fifth power). Agile control
under these conditions requires accurate dynamic state
estimation (DSE), a fundamental component of a wide
variety of sensor fusion, signal processing and control
tasks in engineering.

We take inspiration from the next level of control
found in the nervous systems of vertebrate animals. Atop
the spinal cord sits the cerebellum, the brain’s “engine of
agility” [5]. It has a unique neural architecture that appears
optimized for learning sensory-motor dynamics and
predictive control of high DOF nonlinear systems.
Although details of its function are not fully understood,
the cerebellum is thought to perform DSE to achieve
dexterous, coordinated and dynamically efficient motor
output [6]. Our work at JPL has been to develop
algorithms to capture the functionality of the cerebellum.
We have begun to simulate, implement and deploy these
algorithms for dynamic control of biomorphic robots [7,8].
Here we describe the cerebellum model and its application
to a biomorphic robot arm built as a demonstration
platform. The cerebellar algorithms should be general
enough to facilitate a wide range of dynamic robotic
systems requiring sensory-driven motor control, such as
limbed rovers, legged walkers, UAVs, telerobotic
platforms, and even exoskeletons or prostheses.

' Authors ST, SD, and LX worked at JPL under the NASA USRP and Caltech SURF summer student research programs.

2 Cerebellum model
2.1 Background

The cerebellar cortex has a unique, massively parallel,
modular architecture with three layers (Fig. 1): a granule
cell layer receiving mossy fiber inputs, a layer of large
Purkinje output cells (PC), and a molecular layer where
parallel fibers run through the large planar PC dendritic
trees. Each parallel fiber contacts up to several hundred
PCs along its length, and each PC receives on the order of
100,000 excitatory parallel fiber inputs. Each PC also
receives input from a single climbing fiber, which makes
multiple synapses on the PC proximal dendrite and ensures
the firing of a complex calcium spike in the PC dendrite
whenever the climbing fiber fires. The five major cell types
(including 3 inhibitory interneurons) are arranged in
repeating subunits, often described as crystalline in
regularity; therefore this basic microcircuit is considered
representative of the entire cortex. Each region of
cerebellum monitors its own mix of descending motor
commands and ascending sensory and proprioceptive
feedback. Synaptic plasticity allows it to learn an implicit
model of the body dynamics based on correlations in its
inputs; then during replay of learned behaviors, the
cerebellum predicts the consequences of motor actions,
compares expected states to incoming sensory data, and
modulates motor output.

Figure 1. Functional microcircuitry of cerebellar cortex
(adapted from [12]).

Most modern models of cerebellar function are
descended from those first proposed by Marr in 1969 [9]
and Albus in 1971 [10], and still rely on the traditional
cerebellar microcircuit framed by those early works. But
the wide diversity of current competing models reflects the
lack of consensus on how the cerebellum works. Our
approach is similar to that described by Keeler [11] for
Marr-Albus-Kanerva type cerebellar networks [12], in
which the model acts as a sparse distributed associative
memory: information from sensory, proprioceptive, and
cortical inputs (such as motor commands) provides the
context from which to learn to predict future states.
However, we are extending the model’s function based on
new neuroanatomical and neurophysiological evidence for
learning mechanisms from cerebellar, vestibular, and
electrosensory systems, as well as guidance from control
systems analysis [6,7].

2.2 Modeling methods

The neural network model has three groups of
neurons, corresponding to an input granule cell layer, an
output PC array, and Golgi cell interneurons (Fig. 2). The
granule cell layer is implemented as a radial basis function
(RBF) network, where each unit responds to stimuli in a
localized region of state space. This generates a sparse
distributed encoding of the state variables. Because RBFs
break the problem domain into many small pieces, their
weighted outputs can be used to approximate any nonlinear
function. However, the price is in the large number of units
needed to cover large workspaces. In typical real systems,
only very small subregions of the input space are actually
visited where the data needs representation. Current
research on RBF networks is exploring adaptive methods
to concentrate the receptive fields most efficiently for
highest resolution in appropriate subregions of the
workspace. However, for simplicity we began with
uniformly distributed input layers in 2-dimensional
projections of state space (see section 4.2).

Each PC or Golgi cell receives direct information
about a particular state variable from the granule cells
below it, and a large set of inputs from the parallel fibers
with variable delays, representing contextual state
information. Correlated activity between direct and
contextual inputs causes Hebbian associative learning; i.e.,
the cell learns to respond the next time it recognizes the
same contextual pattern. The Golgi cells provide feedback
to the granule cells to filter their activity, in effect
weighting the relative contribution of the new sensed input
on the implicit system model. The PCs also receive error
feedback from climbing fiber inputs. These inputs provide
supervisory signals for reinforcement learning, allowing the
cell to map patterns of activity into desired motor outputs.

D

el
¥

ol

OC

S i

Output Y y
—
4

/7
A

7

Predictions

W LMl

Sensor and
moter command
inputs

4 4

Figure 2. Neural network schematic

3 Biomorphic Arm

Over the past several summers, students in our lab at
JPL have built and refined a dynamic two-link planar arm
that can throw a tennis ball across the room. We wanted a
dynamic platform that allowed exploitation of the

mechanical body dynamics. We chose an arm for several
reasons: the cerebellum is known to be involved in multi-
joint coordination; results here should generalize to a
variety of limbs and body mechanics; research data is
available on cerebellar lesion patients in throwing tasks
[13,14]; and baseball pitchers have become the poster boys
for cerebellar research [5]. The arm is nicknamed “The Arm
of Uma” after the Hindu goddess of education.

q

Etm E

[— LY

Figure 3. Early version of the Uma Arm illustrating
antagonistic pair of McKibben muscles at shoulder and
elbow joints. Here the muscles are partially inflated and the
arm has reached an equilibrium position.

Figure 4. The revised gripper.

3.1 Actuation

Each joint of the arm is actuated with an antagonistic
pair of McKibben air muscles. Also known as
rubbertuators or braided pneumatic actuators, McKibben’s
are fast and strong with muscle-like dynamics but are very
difficult to control by conventional means [15]. The device
consists of a rubber tube inside a braided mesh. When the
tube is pressurized, the mesh contracts along its length.
McKibbens have little to no inherent damping, and muscle
dynamics are highly nonlinear and change with use,
including temperature effects, etc. Several arms have been
built with these in the past, but most results from these
arms were in tasks of position control [16-18]. McKibbens
can be used as variable spring constants to control
compliance and mechanical response properties.

N ?

Figure 5. McKibben actuators

McKibben actuators are inexpensive to build in the
lab. We followed a procedure from Dan Kingsley in the
Biorobots lab at Case Western University. Each muscle
had two air valves, one for inlet and one for exhaust, so air
can be trapped to modify stiffness. The system was run
with a compressed air source between 65-75 psi.

3.2 Sensors

Several sensor types were built into the arm to
provide feedback for the control algorithms. One
potentiometer was attached inline with each joint axle to
provide a voltage signal proportional to joint angle. For
joint velocities, numerical differentiation of collected angle
data proved impractical due to spike noise in the
electronics and A/D resolution. (No extra effort was made
to limit noise sources in the system, because the algorithm
is meant to account for imprecise actuation and sensing.)
Therefore we built an analog filter (two opamp circuit) to
differentiate the signals in the frequency range of interest
and provide a voltage approximately proportional to joint
velocity. A force-sensitive resistor on the gripper “thumb”
recorded the pressure applied, from which the time of ball
release could be determined. The air muscles also have
pressure sensors monitoring their inlet tubes, but these
were not used for the modeling study presented here.

Figure 6. Sample sensor data collected in Labview.

3.3 Computer interface and control

We constructed a Labview interface to control valve
sequencing and data collection. To generate a trajectory
appropriate for throwing, the air valve timing for the
shoulder and elbow flexors was chosen after a few trial and
error throws (Fig. 7). During each throw, an A/D card
collects joint angle, joint velocity, and grip sensor data at
1 ms intervals. A spare A/D channel was used to monitor
the release command where it reached the air valve bank.
At the end of each throw, the height at which the ball
reached the target plane had to be determined to provide
feedback for the reinforcement learning. A USB webcam
imaged multiple frames across the plane of the target
during the throw. The images were processed in MATLAB
to determine height with about 1 cm resolution.

Figure 7. Three frames (50 ms apart) at time of release.

4 Learning to throw with accuracy

4.1 Problem Statement

Conventional robotic controllers typically work with
kinematic or dynamic system models. For a multi-link
manipulator, the torque equations take the following form
[19], where Bis the vector of joint angles, M includes
inertial terms, V velocity terms (e.g., Coriolis and
centrifugal forces), G includes gravity terms, and F denotes
frictional forces:

T = M(0)6+V(0.0)+G(6) - F(0.0) (1)

For revolute joints these terms are nonlinear, and it can be
difficult to accurately model parameters for friction,
actuator dynamics, sensor noise and delays in feedback.

Controlling such a dynamic system requires
knowledge of the system’s state and its response to new
motor commands, a task that naturally lends itself to state
space methods of solution. The cerebellum can orchestrate
dexterous, agile movements by learning: (1) to estimate
and predict trajectories through state space, i.e., modeling
the system dynamics, (2) decision boundaries around
regions of state space in which to initiate actions to achieve
desired goals, and (3) to modulate motor commands to
redirect the trajectory as needed (Fig. 8). The cerebellum

estimates the current state by combining incoming sensor
measurements and the implicit learned model of system
dynamics, predicts the trajectory, and then can initiate
actions in appropriate regions of the space.

. adicted
g T X :

Y eies I)/Ea;my

" desired states i ot

————— _infigepredicive -1 el
moior C%ﬂn'ﬂm stale

MQistoiviviiiiism

X
:i X * X

Figure 8. Problem description in state space.

The task we chose was to learn the release timing for
the arm to throw a ball at a given target. In overhand
throws in humans, the crucial control variable for target
accuracy is the timing of the release with respect to the arm
trajectory, and the cerebellum has been directly implicated
in studies of patients with cerebellar lesions [13, 14].
Because there is a motor delay on the order of 50-100 ms
(in both humans and with our air muscles), the motor
command has to be predicted and sent ahead of the actual
release. This process is better described as learning the
proper state rather than the “timing” for the action.

4.2 Learning an idealized trajectory

Our simulations have demonstrated that this
cerebellar model can learn temporal and spatial correlations
within its stream of sensory and motor command inputs.
We built relatively small cerebellar models in MATLAB,
consisting of several principal cells, 4-6 state variable
inputs, and a few thousand RBF units that uniformly
covered 2-dimensional projections of the input state space.
The projections were chosen to match pairs of joint angles
and velocities found in the torque equations. To test the
algorithm we simulated the throwing task using a virtual
planar arm with one link or two links. For the two link
case, trajectory state data was collected from the robotic
arm during throwing trials (Fig. 9). An ideal trajectory was
spline smoothed and used to train the network model
offline. The results showed successful learning to predict
the state variables along the trajectory, and to trigger
release of the ball to hit the target (Figs. 10, 11).

=)
=)
1

100 200 300 400 s00 E00 700 &00 00 1000

Figure 9. Joint angles (top) and velocities (bottom) from a
sample throw.

Elbow Pasition
Elbow Yelocity

Shoulder Velocity
Elbow ¥ elacity

2 3 2 U 500 1000
Ibow Position Velocity

Figure 10. Trajectories in state space (white lines) and
weights of RBF units after learning (colored blocks). Two
solutions were found on the trajectory, corresponding to a
high-arching slow pitch and a straight fastball.

Trials 1-10

31
L=

41-50

Trials 201-210

Figure 11. Simulated throw results during training on
idealized trajectory.

4.3 Learning on raw trajectories and closing
the loop with cerebellar control

We extended these results to the Uma Arm throwing a
tennis ball at a target (distance: 2.5 m; target height 0.8 +
0.15 m). The cerebellar network was first trained offline to
initiate the throw release based on trajectory and target error
data from 200 throwing trials. The learned weights were
then used to approximate a cerebellar lookup table that

could be inserted into the Labview control loop. As the
throw progressed, the sensor feedback was used to index
into the lookup table, and an output value was read and
compared to a threshold. When the output passed the
threshold the release command would be initiated (Fig.
12). Figure 13 compares our results to throwing accuracy
in humans. (Note that we did not measure horizontal
spread, only vertical height. The robot data are spread
horizontally in the figure only for viewing purposes.)
These preliminary results indicate the cerebellar model
reduced the standard deviation in throw error by about 50%
compared to open loop control with fixed time of release.

Figure 12. Example output from a Purkinje cell trained to
generate the release command. Blue line indicates the
release command triggered at time = 320 ms.

1210
=m
B0 7 1 . '
Lo
) r .
o e b
#
€01 C R
B B0 a0 B0 & &3 i
om
120
em - of—
100 . .
vy 2
w k
*
&0

Throw nurmber Throw nurmber

Figure 13. Scatter plot results compared to human
throwing. Top left: normal human subject throwing at a
target 3 m away. Top right: human patient with cerebellar
lesion (from [13]). Bottom left: results from cerebellar
model controlling release of the Uma Arm (note difference
in vertical scale). Bottom right: open loop throwing by
Uma Arm (fixed time of release, prechosen by operator).
Arrow indicates a throw sampled after a delay of 15
minutes, showing a typical open-loop drift over time.

5 Conclusions

We have presented a model of cerebellar function that
performs DSE by learning temporal and spatial correlations
within its stream of sensory and motor command inputs.
The model was applied to a throwing task on a dynamic
robot arm, where it learned to estimate the state in which
to trigger the grip release to accurately hit a target. We are
currently continuing training on our biomorphic Uma Arm
platform to measure significance of these results, and
extending the model to explore generalization to varying
target heights and projectile mass. Because the cerebellar
model learns an implicit representation of the system
dynamics, in principle it could be applied to any number
of mechanical systems requiring DSE. In particular, this
method should prove efficient for learning dynamic
trajectories in high DOF nonlinear biomorphic robots.

Acknowledgements

Thanks to Nathaniel Chan and Dan Kingsley for
building the original Uma Arm, Michael Rizk and Emily
Fox for improvements in the arm and the original
computer interface, and Mitra Hartmann and Mike Paulin
for discussions on cerebellar algorithms. This work was
supported by NASA’s CICT/ITSR Revolutionary
Computing program area.

References

[1] F. Delcomyn, “Walking robots and the central and
peripheral control of locomotion in insects,” Autonomous
Robots 7:259-270, 1999.

[2] M.A. Lewis, R. Etienne-Cummings, M.J. Hartmann,
Z.R. Xu, A.H. Cohen, “An in silico central pattern
generator: silicon oscillator, coupling, entrainment, and
physical computation,” Biological Cybernetics 88(2): 137-
151, Feb 2003.

[3] P. Arena, L. Fortuna, M. Frasca, G. Sicurella, “An
adaptive, self-organizing dynamical system for hierarchical
control of bio-inspired locomotion,” IEEE Transactions
On Systems Man And Cybernetics Part B-Cybernetics 34
(4): 1823-1837, Aug 2004.

[4] F. Delcomyn, “Insect walking and robotics,” Annual
Review Of Entomology 49: 51-70, 2004.

[5] I Wickelgren, “The Cerebellum: The brain’s engine
of agility.” Science 281:1588-1590, 1998.

[6] M.G. Paulin, L.F. Hoffman, C. Assad, “A model of
cerebellar computations for dynamical state estimation,”
Autonomous Robots 11:279-284, 2001.

[7] C. Assad, “An hypothesis for a novel learning
mechanism in cerebellar cortex,” Autonomous Robots, Vol.
11, No. 3, pp. 285-290, 2001.

[8] C. Assad, M.J. Hartmann, and M.G. Paulin,
“Control of a simulated arm using a novel combination of
cerebellar learning mechanisms,” Neurocomputing, Vol.
44-46, pp. 275-283, 2002.

[9] D. Marr, “A theory of cerebellar cortex,” J.
Physiology, Vol. 202, pp. 437-470, 1969.

[10]].S. Albus, “A theory of cerebellar function,”
Mathematical Biosciences 10:25-61, 1971.

[11] J.D. Keeler, “A dynamical system view of cerebellar
function,” Physica D, Vol. 42, pp. 396-410, 1990.

[12] P. Kanerva, Sparse Distributed Memory, MIT Press,
Cambridge, 1988.

[13] D. Timmann, S. Watts, and J. Hore, “Failure of
cerebellar patients to time finger opening precisely causes
ball high-low inaccuracy in overarm throws,” J.
Neurophysiology 82(1): 103-114, Jul 1999.

[14] J. Hore, S. Watts, J. Martin, and B. Miller, “Timing
of finger opening and ball release in fast and accurate
overarm throws,” Exp. Brain Research 103:277-286, 1995.

[15] G.K. Klute, J.M. Czerniecki, B. Hannaford,
“Artificial muscles: Actuators for biorobotic systems,”
International Journal Of Robotics Research 21 (4): 295-
309 APR 2002.

[16] C.P. Chou, B. Hannaford, “Study of human forearm
posture maintenance with a physiologically based robotic
arm and spinal level neural controller,” Biological
Cybernetics 76 (4): 285-298, APR 1997.

[17] P.P. van der Smagt, F.C.A Groen, and K. Schulten,
“Analysis and control of a rubbertuator arm,” Biological
Cybernetics, 75(5):433-440, 1996.

[18] T. Hesselroth, K. Sarkar, P.P. van der Smagt, and K.
Schulten, “Neural network control of a pneumatic robot
arm,” [EEE Transactions on Systems, Man, and
Cybernetics, 24(1):28-38, January 1994.

[19] 1.J. Craig, Introduction to Robotics: Mechanics and
Control, Addison-Wesley Publishing, Reading MA, 1986.

