
ASYNCHRONOUS MESSAGE
SERVICE (AMS)

Concept Paper

August 2004

 2

FOREWORD
As the computers used to conduct space flight mission operations both in flight and on
the ground increase in capability, the software operating on those computers tends to
increase in functional scope and thus take on greater operational significance. With that
increase in scope comes increasing size and complexity, which may be partially mitigated
by decomposition into modules whose functionality can be readily defined and tested.
However, this modularity in turn entails a growing reliance on effective communication
among modules. That is, mere decomposition cannot diminish the functional complexity
implied by complex requirements. It can only partition that complexity into manageable
portions, while the resulting web of communication relationships among modules
introduces new complexity of a different order: rather than a relatively simple system of a
few increasingly large and complex modules, a modern mission requires an increasingly
large and complex system of relatively simple modules.

Increasing complexity tends to increase the likelihood of failure. The increasing
complexity of mission systems based on communication among modules therefore tends
to increase the chance of such systems failing even as the success of those systems
become increasingly critical to the achievement on mission objectives. Measures that can
minimize the chance of failure in complex systems – exhaustive regression testing and
configuration management, flight rules constraining the exercise of unproven system
capabilities and the introduction of improvements – increase cost if they are taken and
increase risk if they are not.

These considerations have led to the present recommendation for a standard system of
communication – messaging – among mission software modules. The objective of this
proposed messaging standard is to reduce mission cost and risk by confining much of the
complexity of modern mission systems to relatively static and proven reusable
infrastructure.

 3

Introduction

1.1 Purpose and Scope

This document defines a CCSDS Asynchronous Message Service (AMS) for mission
data system communications. The service and its protocol implement an architectural
concept under which the modules of mission systems may be designed as if they were to
operate in isolation, each one producing and consuming mission information without
explicit awareness of which other modules are currently operating. Communication
relationships among such modules are self-configuring; this tends to minimize
complexity in the development and operations of modular data systems.

A system built on this model is a “society” of generally autonomous modules interacting
in real time that may fluctuate freely over time in response to changing mission
objectives, modules’ functional upgrades, and recovery from individual module failure.
The purpose of AMS, then, is to reduce mission cost and risk by providing standard,
reusable infrastructure for the exchange of information among data system modules in a
manner that is simple to use, highly automated, flexible, robust, scalable, and efficient.

This Recommendation specifies the protocol procedures and data units that accomplish
automatic configuration of AMS communication relationships, dynamic reconfiguration
of those relationships during operations, and the use of those relationships to accomplish
the exchange of mission information among data system modules.

1.2 Applicability

This Recommendation specifies protocols and associated services that enable
communication among modules of mission data systems, specifically:

• between modules of a ground data system,

• between modules of a flight data system,

• between modules of different ground data systems,

• between modules of the flight data systems of different spacecraft,

• between modules of flight data systems and modules of ground data systems, over
interplanetary distances.

1.3 Conventions and Definitions

1.3.1 Bit Numbering Convention and Nomenclature

In this document, the following convention is used to identify each bit in an N-bit field.
The first bit in the field to be transmitted (i.e., the most left justified when drawing a

 4

figure) is defined to be ‘Bit 0’; the following bit is defined to be ‘Bit 1’ and so on up to
‘Bit N–1’. When the field is used to express a binary value (such as a counter), the Most
Significant Bit (MSB) shall be the first transmitted bit of the field, i.e., ‘Bit 0’.

N-BIT DATA FIELD

BIT 0 BIT N-1

FIRST BIT TRANSMITTED = MSB

Figure 1: Bit Numbering Convention

In accordance with modern data communications practice, spacecraft data fields are often
grouped into 8-bit ‘words’ which conform to the above convention. Throughout this
Recommendation, the following nomenclature is used to describe this grouping:

8-BIT WORD = ‘OCTET’

Figure 2: Octet Convention

By CCSDS convention, all ‘spare’ bits shall be permanently set to value ‘zero’.

1.3.2 Organization of the Recommendation

This Recommendation is organized as follows:

– Section 2 provides an overview of AMS, its intended use, and a description of the
main interactions involved in message exchange.

– Section 3 defines the services provided by AMS along with the associated
primitives and parameters.

– Section 4 defines the AMS protocol procedures.

– Section 5 defines the AMS protocol data units.

– Section 6 defines the procedures and PDUs for the auxiliary Remote AMS
(RAMS) protocol.

– Section 7 describes the AMS Management Information Base (MIB).

– Annex A. provides a list of informative references.

– Annex B provides a list of acronyms and definitions.

 5

– Annex C discusses the currently recognized underlying transport services for
AMS.

1.3.3 Definitions

1.3.3.1 Definitions from OSI Basic Reference Model

This Recommendation makes use of a number of terms defined in reference [5]. The use
of those terms in this Recommendation shall be understood in a generic sense, i.e., in the
sense that those terms are generally applicable to any of a variety of technologies that
provide for the exchange of information between real systems. Those terms are:

– entity;

– Protocol Data Unit (PDU);

– service;

– Service Access Point (SAP);

– Service Data Unit (SDU).

1.3.3.2 Definitions from Open Systems Interconnection (OSI) Service Definition
Conventions

This Recommendation makes use of a number of terms defined in reference [6]. The use
of those terms in this Recommendation shall be understood in a generic sense, i.e., in the
sense that those terms are generally applicable to any of a variety of technologies that
provide for the exchange of information between real systems. Those terms are:

– Indication;

– Primitive;

– Request;

– Response.

1.3.3.3 Terms Defined in This Recommendation

Within the context of this document the following definitions apply:

A continuum is a closed set of entities that utilize AMS for purposes of communication
among themselves.

An application is a data system implementation, typically taking the form of a set of
source code text files, that uses AMS procedures to accomplish its purposes. Each
application is identified by an application name.

An instance of an application is a functioning projection of the application onto a set of
one or more running computers.

 6

An authority is a unit of mission organization that is responsible for the configuration and
operation of some instance of an application. Each authority is identified by an authority
name.

A message is an octet array of known size which, when copied from the memory of one
module of an application instance to that of another (exchanged), conveys information
that can further the purposes of those application instances.

The subject number (or subject) of a message is an integer embedded in the message that
indicates the general nature of the information the message conveys.

The content of a message is the array of zero or more octets embedded in the message
containing the specific information that the message conveys.

A node – a mission data system module – is a communicating entity that implements
some part of the functionality of some AMS application instance by, among other
activities, exchanging messages with other nodes.

A message space is the set of all of the nodes of one AMS application instance that are
members of a single AMS continuum. Each message space is uniquely identified within
that continuum by the combination of the name of the application and the name of the
authority that is responsible for the application instance.

A zone is an administrative subset of a message space, declared during application
instance configuration as specified by the message space’s controlling authority. Each
zone is uniquely identified within the message space by zone name and therefore is
uniquely identified within its continuum by the combination of message space identifier
(application name and authority name) and zone name.

A subject name is a text string that serves as a symbolic representation of some subject
number within some message space.

1.4 References

The following documents contain provisions which, through reference in this text,
constitute provisions of this Recommendation. At the time of publication, the editions
indicated were valid. All documents are subject to revision, and users of this
Recommendation are encouraged to investigate the possibility of applying the most
recent editions of the documents indicated below. The CCSDS Secretariat maintains a
register of currently valid CCSDS Recommendations.

[1] Advanced Orbiting Systems, Networks and Data Links: Architectural Specification.
Recommendation for Space Data System Standards, CCSDS 701.0-B-3. Blue
Book. Issue 3. Washington, D.C.: CCSDS, June 2001.

[2] Packet Telemetry. Recommendation for Space Data System Standards, CCSDS
102.0-B-5. Blue Book. Issue 5. Washington, D.C.: CCSDS, November 2000.

 7

[3] Packet Telemetry Service Specification. Recommendation for Space Data System
Standards, CCSDS 103.0-B-2. Blue Book. Issue 2. Washington, D.C.: CCSDS,
June 2001.

[4] Telecommand Part 2—Data Routing Service. Recommendation for Space Data
System Standards, CCSDS 202.0-B-3. Blue Book. Issue 3. Washington, D.C.:
CCSDS, June 2001.

[5] Information Technology—Open Systems Interconnection—Basic Reference Model:
The Basic Model. International Standard, ISO/IEC 7498-1:1994. Geneva: ISO,
1994.

[6] Information Technology—Open Systems Interconnection—Basic Reference
Model—Conventions for the Definition of OSI Services. International Standard,
ISO/IEC 10731:1994. Geneva: ISO, 1994.

The latest issues of CCSDS documents may be obtained from the CCSDS Secretariat at
the address indicated on page i.

2 Overview

2.1 General

2.1.1 Architectural character

A data system based on AMS has the following characteristics:

• Any module may be introduced into the system at any time. That is, the order in
which system modules commence operation is immaterial; a module never needs
to establish an explicit communication “connection” or “channel” to any other
module in order to pass messages to it or receive messages from it.

• Any module may be removed from the system at any time without inhibiting the
ability of any other module to continue sending and receiving messages. That is,
the termination of any module, whether planned or unplanned, only causes the
termination of other modules that have been specifically designed to terminate in
this event.

• When a module must be upgraded to an improved version, it may be terminated
and its replacement may be started at any time; there is no need to interrupt
operations of the system as a whole.

• When the system as a whole must terminate, the order in which the system’s
modules cease operation is immaterial.

 8

AMS-based systems are highly robust, lacking any innate single point of failure and
tolerant of unplanned module termination. At the same time, communication within an
AMS-based system can be rapid and efficient:

• Messages are exchanged directly between modules (nodes) rather than through
any central message dispatching nexus.

• Messages are automatically conveyed using the “best” (typically – though not
necessarily – the fastest) underlying transport service to which the sending and
receiving modules both have access. For example, messages between two ground
system modules running in different computers on a common LAN would likely
be conveyed via TCP/IP, while messages between modules running on two flight
processors connected to a common bus memory board might be conveyed via a
shared-memory message queue.

Finally, AMS is designed to be highly scalable: partitioning message spaces into zones
enables an application instance to comprise hundreds or thousands of cooperating
modules without significant impact on application performance.

2.1.2 Message exchange models

Most message exchange in an AMS-based data system is conducted on a “publish-
subscribe” model:

• A node uses AMS procedures to announce that it is “subscribing” to messages of
a specified subject.

• From that time on (until the subscription is canceled), whenever any node in the
message space uses AMS procedures to “publish” a message of that subject, a
copy of the message is automatically delivered to that subscribing node and to all
others that have announced similar subscriptions.

This model can greatly simplify application development and integration. In effect, each
node plugs itself into a data "grid", much as producers and consumers of electric power –
for example, a hydroelectric plant and a kitchen toaster – plug into an electric power grid.
An AMS node can insert into such a data grid whatever data it produces, without having
to know much about the consumer(s) of that data, and draw from the grid whatever data it
requires without having to know much about the producer(s). The design of a node is
largely decoupled from the designs of all other nodes in the same way that the design of a
toaster is largely decoupled from the design of a power plant.

For some purposes, though, it may still be necessary for a node to send a message
privately and explicitly to some specific node, e.g., in reply to a published message.
AMS procedures support this communication model as well when it is required.

All AMS message exchange is asynchronous. That is, each message is sent in a “postal”
rather than “telephonic” manner: upon sending a message, an AMS node need not wait

 9

for arrival of any message (such as a reply to the message it sent) before continuing
performance of its functions.

Although all message exchange among nodes is asynchronous, for some purposes it may
be desirable to apply the information in a reply message (received asynchronously) to the
context in which the antecedent message was published. To this end, AMS enables a
node to include a context number in any original (non-reply) message; AMS procedures
can be used to reply to any original message, whether published or sent privately, and the
reply to a message automatically includes an echo of the context number (if any)
embedded in the original message. This number can be used to retrieve some block of
contextual information, enabling the node to link the information in a reply message to
the application activity which caused the antecedent message to be issued, so that this
activity may be continued in a pseudo-synchronous fashion. The specific mechanism
used to establish this linkage is an implementation matter.

2.2 Architectural elements

2.2.1 General

The architectural elements involved in the asynchronous message service protocol are
depicted in Figure 3 and described below.

Figure 3: Architectural Elements of AMS

Configuration
server

Configuration
reboot object

Subject
server

Subject service
reboot object

Registrar

Node X Node Y
(a new node)

Registrar

Node Z

Zone A

Message space for
application Q, authority R

application messages

application messages

application
messages

Zone B

heartbeat,
ack, reconfig

heartbeat,
ack, reconfig

new region specification
region
registration

node
registration

reconfiguration
messages

subject
number
query and
response

service registration

remote AMS
messages

registrar
location
query and
response

AMS Continuum

 10

2.2.2 Communicating entities

All AMS communication is conducted among four types of communicating entities:
nodes (defined earlier), registrars, subject servers, and configuration servers.

A registrar is a communicating entity that catalogues information regarding the nodes
that populate a single zone of a message space. It responds to queries for this
information, and it updates this information as changes are announced.

A subject server is a communicating entity that manages a database of subject names and
corresponding subject numbers for a single message space. It responds to queries for this
information, and it updates this information as changes are announced.

A configuration server is a communicating entity that manages a database of
configuration information for a single continuum. In particular, it catalogues information
regarding the message spaces that the continuum comprises, notably the locations of all
subject servers and all registrars. It responds to queries for this information, and it
updates this information as changes are announced.

2.3 Overview of interactions

2.3.1 Transport services for application messages

AMS occupies a position in the OSI protocol stack model somewhere between level 4
(Transport) and level 7 (Application); AMS might best be characterized as a messaging
“middleware” protocol. As such, it relies on the capabilities of underlying Transport-
layer protocols to accomplish the actual copying of a message from the memory of the
sending node to the memory of the receiving node. It additionally relies on those
capabilities to accomplish the transmission of meta-AMS (or MAMS) messages to and
from registrars, subject servers, and configuration servers that enables the dynamic self-
configuration of AMS message spaces.

For any given AMS continuum, some common transport service must be utilized for
MAMS traffic by all communicating entities involved in the operations of all message
spaces in the continuum. The transport service selected for this purpose is termed the
continuum’s Primary Transport Service or PTS. Selection of the PTS for a continuum is
an implementation matter; the “Bundling” protocol of the Delay-Tolerant Networking
architecture is a plausible choice, but for some continua an implementation based on
UDP/IP may be more appropriate.

The PTS clearly can also be used for application message exchange among all nodes in a
continuum, as it must be universally available for MAMS message exchange. In some
cases, however, improved application performance can be achieved by using a different
transport service for message exchange between nodes that share access to some
especially convenient communication medium, such as a shared-memory message queue.
These performance-optimizing transport services are termed Supplementary Transport
Services or STSs.

 11

2.3.2 Registrar registration

Every message space always comprises at least one zone, and each node resides within
(is registered in) some zone; in the simplest case all nodes of the message space reside in
the same zone. Each zone is served by a single registrar, which is responsible for
monitoring the health of all nodes in the zone and for propagating four kinds of message
space configuration changes: node registrations and terminations, subscription assertions,
and subscription cancellations. On receipt of one of these reconfiguration messages from
a node in its own zone, the registrar immediately propagates the message to every other
node in the same zone and then to the registrars of all other zones in the message space;
on receiving such a message from a remote zone's registrar, the registrar propagates it to
all nodes in its own zone.

The registrars themselves register with the configuration server for the continuum within
which the message space is contained. A list of all possible network locations for the
configuration server, in order of descending preference, must be “well known” to the
registrars for all message spaces in the continuum, and each continuum must have a
configuration server in operation at one of those locations at all times in order to enable
registrars and nodes to register. (The manner in which this latter requirement is satisfied
is an implementation matter. One advantage of selecting the DTN Bundling protocol as
the PTS for a continuum is that the “resilient delivery” features of Bundling may provide
a simple solution for this problem: when a configuration server registers with its bundle
agent, it can supply a script that will reanimate that server automatically in the event that
a bundle carrying a MAMS message arrives following a configuration server crash.)

All registrars and nodes of the same message space must register through the same
configuration server. The registrars and nodes for any number of different message
spaces may register with the same configuration server.

2.3.3 Node registration

Each node has a name, an application-specific ASCII string containing no whitespace,
which generally connotes its function within the application but need not uniquely
identify it within its message space. Each node also has one or more "network
identities", one for each underlying transport service on which the node is prepared to
receive messages.

A new node joins a message space by registering itself within some zone of the message
space, i.e., by announcing its name and its network identities to the zone's registrar.
However, knowledge of how to communicate with that registrar can't be hard-coded into
the node because the relevant registrar might be running at different network locations at
different times.

For this reason, the first step in registering a new node is to contact the configuration
server at its well-known network location. The configuration server tells the new node
how to contact its registrar. The node obtains a unique node ID from the registrar and
thereby registers. The registrar ensures that all other nodes in the message space learn the

 12

new node's name, node ID, and network identities. Those nodes in turn announce their
own names, node IDs, and network identities to the new node.

2.3.4 Monitoring node health

In order to acquire and maintain accurate knowledge of the configuration of a message
space (for application purposes, and also to avoid wasting resources on attempts to send
messages to nonexistent nodes or per concluded subscriptions), it is important for each
registrar always to detect the terminations of nodes in its zone. When a node terminates
under application control it automatically notifies its registrar that it is stopping.
However, if a node crashes – or the host on which a node resides is simply powered off
or rebooted – no notification is transmitted to the registrar. For this reason, nodes
automatically send "heartbeat" messages to their registrars at fixed intervals, normally
every 20 seconds. The registrar interprets three successive missing heartbeats as an
indication that the node has terminated.

Whenever it detects the termination of a node (either an overt termination or a
termination imputed from heartbeat failure), the registrar informs all other nodes in the
message space of the node's demise. When the termination is imputed from a heartbeat
failure, the registrar also tries to send a message to the terminated node telling it that it
has been presumed dead; if this node is in fact still running (perhaps it had hung trying to
write on a blocked file descriptor), it terminates immediately on receipt of this message.
This minimizes system confusion due to other application behavior that may have been
triggered by the imputed termination.

2.3.5 Monitoring registrar health

In addition to monitoring the heartbeats of all nodes in its zone, each registrar issues its
own heartbeats to those nodes on the same cycle. Each node interprets three successive
missing registrar heartbeats as an indication that the registrar itself has crashed. On
detecting a registrar crash, the node presumes that the registrar has been restarted since it
crashed; it re-queries the configuration server to determine the new network location of
the registrar and resumes exchanging heartbeats.

This presumption is reasonable because the reciprocal heartbeat monitoring relationship
between a registrar and its nodes is replicated in the relationship between the
configuration server and all registrars, but on a slightly shorter cycle. The configuration
server interprets three successive missing registrar heartbeats as an indication that the
registrar has crashed; on detecting such a crash it automatically restarts the registrar,
possibly on a different host, so by the time the registrar's nodes detect its demise it should
already be running again. (The same is true of subject servers, as discussed later.)

Since the maximum heartbeat interval is twenty seconds, within the first sixty seconds
after restart the registrar will have received heartbeat messages from every node that is
still running in the zone and will therefore know accurately the configuration of the zone.
This accurate configuration information must be delivered to new nodes at the time they
start up (so that they in turn are qualified to orient a newly-restarted registrar to the zone's

 13

configuration in the event that the registrar crashes). For this reason, during the first sixty
seconds after the registrar restarts it accepts only connections from existing nodes in the
zone; if it accepted a connection from a new node before being certain of the status of all
old ones, it would run the risk of delivering incorrect information to the new node.

2.3.6 Configuration service fail-over

It's of course also possible for a configuration server to be killed (or for its host to be
rebooted, etc.). Each registrar interprets three successive missing configuration server
heartbeats as an indication that the configuration server has crashed. On detecting such a
crash, the registrar begins cycling through all of the well-known possible network
locations for the continuum’s configuration server, trying to re-establish communication
after the server’s restart, possibly at an alternate network location. While it is doing so it
is not issuing heartbeats or responding to other messages, so eventually all nodes may
infer that their registrars have crashed and therefore begin re-querying the now-dead
configuration server to re-establish communication with their registrars; when the
configuration server fails to respond, the nodes too will begin cycling through network
locations seeking a restarted configuration server. While they are doing so, they too will
not be responding to messages, so all message space activity will eventually come to a
halt.

When the configuration server is restarted at one of its well-known network locations,
however, all registrars will eventually find it and re-announce themselves to it, so that
when application nodes finally find it they can re-establish communication with their
registrars; all application processing will thereupon resume.

It is possible, in this sort of failure scenario, that multiple configuration servers may be
operating concurrently for a brief time; for example, the perceived failure of a
configuration server might have been caused by a transient network connectivity failure
rather than an actual server crash. To resolve this sort of situation, each running
configuration server periodically sends an “I am running” MAMS message to every
lower-ranking configuration server network location in the well-known list of
configuration server locations. When a configuration server receives such a message, it
immediately terminates; all registrars and nodes that were communicating it will detect
its disappearance and search again for the highest-ranking reachable configuration server,
eventually bringing the continuum back to orderly operations.

2.3.7 Configuration resync

Finally, every registrar can optionally be configured to re-advertise to the entire message
space the detailed configuration of its zone (all active nodes, all subscriptions) at some
user-specified frequency, e.g., once per minute. This capability is referred to as
configuration resync. Configuration resync generates additional message traffic, and it
may be unnecessary in extremely simple or extremely stable operating environments.
But it does ensure that every change in application message space configuration will
eventually be propagated to every node in the message space, even if some MAMS

 14

messages are lost and even if an arbitrary number of registrars had crashed at the time the
change occurred.

Taken together, these measures make AMS applications relatively fault tolerant:

• When a node crashes, its registrar detects the loss of heartbeat within three
heartbeat intervals and notifies the rest of the message space. Message
transmission everywhere is unaffected.

• When a registrar crashes, its configuration server detects the loss of heartbeat
within three heartbeat intervals and restarts the registrar. During the time that the
zone has no registrar, transmission of application messages among nodes of the
message space is unaffected, but the heartbeat failures of crashed nodes are not
detected and reconfiguration messages originating in the zone (registrations,
terminations, subscription assertions, and subscription cancellations) are not
propagated to any nodes. However, after the registrar is restarted it will
eventually detect the losses of heartbeat from all crashed nodes and will issue
obituaries to the message space, and if configuration resync is enabled it will
eventually re-propagate the lost reconfiguration messages.

• When a configuration server crashes, all activity may eventually come to a
standstill. But no application nodes fail (at least, not because of communication
failure), and on restart of the configuration server all activity resumes.

2.3.8 Subject service

Message subjects, as noted earlier, are integers with application-defined semantics. This
minimizes the cost of including subject information (in effect, message type) in every
message, and it can make processing in an AMS implementation simpler and faster:
subscription and message handling information may be recorded in dynamically allocated
and possibly sparse arrays that are indexed by subject number.

This implementation choice, however, would require that message management control
arrays be large enough to accommodate the largest subject numbers used in the
application. The use of extremely large subject numbers would therefore cause these
arrays to consume huge amounts of memory. In general, it is best for an AMS
application to use the smallest subject numbers possible, starting with 1.

One way to ensure this is to require that applications cite message subjects by symbolic
name, rather than cite the subject numbers themselves, and let the AMS infrastructure
automatically assign the smallest unused subject numbers to subjects as their names are
declared. To support the mapping of subject names to numbers, and vice versa, subject
definition services are provided by the message space’s subject server.

The subject server manages a private database of subject definitions for the message
space. Each subject definition pairs a subject name (an application-specific ASCII string
containing no whitespace) with a subject number and, optionally, a message content
format string. The subject server itself assigns numbers sequentially (starting at 1) to

 15

subject names, in the order in which the subject names are declared to it by application
nodes. It responds to subject number queries by returning the corresponding subject
names and to subject name queries by returning the previously assigned subject numbers.

Subject names are also the basis for Remote AMS communication, described below.
Since subject names might be declared in different sequences within different message
spaces – for the same application instance, but in different continua – they may be
mapped to different numbers. But so long as subject naming consistency is maintained
when applications are developed, the inter-continuum Remote AMS communication
between subject servers will accurately replicate subscription and publication in all
message spaces.

The AMS heartbeat discipline monitors the health of subject servers just as it monitors
the health of registrars: the configuration server interprets three successive registrar
heartbeat delivery failures as an indication that the subject server has crashed. On
detecting such a crash it automatically restarts the subject server, possibly on a different
host. Subject servers, again like registrars, also expect heartbeats from the configuration
server and respond to a configuration server failure in the same way that registrars do.

2.3.9 Remote AMS message exchange

Because issuance of an asynchronous message need not suspend the operation of the
issuing node until a response is received, AMS’s message exchange model enables a high
degree of concurrency in the operations of data system modules; it also largely insulates
applications from variations in signal propagation time between points in the AMS
continuum.

However, some critical MAMS communication is unavoidably synchronous in nature: in
particular, a newly registering node must wait for responses from the configuration
server, the registrar, and the other nodes in its message space before proceeding with
application activity. For this reason, the core AMS protocol is only suitable for use in
operational contexts characterized by generally uninterrupted network connectivity and
relatively small and predictable signal propagation times, such as the Internet or a stand-
alone local area network. All nodes of any single AMS continuum must be running
within one such “low-latency” network.

AMS application messages may readily be exchanged between nodes in different AMS
continua, however, by means of the auxiliary Remote AMS (RAMS) protocol. RAMS
procedures are executed by the subject servers of message spaces:

• Each subject server opens persistent, private RAMS communication channels to
the subject servers of other message spaces of the same application instance, in
other continua.

• The interconnected subject servers use these channels to forward subscription
assertions and cancellations among themselves. Each subject server, acting as a

 16

node, subscribes locally to all subjects that are of interest in any of the linked
message spaces.

• On receiving its copy of a message of any of these subjects, the subject server
uses RAMS to forward the message to every other subject server whose message
space contains at least one other node that has subscribed to messages of that
subject.

• On receiving a message via RAMS from a subject server in another message
space, the subject server simply publishes the message in its own message space.

In this way the RAMS protocol enables the free flow of application messages across
arbitrarily long deep space links while protecting efficient utilization of those links: only
a single copy of any message is ever transmitted on any RAMS channel, no matter how
many subscribers will receive copies when the message reaches its destination
continuum.

Again, this extension of the publish/subscribe model to interplanetary communications is
invisible to application nodes. Application functionality is unaffected by these details of
network configuration, and the only effects on behavior are those that are intrinsic to
variability in message propagation latency.

3 Service descriptions

3.1 Services provided to the application

3.1.1 Summary of primitives

The AMS service shall consume the following request primitives:

a) Register.request;

b) Unregister.request;

c) Assert_subscription.request;

d) Cancel_subscription.request;

e) Publish.request;

f) Send.request;

g) Reply.request;

h) Declare_subject.request;

i) Look_up_subject.request.

 17

The AMS service shall deliver the following indication primitives:

a) Message.indication;

b) Reply.indication;

c) Fault.indication;

d) Register.indication;

e) Unregister.indication;

f) Assert_subscription.indication;

g) Cancel_subscription.indication;

h) Subject.indication.

3.1.2 Service primitive parameters

NOTE – The availability and use of parameters for each primitive are indicated in the
definitions of primitives below, where parameters that are optional are
identified with square brackets [thus]. The following parameter definitions
apply.

3.1.2.1 The application name parameter shall identify the application served by a
message space’s application instance.

3.1.2.2 The authority name parameter shall identify the organizational unit that is
responsible for a message space’s application instance. The combination of
application name and authority name shall uniquely identify a message space.

3.1.2.3 The zone name parameter shall identify, within a given message space, some
administrative subset of nodes.

3.1.2.4 The node name parameter shall indicate the functional nature of a node.

3.1.2.5 The node specifiction parameter shall be an ASCII text string that characterizes
the manner in which a node is prepared to receive AMS messages. The node
specification shall comprise a comma-separated list of one or more port
specifications in declining order of preference; that is, the port on which the
node most prefers to receive messages is specified first, followed by the next-
most-preferred port, and so on. Each port specification shall be the
concatenation of a transport service name, an “equals” (=) symbol, and a
transport service endpoint specification, in that order. The transport service
name shall be the name of the AMS continuum’s primary transport service or
the name of one of the continuum’s supplementary transport services. The
syntax in which the transport service endpoint specification is represented shall
be specific to the indicated transport service. Definitions of valid endpoint
specification syntax for all recognized transport services are given in Annex C.

 18

3.1.2.6 The node ID parameter shall uniquely identify a node within the message space
in which it is registered.

3.1.2.7 The subject name parameter shall indicate the general nature of the application
data in a message.

3.1.2.8 The subject format parameter shall provide information enabling an application
to parse the application data in any message of a given subject.

3.1.2.9 The context parameter shall identify the application context in which an original
(non-reply) message was sent, if any.

3.1.2.10 The content length parameter shall indicate the length (in octets) of the
information in a message.

3.1.2.11 The content parameter shall be an array of zero or more octets comprising the
application data in a message.

3.1.2.12 The fault expression parameter shall indicate the nature of an operational fault
encountered by AMS. The syntax of fault expressions is an implementation
matter.

3.1.3 Register.request

3.1.3.1 Function

The Register.request primitive shall be used by the node to commence its participation
in a message space.

3.1.3.2 Semantics

Register.request shall provide parameters as follows:

Register.request (application name,
authority name,
zone name,
node name,
node specification)

3.1.3.3 When Generated

Register.request is generated by the node at any time while the node is not currently
participating in its message space.

3.1.3.4 Effect on Receipt

Receipt of Register.request shall cause AMS to add the node to the indicated message
space zone.

 19

3.1.3.5 Additional Comments

None.

3.1.4 Unregister.request

3.1.4.1 Function

The Unregister.request primitive shall be used by the node to terminate its
participation in a message space.

3.1.4.2 Semantics

Unregister.request shall provide parameters as follows:

Unregister.request (node ID)

3.1.4.3 When Generated

Unregister.request is generated by the node at any time while the node is participating
in its message space.

3.1.4.4 Effect on Receipt

Receipt of Unregister.request shall cause AMS to remove the node from the indicated
message space zone.

3.1.4.5 Additional Comments

The node ID provided in the Unregister.request primitive must be the one that was
provided in the Register.indication primitive that notified the node of its own
successful registration.

3.1.5 Assert_subscription.request

3.1.5.1 Function

The Assert_subscription.request primitive shall be used by the node to subscribe to
published messages of a specific subject.

3.1.5.2 Semantics

Assert_subscription.request shall provide parameters as follows:

Assert_subscription.request (subject name)

 20

3.1.5.3 When Generated

Assert_subscription.request is generated by the node at any time while the node is
participating in its message space.

3.1.5.4 Effect on Receipt

Receipt of Assert_subscription.request shall cause AMS to notify all nodes in the
message space of the node’s subscription to the indicated message subject.

3.1.5.5 Additional Comments

None.

3.1.6 Cancel_subscription.request

3.1.6.1 Function

The Cancel_subscription.request primitive shall be used by the node to subscribe to
published messages of a specific subject.

3.1.6.2 Semantics

Cancel_subscription.request shall provide parameters as follows:

Cancel_subscription.request (subject name)

3.1.6.3 When Generated

Cancel_subscription.request is generated by the node at any time while the node is
participating in its message space.

3.1.6.4 Effect on Receipt

Receipt of Cancel_subscription.request shall cause AMS to notify all nodes in the
message space that the node is no longer subscribed to the indicated message subject.

3.1.6.5 Additional Comments

None.

3.1.7 Publish.request

3.1.7.1 Function

The Publish.request primitive shall be used by the node to publish a message.

 21

3.1.7.2 Semantics

Publish.request shall provide parameters as follows:

Publish.request (subject name,
content length,
[content],
[context])

3.1.7.3 When Generated

Publish.request is generated by the node at any time while the node is participating in
its message space.

3.1.7.4 Effect on Receipt

Receipt of Publish.request shall cause AMS to construct a message as indicated and
send one copy of that message to every node in the message space that is currently
subscribed to the indicated message subject.

3.1.7.5 Additional Comments

None.

3.1.8 Send.request

3.1.8.1 Function

The Send.request primitive shall be used by the node to send a message privately to a
single node.

3.1.8.2 Semantics

Send.request shall provide parameters as follows:

Send.request (node ID,
subject name,
content length,
[content],
[context])

3.1.8.3 When Generated

Send.request is generated by the node at any time while the node is participating in its
message space.

 22

3.1.8.4 Effect on Receipt

Receipt of Send.request shall cause AMS to construct a message as indicated and send
it to the specified node.

3.1.8.5 Additional Comments

Node ID identifies the node to which the message is to be sent. Context, if specified,
identifies context information that is meaningful to the sending node.

3.1.9 Reply.request

3.1.9.1 Function

The Reply.request primitive shall be used by the node to reply to a message sent by
some node.

3.1.9.2 Semantics

Reply.request shall provide parameters as follows:

Reply.request (node ID,
subject name,
content length,
[content],
context)

3.1.9.3 When Generated

Reply.request is generated by the node at any time while the node is participating in its
message space.

3.1.9.4 Effect on Receipt

Receipt of Reply.request shall cause AMS to construct a message as indicated and send
it to the specified node.

3.1.9.5 Additional Comments

Node ID must identify the node that sent some previously received message, and context
must be the context provided with that message (which will be meaningful only to that
node).

 23

3.1.10 Declare_subject.request

3.1.10.1 Function

The Declare_subject.request primitive shall be used by the node to declare the
validity of a specified message subject.

3.1.10.2 Semantics

Declare_subject.request shall provide parameters as follows:

Declare_subject.request (subject name,
 [subject format])

3.1.10.3 When Generated

Declare_subject.request is generated by the node at any time while the node is
participating in its message space.

3.1.10.4 Effect on Receipt

Receipt of Declare_subject.request shall cause AMS to recognize the validity of the
indicated subject and to note the format in which the content of every message of this
subject is represented (if specified). If the subject was previously declared, the new
subject format (if specified) supersedes the subject’s current format.

3.1.10.5 Additional Comments

AMS message content formats are expected to be generally static. The AMS protocol
does not include provisions for actively propagating revised formats to nodes that might
previously have cached older formats, so cache coherency failures are possible. Future
upgrades to AMS to redress this deficiency may eventually prove necessary.

3.1.11 Look_up_subject.request

3.1.11.1 Function

The Look_up_subject.request primitive shall be used by the node to determine the
validity of a specified message subject and the format in which the content of every
message of this subject is represented (if defined).

3.1.11.2 Semantics

Look_up_subject.request shall provide parameters as follows:

Loop_up_subject.request (subject name)

 24

3.1.11.3 When Generated

Look_up_subject.request is generated by the node at any time while the node is
participating in its message space.

3.1.11.4 Effect on Receipt

Receipt of Look_up_subject.request shall cause AMS to validate the indicated
subject and report on the format in which the content of every message of this subject is
represented (if defined).

3.1.11.5 Additional Comments

None.

3.1.12 Message.indication

3.1.12.1 Function

The Message.indication primitive shall be used to deliver AMS original (non-reply)
message information to the node.

3.1.12.2 Semantics

Message.indication shall provide parameters as follows:

Message.indication (node ID,
subject name,
content length,
[content],
[context])

3.1.12.3 When Generated

Message.indication is generated upon reception of an original (non-reply) message
from a node.

3.1.12.4 Effect on Receipt

The effect on reception of Message.indication by a node is undefined.

3.1.12.5 Additional Comments

Node ID identifies the node that sent or published the message.

 25

3.1.13 Reply.indication

3.1.13.1 Function

The Reply.indication primitive shall be used to deliver AMS reply message
information to the node.

3.1.13.2 Semantics

Reply.indication shall provide parameters as follows:

Reply.indication (node ID,
subject name,
content length,
[content],
context)

3.1.13.3 When Generated

Reply.indication is generated upon reception of a reply message from a node.

3.1.13.4 Effect on Receipt

The effect on reception of Reply.indication by a node is undefined.

3.1.13.5 Additional Comments

Node ID identifies the node that sent the reply message. Context identifies the context in
which the antecedent message (the message to which the reply message is a response)
was sent.

3.1.14 Fault.indication

3.1.14.1 Function

The Fault.indication primitive shall be used to indicate an AMS fault condition to the
node.

3.1.14.2 Semantics

Fault.indication shall provide parameters as follows:

Fault.indication (fault expression)

3.1.14.3 When Generated

Fault.indication is generated when AMS encounters a fault condition.

 26

3.1.14.4 Effect on Receipt

The effect on reception of Fault.indication by a node is undefined.

3.1.14.5 Additional Comments

None.

3.1.15 Register.indication

3.1.15.1 Function

The Register.indication primitive shall be used to notify the node of the addition of
some node (including itself) to the message space.

3.1.15.2 Semantics

Register.indication shall provide parameters as follows:

Register.indication (node ID,
node name)

3.1.15.3 When Generated

Register.indication is always generated upon addition of the node to its message
space. Register.indication may optionally also be generated upon addition of any
other node to the message space.

3.1.15.4 Effect on Receipt

The effect on reception of Register.indication by a node is undefined.

3.1.15.5 Additional Comments

The node ID in the Register.indication primitive that notifies the node of its own
successful registration is the one that the node must provide in the Unregister.request
primitive.

3.1.16 Unregister.indication

3.1.16.1 Function

The Unregister.indication primitive shall be used to notify the node of the removal of
some node (including itself) from the message space.

 27

3.1.16.2 Semantics

Unregister.indication shall provide parameters as follows:

Unregister.indication (node ID)

3.1.16.3 When Generated

Unregister.indication is always generated upon removal of the node from its message
space. Unregister.indication may optionally also be generated upon removal of any
other node from the message space.

3.1.16.4 Effect on Receipt

The effect on reception of Unregister.indication by a node is undefined.

3.1.16.5 Additional Comments

None.

3.1.17 Assert_subscription.indication

3.1.17.1 Function

The Assert_subscription.indication primitive shall be used to notify the node of a
newly asserted subscription in the message space.

3.1.17.2 Semantics

Assert_subscription.indication shall provide parameters as follows:

Assert_subscription.indication (node ID,
node name,
subject name)

3.1.17.3 When Generated

Assert_subscription.indication is optionally generated upon assertion of a
subscription by some node in the message space.

3.1.17.4 Effect on Receipt

The effect on reception of Assert_subscription.indication by a node is undefined.

 28

3.1.17.5 Additional Comments

This indication is provided solely to facilitate message space configuration monitoring.
Message publication is accomplished by AMS itself, not by the node, so generation of
this indication is strictly optional.

3.1.18 Cancel_subscription.indication

3.1.18.1 Function

The Cancel_subscription.indication primitive shall be used to notify the node of a
newly canceled subscription in the message space.

3.1.18.2 Semantics

Cancel_subscription.indication shall provide parameters as follows:

Cancel_subscription.indication (node ID,
node name,
 subject name)

3.1.18.3 When Generated

Cancel_subscription.indication is optionally generated upon cancellation of a
subscription by some node in the message space.

3.1.18.4 Effect on Receipt

The effect on reception of Cancel_subscription.indication by a node is undefined.

3.1.18.5 Additional Comments

This indication is provided solely to facilitate message space configuration monitoring.
Message publication is accomplished by AMS itself, not by the node, so generation of
this indication is strictly optional.

3.1.19 Subject.indication

3.1.19.1 Function

The Subject.indication primitive shall be used to report on the validity and (if
specified) defined message format of a subject.

 29

3.1.19.2 Semantics

Subject.indication shall provide parameters as follows:

Subject.indication (subject name,
[subject format])

3.1.19.3 When Generated

Subject.indication is generated upon reception of a subject report message from the
subject server of the message space, which in turn is produced in response to a
Declare_subject.request or Look_up_subject.request primitive.

3.1.19.4 Effect on Receipt

The effect on reception of Subject.indication by a node is undefined.

3.1.19.5 Additional Comments

None.

3.2 Services required of the transport system

TBD.

4 Protocol specification

4.1 General

All Meta-AMS PDUs (or “MPDUs”) shall be transmitted using the AMS continuum’s
primary transport service.

4.2 Configuration procedures

4.2.1 Configuration server initialization

Upon commencing operations, the configuration server shall re-process all
announce_ss_daemon and announce_rs_daemon MPDUs stored in its non-volatile
“reboot object”, if any. Procedures for processing these MPDUs are discussed below.

Upon commencing operations and once per minute thereafter, the configuration server
shall send an I_am_running MPDU to every “lower-ranking” network location at which
the configuration server is authorized to operate, as indicated in the node’s Management
Information Base. NOTE: since these network locations are listed in descending order of
preference, a lower-ranking network location is defined as one that appears at some point
in the list after the configuration server’s own network location.

 30

On receipt of an I_am_running MPDU, the configuration server shall cease operations.

4.2.2 Configuration server location

When the network location of the continuum’s configuration server is unknown:

• An are_you_active MPDU shall be sent to all network locations at which the
configuration server is authorized to operate, as indicated in the node’s
Management Information Base.

• On receipt of an are_you_active MPDU, the configuration server shall return a
config_msg_ack MPDU.

• On receipt of a config_msg_ack MPDU in response to an are_you_active, the
network location of the originating configuration server shall be noted. If no
responding config_msg_ack MPDU is received within 5 seconds, a
Fault.indication primitive shall be delivered.

• This procedure shall be repeated until successful or until AMS activity is
terminated.

4.2.3 Subject server initialization

Upon commencing operations, the subject server shall:

• Re-process all subject_svc_request MPDUs stored in its non-volatile “reboot
object”, if any. Procedures for processing these MPDUs are discussed below.

• Locate the configuration server.

• Send an announce_ss_daemon MPDU to the configuration server.

On receipt of an announce_ss_daemon MPDU, the configuration server shall:

• Determine whether or not a subject server for the indicated message space is
already known to be running.

• If so, return a rejection MPDU.

• Otherwise:

o Note the new subject server.

o Retain the MPDU in the configuration server’s non-volatile “reboot
object” for automatic message space recovery.

o Return a config_msg_ack MPDU.

 31

o commence a 10-second heartbeat cycle for heartbeat exchange with the
subject server. (See discussion of heartbeats below.)

On receipt of a rejection MPDU the subject server shall cease operations.

On receipt of a config_msg_ack MPDU, the subject server shall commence a 10-second
heartbeat cycle for heartbeat exchange with the configuration server; see discussion of
heartbeats below.

4.2.4 Subject server location

When the network location of the message space’s subject server is unknown:

• The network location of the configuration server shall be determined as necessary.

• A subject_svc_query MPDU shall be sent to the configuration server.

• On receipt of a subject_svc_query MPDU, the configuration server shall return a
subject_svc_spec MPDU indicating the network location of the subject server.

• On receipt of a subject_svc_spec MPDU in response to a subject_svc_query, the
network location of the subject server shall be noted. If no responding
subject_svc_spec MPDU is received within 5 seconds, the network location of the
configuration server shall be deemed unknown.

• This procedure shall be repeated until successful or until AMS activity is
terminated.

4.2.5 Registrar initialization

Upon commencing operations, the registrar shall:

• Locate the configuration server.

• Send an announce_rs_daemon MPDU to the configuration server.

On receipt of an announce_rs_daemon MPDU, the configuration server shall:

• Determine whether or not a registrar for the indicated zone of the indicated
message space is already known to be running.

• If so, return a rejection MPDU.

• Otherwise:

o If the indicated zone is previously unknown in this message space, i.e., the
zone has not yet been assigned a zone number, then assign it the message
space’s smallest unused zone number.

 32

o Note the registrar for this zone.

o Retain the MPDU in the configuration server’s non-volatile “reboot
object” for automatic message space recovery.

o Return a zone_nbr MPDU indicating the zone’s assigned number.

o commence a 10-second heartbeat cycle for heartbeat exchange with the
registrar. (See discussion of heartbeats below.)

On receipt of a rejection MPDU the registrar shall cease operations.

On receipt of a zone_nbr MPDU, the registrar shall:

• Commence a 10-second heartbeat cycle for heartbeat exchange with the
configuration server; see discussion of heartbeats below.

• Send a msg_space_query MPDU to the configuration server.

On receipt of a msg_space_query MPDU, for each zone in the message space the
configuration server shall return one zone_spec MPDU indicating the network location of
the zone’s registrar.

On receipt of each zone_spec MPDU, the registrar shall:

• Note the network location of the indicated zone’s registrar.

• Send a note_zone MPDU to that registrar, announcing itself.

On receipt of a note_zone MPDU for a previously unknown zone, the receiving registrar
will forward the MPDU to all nodes in its zone.

Each node, upon receiving a note_zone MPDU, shall note the name of the zone.

4.2.6 Registrar location

When the network location of the zone’s registrar is unknown:

• The network location of the configuration server shall be determined as necessary.

• A registrar_query MPDU shall be sent to the configuration server.

• On receipt of a registrar_query MPDU, the configuration server shall return a
zone_spec MPDU indicating the network location of the registrar.

• On receipt of a zone_spec MPDU in response to a registrar_query, the network
location of the registrar shall be noted. If no responding zone_spec MPDU is

 33

received within 5 seconds, the network location of the configuration server shall
be deemed unknown.

• This procedure shall be repeated until successful or until AMS activity is
terminated.

4.2.7 Node registration

On receipt of a Register.request primitive:

• The network location of the configuration server shall be determined.

• The network location of the registrar for the node’s zone shall be determined.

• The node shall send a node_registration MPDU to that registrar.

• On receipt of a node_registration MPDU:

o If the number of nodes registered in the zone is already equal to the
maximum (as indicated in the registrar’s Management Information Base),
the registrar shall return a rejection MPDU indicating the reason for
refusing the registration.

o If the registrar has been operating for less than 60 seconds (three times the
standard node heartbeat period) then it does not yet have an authoritative
list of all nodes currently registered in the zone and therefore cannot yet
construct a reliable “configuration needed” list for the new node. In this
case the registrar shall return a rejection MPDU indicating the reason for
refusing the registration.

o Otherwise:

 The registrar shall assign an unused node number to the node and
return a you_are_in MPDU, indicating the node’s own node
number and containing a “configuration needed” list of the
assigned node numbers of all other nodes currently registered in
the zone.

 The registrar shall also return one note_zone MPDU, indicating
zone name, for each zone in the message space.

 The registrar shall commence a 20-second heartbeat cycle for
heartbeat exchange with the new node; see discussion of heartbeats
below.

• On receipt of a rejection MPDU a Fault.indication primitive shall be delivered
and the registration attempt shall be abandoned.

 34

• As noted earlier, on receipt of each note_zone MPDU the indicated zone name
shall be noted.

• On receipt of a you_are_in MPDU:

o The node shall commence a 20-second heartbeat cycle for heartbeat
exchange with the registrar; see discussion of heartbeats below.

o The “configuration needed” list shall be noted.

o An I_am_starting MPDU containing the node’s registration string shall be
sent to the registrar.

• On receipt of an I_am_starting MPDU from a node in its zone, the registrar shall
forward the MPDU to every other node in its zone and to every other registrar in
the message space.

• On receipt of an I_am_starting MPDU from another registrar, the registrar shall
forward the MPDU to every node in its zone.

• On a node’s receipt of an I_am_starting MPDU from a registrar:

o The new node shall be noted.

o Optionally, a Register.indication primitive shall be delivered.

o An I_am_here MPDU containing the receiving node’s registration string
and all of its current subscriptions shall be sent to the new node.

• On receipt of an I_am_here MPDU:

o The issuing node’s registration string shall be noted.

o Optionally, a Register.indication primitive shall be delivered.

o For each of the issuing node’s subscriptions:

 The subscription shall be noted.

 Optionally, a Assert_subscription.indication primitive shall
be delivered.

o If the issuing node is registered in the new node’s own zone, it shall be
removed from the “configuration needed” list.

o If, at this time, the new node is already subscribed to one or more subjects,
a subscriptions PDU containing all of those subscriptions shall be returned
to the node that sent the I_am_here MPDU.

 35

• On receipt of a subscriptions MPDU:

o For each of the issuing node’s subscriptions:

 The subscription shall be noted.

 Optionally, a Assert_subscription.indication primitive shall
be delivered.

4.2.8 Unregistration

On receipt of an Unregister.request primitive:

• The network location of the registrar shall be determined.

• An I_am_stopping MPDU shall be sent to the registrar.

On receipt of an I_am_stopping MPDU from a node in its zone, the registrar shall note
the termination of the node and shall forward the MPDU to every other node in its zone
and to every other registrar in the message space.

On receipt of an I_am_stopping MPDU from another registrar, the registrar shall forward
the MPDU to every node in its zone.

On a node’s receipt of an I_am_stopping MPDU from a registrar:

• The node’s removal shall be noted.

• Optionally, an Unregister.indication primitive shall be delivered.

• For each of the terminated node’s subscriptions:

o The subscription shall be forgotten.

o Optionally, a Cancel_subscription.indication primitive shall be
delivered.

• If the receiving node is the terminated node itself (i.e., the node’s termination was
imputed from a failure to deliver heartbeats to the registrar on a timely basis, as
discussed below), the node shall terminate immediately.

4.2.9 Heartbeats

Upon expiration of any heartbeat period, a heartbeat MPDU shall be sent to the relevant
communicating entity and a reciprocating heartbeat MPDU shall be expected from that
entity. Whenever three successive heartbeat periods lapse after reception of a heartbeat
MPDU before reception of another, an unplanned termination of the relevant
communicating entity is imputed.

 36

Imputed termination of the configuration server shall simply cause the network location
of the configuration server to be unknown for future communication purposes, forcing re-
location of the configuration server.

Upon imputed termination of a subject server or registrar, the configuration server shall
attempt to restart the communicating entity at the same network location at which it was
previously operating.

The effect of imputed registrar termination on each node in the registrar’s zone shall be
as follows:

• If the node’s “configuration needed” list is non-empty (that is, the node has newly
entered the message space and has not yet learned enough about all other nodes in
the zone to be able to re-orient a restarted registrar), then the node terminates
immediately.

• Otherwise:

o The restarted registrar is located.

o A reconnect MPDU indicating the numbers of all nodes in the zone shall
be sent to the restarted registrar.

• On receipt of a reconnect MPDU from a node, the registrar shall:

o Return a you_are_dead MPDU if the registrar has been operating for more
than 60 seconds (during which time all nodes in the zone should already
have contacted it); this serves to defend the registrar against spurious
reconnections.

o Return a you_are_dead MPDU if a reconnect MPDU had previously been
received from some other node, and the node census in that reconnect
MPDU did not include the node that issued this new reconnect MPDU;
this serves to defend the registrar against inconsistent zone censuses.

o Otherwise:

 Commence a 20-second heartbeat cycle for heartbeat exchange
with this node.

 Return a config_msg_ack MPDU.

• On receipt of a config_msg_ack MPDU, the receiving node shall re-commence its
20-second heartbeat cycle for heartbeat exchange with the registrar.

Upon imputed termination of a node, the registrar shall send an I_am_stopping MPDU on
behalf of this node to every other node in its zone and to every other registrar in the

 37

message space. This will have the effect of unregistering the node in the manner
discussed above.

On reception of a heartbeat MPDU from an unknown subject server or registrar, the
configuration server shall return a you_are_dead MPDU.

On reception of a heartbeat MPDU from an unknown node, the receiving registrar shall
return a you_are_dead MPDU.

On reception of a you_are_dead MPDU, the receiving communicating entity shall
terminate immediately.

4.2.10 Resynchronization

Each registrar, upon expiration of its configuration resynchronization interval (as
indicated in the registrar’s Management Information Base), shall:

• Select one zone of the message space (possibly its own) for configuration
resynchronization.

• Send a note_zone MPDU to that zone.

• Send a zone_status MPDU to that zone’s registrar or, if the selected zone is the
registrar’s own zone, to every node in the zone.

• Send an announce_status MPDU to every node in its zone.

On receipt of an announce_status MPDU, the receiving node shall return a my_status
MPDU to the registrar.

On receipt of each my_status MPDU, the registrar shall forward the MPDU as a
node_status MPDU to the selected zone’s registrar or, if the selected zone is the
registrar’s own zone, to every other node in the zone.

On receipt of a zone_status or node_status MPDU from another registrar, the receiving
registrar shall forward the MPDU to every node in its zone.

On receipt of a zone_status or node_status MPDU, the receiving node shall note the
current status of the zone or node. For each difference in registration or subscription
between the new status and the status as previously noted by the receiving node, an
optional Assert_subscription.indication, Cancel_subscription.indication,
Register.indication, or Unregister.indication primitive shall be delivered as
appropriate.

4.2.11 Subscription assertion

On receipt of an Assert_subscription.request primitive:

 38

• The network location of the registrar shall be determined.

• A subscribe MPDU shall be sent to the registrar.

On receipt of a subscribe MPDU from a node in its zone, the registrar shall forward the
message to every node in its zone and to every other registrar in the message space.

On receipt of a subscribe MPDU from another registrar, the registrar shall forward the
message to every node in its zone.

On a node’s receipt of a subscribe MPDU from a registrar, the subscription shall be noted
and, optionally, an Assert_subscription.indication primitive shall be delivered.

4.2.12 Subscription cancellation

On receipt of a Cancel_subscription.request primitive:

• The network location of the registrar shall be determined.

• An unsubscribe MPDU shall be sent to the registrar.

On receipt of an unsubscribe MPDU from a node in its zone, the registrar shall forward
the message to every node in its zone and to every other registrar in the message space.

On receipt of an unsubscribe MPDU from another registrar, the registrar shall forward
the message to every node in its zone.

On a node’s receipt of an unsubscribe MPDU from a registrar, the indicated subscription
shall be forgotten and, optionally, a Cancel_subscription.indication primitive shall
be delivered.

4.3 Dictionary procedures

On receipt of a Declare_subject.request primitive:

• The network location for the message space’s subject server shall be determined
as necessary.

• A subject_svc_request MPDU shall be sent to the subject server requesting
declaration of the indicated subject.

On receipt of a Look_up_subject.request primitive:

• The network location for the message space’s subject server shall be determined
as necessary.

• A subject_svc_request MPDU shall be sent to the subject server requesting a
report on the indicated subject.

 39

On receipt of a subject_svc_request MPDU the subject server shall proceed as follows:

• If the requested service is declaration of a subject:

o If the subject has not previously been declared:

 The smallest subject number not currently assigned in this message
space shall be assigned to the subject.

 The subject’s name, assigned number, and message content format
(if specified) shall be catalogued for future reference. Note that the
definition and management of the subject service catalogue is an
implementation matter.

o Otherwise, if the MPDU’s argument specifies message content format,
that format shall replace any format currently catalogued for this subject.

o The MPDU shall be retained in the subject server’s non-volatile “reboot
object” for automatic subject catalog recovery.

• In any case, a subject_definition MPDU shall be issued to the node that issued the
subject_svc_request.

On receipt of a subject_definition MPDU from the subject server:

• The definition shall be locally noted, to minimize the need for subsequent
subject_svc_requests.

• A Subject.indication primitive shall be delivered.

4.4 Communication procedures

4.4.1 Message transmission

Whenever an AMS communication PDU is to be transmitted from one node to another,
the transport service to use for this transmission shall be selected as follows:

• The access port names in the node registration string for the destination node shall
be examined, in order, until one is encountered whose namespace is equal to the
namespace in one of the transport service endpoint IDs by which the source node
can transmit AMS messages, as indicated in the node’s Management Information
Base.

• If there is no such access port name, then transmission of the message is
impossible; a Fault.indication primitive shall be delivered.

• Otherwise, the selected access port name shall be used as the destination endpoint
for the PDU and the indicated transport service shall be used to accomplish the

 40

transmission. If the transmission is determined to have failed for any reason, a
Fault.indication primitive shall be delivered.

4.4.2 Publish

On receipt of a Publish.request primitive, a non-reply AMS PDU shall be constructed
using the provided parameters and one copy of this PDU shall be transmitted to every
node that is currently subscribed to the indicated subject.

4.4.3 Send

On receipt of a Send.request primitive, a non-reply AMS PDU shall be constructed
using the provided parameters and the PDU shall be transmitted to the indicated node.

4.4.4 Reply

On receipt of a Reply.request primitive, a reply AMS PDU shall be constructed using
the provided parameters and the PDU shall be transmitted to the indicated node.

4.4.5 Receive

On receipt of a non-reply AMS PDU, a Message.indication primitive shall be
delivered.

On receipt of a reply AMS PDU, a Reply.indication primitive shall be delivered.

5 Protocol data units
5.1 Meta-AMS Protocol Data Units

5.1.1 Meta-AMS protocol data unit format

The protocol data units used to effect configuration and dictionary procedures are termed
Meta-AMS (MAMS) PDUs. Each MPDU shall consist of a header in fixed format
followed by supplemental data; the length of the supplemental data in an MPDU shall
vary from zero to 4096 octets depending on the MPDU type indicated in the header.

The MPDU header shall consist of the fields shown in table 5-1. The MPDU header
fields shall be transmitted in the order of presentation in table 5-1.

Table 5-1: MAMS PDU Header Fields

Field Length (bits) Values Comment
Supplementary data flag 1 ‘0’ — no supplementary data

‘1’ — PDU has supplementary data

MPDU type 7 See Table 5-2 below.
Memo 32 See Table 5-3 below. Semantics vary by MPDU type.

 41

Argument 32 See Table 5-3 below. If supplementary data flag is 1,
argument indicates the length of
the supplementary data.
Otherwise, the semantics of the
argument field vary by MPDU
type.

5.1.2 Meta-AMS protocol data unit types

The MAMS protocol data unit type shall indicate the nature of the MPDU as noted in
table 5-2.

Table 5-2: MAMS PDU Types

MPDU Type (decimal) Function

00 (reserved)

01 heartbeat

02 rejection

03 you_are_dead

04 config_msg_ack

05 are_you_active

06 announce_ss_daemon

07 announce_rs_daemon

08 zone_nbr

09 (reserved)

10 zone_spec

11 note_zone

12 subject_svc_query

13 subject_svc_spec

14 subject_svc_request

15 subject_definition

16 msg_space_query

17 (reserved)

18 registrar_query

19 node_registration

20 you_are_in

21 I_am_starting

22 I_am_here

23 subscriptions

 42

MPDU Type (decimal) Function

24 subscribe

25 unsubscribe

26 I_am_stopping

27 reconnect

28 zone_status

29 announce_status

30 my_status

31 node_status

32 I_am_running

All other values (reserved)

5.1.3 Meta-AMS Memo Values

5.1.3.1 Query number

A query number sequentially assigned by AMS for this entity.

5.1.3.2 Echo

The additive inverse of the memo number of the received MPDU that caused this MPDU
to be sent.

5.1.3.3 Heartbeat source

If heartbeat is from configuration server, memo value is 1. If heartbeat is from subject
server, memo value is 3. If heartbeat is from registrar, memo value is 2. If heartbeat is
from a node, memo value is 4.

5.1.3.4 Reconnect echo

If MPDU is sent in response to a reconnect MPDU, then echo; otherwise zero.

5.1.3.5 Message source

If MPDU is directly from a node (not relayed), memo value is 4. Otherwise, memo value
is zero.

5.1.3.6 Destination zone

If MPDU is sent to a registrar, memo value is that registrar’s zone number. Otherwise,
memo value is zero.

 43

5.1.4 Meta-AMS Argument Values

5.1.4.1 SDL

Supplementary data length (SDL), the length of the MPDU’s supplementary data
including any terminating NULL.

5.1.4.2 Heartbeat sender

If heartbeat is from a node, the number of the node. Otherwise zero.

5.1.5 Meta-AMS Supplementary Data Values

5.1.5.1 General

The term string is used here to signify an array of text characters formed by the
concatenation of one or more lexical tokens – and/or other strings – delimited by single
spaces. All string text is in ASCII representation. The last character of the last text
character in a supplementary data value is immediately followed by a NULL character,
terminating the string.

5.1.5.2 Subject declaration

Subject declaration is the concatenation of a “!” character, the name of the subject, a
space, and (if provided) the character string defining the subject format.

5.1.5.3 Subject lookup string

Subject lookup string is the concatenation of a “?” character and the name of the subject.

5.1.5.4 Subject definition

Subject definition is a string containing the ASCII representation of the number assigned
to this subject, the name of the subject, and (if defined) the character string defining the
subject format

5.1.5.5 MAMS endpoint ID

A MAMS endpoint ID is a PTS endpoint ID. For a continuum that uses UDP as its PTS,
a MAMS endpoint ID is the concatenation of the ASCII representation of port number, a
colon, and the ASCII representation of Internet host number.

5.1.5.6 Message space name

Message space name is a string containing the message space’s application name and
authority name.

 44

5.1.5.7 Subject server boot string

Subject server boot string is string containing message space name, the name of the
subject server’s reboot object, and the subject server’s MAMS endpoint ID.

5.1.5.8 Zone descriptor

A zone descriptor is a string containing the zone’s name, the MAMS endpoint ID of its
registrar, and ASCII representations of the maximum number of nodes allowed in the
zone and the registrar’s configuration resynchronization interval.

5.1.5.9 Registrar boot string

Registrar boot string is a string containing message space name and the zone descriptor
for the registrar’s zone.

5.1.5.10 Zone query string

Zone query string is a string containing message space name and the ASCII
representation of zone number.

5.1.5.11 Zone specification

Zone specification is a string containing the ASCII representation of the zone’s number
and the zone descriptor for that zone.

5.1.5.12 Qualified zone name

Qualified zone name is a string containing message space name and zone name.

5.1.5.13 Node list

A node list is the concatenation of an 8-bit integer indicating the number of nodes in the
list, followed by that number of 8-bit integer node numbers.

5.1.5.14 Enrollment string

Enrollment string is the concatenation of an 8-bit integer containing the assigned node
number followed by a node list enumerating all the nodes in the zone (including the new
one).

5.1.5.15 Access port name

Access port name is the concatenation of transport service namespace name, an equals
(=) symbol, and the name of an endpoint in that namespace at which the node can receive
AMS PDUs.

 45

5.1.5.16 Node access string

Node access string is a string containing MAMS endpoint ID, a comma-delimited list of
all access port names, and a comma-delimited list of the names of all transport service
namespaces in which the node can transmit AMS PDUs.

5.1.5.17 Registration string

Registration string is a string containing node name, zone name, ASCII representation of
node number, and node access string.

5.1.5.18 Subscription list

A subscription list is the concatenation of a 16-bit integer indicating the number of
subscriptions in the list, followed by that number of 16-bit integer subject numbers.

5.1.5.19 Node status structure

A node status structure is the concatenation of a registration string (which is NULL-
terminated, as it is the last string in the supplementary data value) and a subscription list.

5.1.5.20 Node ID structure

A node ID structure is the concatenation of two 8-bit integers indicating the zone number
and node number of the node.

5.1.5.21 Declaration structure

A declaration structure is the concatenation of a node ID structure and a subscription list.

5.1.5.22 Subscription structure

A subscription structure is the concatenation of a node ID structure and a 16-bit integer
indicating the subject number of the message subject.

5.1.5.23 Reconnect structure

A reconnect structure is the concatenation of an 8-bit integer indicating the node number
of the node, followed by the name of the node (which is NULL-terminated, as it is the
last string in the supplementary data value), followed by the zone’s node list.

5.1.5.24 Zone status structure

A zone status structure is the concatenation of an 8-bit integer indicating the zone number
of the zone, followed by the zone’s node list.

 46

5.1.6 Meta-AMS Protocol Data Unit Structures

The contents of MAMS protocol data units shall be as specified in Table 5-3.

Table 5-3: MAMS PDU Structures

Type Memo Argument Supplementary Data
01 Heartbeat source Heartbeat sender none

02 Echo 0 none

03 Reconnect echo 0 none

04 Echo 0 none

05 Query number 0 none

06 Query number SDL Subject server boot string

07 Query number SDL Registrar boot string

08 Echo Zone number none

09 Query number SDL Zone query string

10 Echo SDL Zone specification

11 Zone number SDL Zone name

12 Query number SDL Message space name

13 Echo SDL MAMS endpoint ID

14 Query number SDL Subject declaration or subject lookup string

15 Echo SDL Subject definition

16 Query number SDL Message space name

17 Echo Zone count None

18 Query number SDL Qualified zone name

19 Query number SDL Node name

20 Echo SDL Enrollment string

21 Message source SDL Registration string

22 0 SDL Node status structure

23 0 SDL Declaration structure

24 Message source SDL Subscription structure

25 Message source SDL Subscription structure

26 Message source SDL Node ID structure

 47

27 Query number SDL Reconnect structure

28 0 SDL Zone status structure

29 0 Number of zone to sync with none

30 Number of zone to sync with SDL Node status structure

31 Destination zone SDL Node status structure

32 0 0 none

5.2 AMS Communication PDUs

5.2.1 General

Each AMS PDU shall consist of a header in fixed format followed by zero or more octets
of content. The length of the content in an AMS PDU shall vary as indicated by the
content length field of the header.

The AMS PDU header shall consist of the fields shown in Table 5-4. The PDU header
fields shall be transmitted in the order of presentation in Table 5-4.

Table 5-4: AMS Communication PDU Header Fields

Field Length (bits) Values Comment
Source zone number 8
Source node number 8
Destination zone number 8
Destination node number 8
Message subject number 16
Context number 32
Context cycle number 16 Zero. For future use.
Content length 32

5.2.2 Replies

For any AMS PDU issued in response to a Publish.request primitive or a
Send.request primitive, context number shall be either zero or an integer greater than
zero (inviting a reply). Such PDUs are termed “non-reply” messages.

For any AMS PDU issued in response to a Reply.request primitive, context number
shall be the additive inverse of the context number of the message to which this reply
message is a response. Such PDUs are termed “reply” messages.

 48

6 Remote AMS (RAMS)

6.1 Remote AMS (RAMS) procedures

6.1.1 Initial declaration

Upon instantiation, the subject server for a message space identified by a given
application name and authority name shall obtain from its Management Information Base
(MIB) the DTN Bundling protocol endpoint IDs of all counterpart subject servers. Each
such counterpart subject server shall be the subject server, in some other known AMS
continuum, for the message space identified by the same application name and authority
name (if any). The subject server shall use DTN Bundling to send to each counterpart
subject server a RAMS PDU with content length -1, indicating initial declaration, and
subject name length zero.

6.1.2 Orientation

Upon reception from a counterpart subject server of an initial declaration RAMS PDU,
the subject server shall use DTN Bundling to send to that counterpart subject server one
RAMS PDU with content length -2, indication subscription assertion, for each subject to
which at least one node in its message space (aside from the subject server itself) is
currently subscribed. Each such RAMS PDU shall contain the name of the relevant
subject.

6.1.3 Assertion reporting

Upon detection of a subscription assertion within its message space, where the asserted
subscription is for a subject to which no other node in the message space (aside from the
subject server itself) is currently subscribed, the subject server shall use DTN Bundling to
send to each counterpart subject server a RAMS PDU with content length -2, indicating
subscription assertion, for that subject. The RAMS PDU shall contain the name of the
relevant subject. This RAMS PDU shall signify that the subject server’s continuum is
subscribed to the indicated subject.

6.1.4 Cancellation reporting

Upon detection of a subscription cancellation within its message space, where the
canceled subscription is for a subject to which no other node in the message space (aside
from the subject server itself) is currently subscribed, the subject server shall use DTN
Bundling to send to each counterpart subject server a RAMS PDU with content length -3,
indicating subscription cancellation, for that subject. The RAMS PDU shall contain the
name of the relevant subject. This RAMS PDU shall signify that the subject server’s
continuum is no longer subscribed to the indicated subject.

 49

6.1.5 Assertion replication

Upon reception from a counterpart subject server of a subscription assertion RAMS PDU,
for a subject to which no other continuum is currently subscribed, the subject server shall
itself subscribe to that subject. The subject server shall not subscribe to any subjects
under any other circumstances.

6.1.6 Cancellation replication

Upon reception from a counterpart subject server of a subscription cancellation RAMS
PDU, for a subject to which no other continuum is currently subscribed, the subject
server shall cancel its own subscription to that subject. The subject server shall not
cancel its subscriptions to any subjects under any other circumstances.

6.1.7 Remote publication

On receiving a message for a subject to which it has subscribed, the subject server shall
use DTN Bundling to send to its counterpart subject server in each continuum that is
subscribed to this subject a RAMS PDU containing the content of that message. The
RAMS PDU shall contain the name of the relevant subject.

6.1.8 Local re-publication

Upon reception from a counterpart subject server of a RAMS PDU with non-negative
content length, the subject server shall publish a message whose subject and content are
those of the RAMS PDU.

6.2 Remote AMS (RAMS) PDUs

Each RAMS PDU shall consist of a header in fixed format followed by from 1 to 255
octets of message subject name, followed by zero or more octets of content. The length
of the message subject name in a RAMS PDU shall vary as indicated by the subject name
length field of the header. The length of the content in a RAMS PDU shall vary as
indicated by the content length field of the header.

The RAMS PDU header shall consist of the fields shown in Table 6-1. The PDU header
fields shall be transmitted in the order of presentation in Table 6-1.

Table 6-1: RAMS PDU Header Fields

Field Length (bits) Values Comment
Source continuum number 8
Source zone number 8 0 if content length is negative;

otherwise identifies the source
node.

 50

Source node number 8 0 if content length is negative;
otherwise identifies the source
node.

Destination continuum number 8
Destination zone number 8 0 if content length is negative or

message is a publication; otherwise
identifies the destination node.

Destination node number 8 0 if content length is negative or
message is a publication; otherwise
identifies the destination node.

Context number 32 0 if content length is negative;
otherwise, as specified by the
source node.

Context cycle number 16 0 if content length is negative;
otherwise, as specified by the
source node.

Content length 32 -1 if PDU is an initial declaration;
-2 if PDU is a subscription assertion;
-3 if PDU is a subscription
cancellation; otherwise, length of
message content.

Subject name length 8 0 if PDU is an initial declaration;
otherwise, the length of the subject
name of the message or
subscription assertion or
cancellation.

7 Management information base
7.1 Node MIB

The MIB of each node shall include:

• The Primary Transport Service endpoint IDs of all network locations at which the
configuration server for this continuum is authorized to operate, in descending
order of preference.

• The period on which to issue and expect heartbeat messages to and from the
registrar.

• The transport service endpoint IDs for all transport services by which the node is
able to transmit AMS messages.

7.2 Registrar MIB

The MIB of each node shall include:

 51

• The Primary Transport Service endpoint IDs of all network locations at which the
configuration server for this continuum is authorized to operate, in descending
order of preference.

• The period on which to issue and expect heartbeat messages to and from all nodes
in the zone.

• The period on which to issue and expect heartbeat messages to and from the
configuration server.

• The maximum number of nodes that may be registered in the zone at any one
time.

• The period on which to autonomously re-advertise the configuration of the zone.

7.3 Subject Server MIB

The MIB of each subject server shall include:

• The Primary Transport Service endpoint IDs of all network locations at which the
configuration server for this continuum is authorized to operate, in descending
order of preference.

• The period on which to issue and expect heartbeat messages to and from the
configuration server.

• The continuum number of the local continuum.

• The continuum numbers of all other AMS continua with which Remote AMS
communication must be conducted.

• The DTN Bundling endpoint IDs of the counterpart subject servers in all other
AMS continua with which Remote AMS communication must be conducted.

7.4 Configuration Server MIB

The MIB of each configuration server shall include:

• The Primary Transport Service endpoint IDs of all network locations at which the
configuration server for this continuum is authorized to operate, in descending
order of preference.

• The period on which to issue and expect heartbeat messages to and from subject
servers and registrars.

Annex A: Informative References
TBD.

 52

Annex B: Acronyms
TBD.

Annex C: Recognized Transport Services
tcp

TCP endpoint specifications may be represented in any of the following ways:

• portnumber:hostname

• portnumber [indicating that the hostname is the known name of the local host]

• ? [instructing AMS to select an available port on the local host]

The namespace for all TCP access port names is “tcp”. The endpoint ID of each TCP
access port name is “portnumber:hostname”.

Each TCP access port name is therefore an ASCII string of the form “tcp=
portnumber:hostname”.

udp

UDP endpoint specifications may be represented in any of the following ways:

• portnumber:hostname

• portnumber [indicating that the hostname is the known name of the local host]

• ? [instructing AMS to select an available port on the local host]

The namespace for all UDP access port names is “udp”. The endpoint ID of each UDP
access port name is “portnumber:hostname”.

Each UDP access port name is therefore an ASCII string of the form “udp=
portnumber:hostname”.

fifo

FIFO (i.e., named pipe) endpoint specifications may be represented in either of the
following ways:

• pathname

• ? [instructing AMS to use “/tmp/zonename.nodename” as FIFO path
name]

 53

The namespace for all FIFO access port names is “fifohostnumber” where hostnumber is
the 32-bit IP address of the host machine in which the FIFOs are constructed. [Note that
Tramel communication via FIFO is only possible between nodes residing on a common
host machine.] The endpoint ID of each FIFO access port name is “pathname”.

Each FIFO access port name is therefore an ASCII string of the form “fifohostnumber=
pathname”.

vxpipe

VxWorks pipe endpoint specifications may be represented in either of the following
ways:

• queuelength

• ? [instructing AMS to use a queue of default length]

The namespace for all VxWorks pipe access port names is “vxpipehostnumber” where
hostnumber is the 32-bit IP address of the host machine in which the pipes are
constructed. [Note that Tramel communication via VxWorks pipe is only possible
between nodes residing on a common host machine.] The endpoint ID of each VxWorks
pipe access port name is “/pipe/owntaskID”.

Each VxWorks pipe access port name is therefore an ASCII string of the form
“vxpipehostnumber=/pipe/owntaskID”.

vxmsgq

VxWorks on-board message queue endpoint specifications may be represented in either
of the following ways:

• queuelength

• ? [instructing AMS to use a queue of default length]

The namespace for all VxWorks on-board message queue access port names is
“vxmsgqhostnumber” where hostnumber is the 32-bit IP address of the host machine in
which the message queues are constructed. [Note that Tramel communication via
VxWorks on-board message queue is only possible between nodes residing on a common
host machine.] The endpoint ID of each VxWorks on-board message queue access port
name is “msgqID”.

Each VxWorks on-board message queue access port name is therefore an ASCII string of
the form “vxmsgqhostnumber=msgqID”.

smmsgq

 54

VxWorks shared-memory (off-board) message queue endpoint specifications may be
represented in any of the following ways:

• queuelength

• ? [instructing AMS to use a queue of default length]

The namespace for all VxWorks shared-memory message queue access port names is
“smmsgqbusnumber” where busnumber is the administratively assigned 32-bit number
(e.g., spacecraft ID) that uniquely identifies the set of processors sharing access to the
memory board in which the shared-memory message queues are constructed. [Note that
Tramel communication via VxWorks shared-memory message queue is only possible
between nodes residing on a common bus.] The endpoint ID of each VxWorks shared
memory message queue access port name is “msgqID”.

Each VxWorks shared-memory message queue access port name is therefore an ASCII
string of the form “smmsgqbusnumber=msgqID”.

