A Decoder Architecture for High-Speed Free-Space Laser
Communications

Michael Cheng, Michael Nakashima, Jon Hamkins, Bruce Moision, and Maged Barsoum™
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099
ABSTRACT

We present a decoding architecture for high-speed free-space laser communications. This system will be used by
NASA’s Mars Laser Communication Demonstration (MLCD) project, the first use of high-speed laser commu-
nication from deep space. The Error Correction Code (ECC) and modulation techniques for this project have
been motivated by an analysis of capacity, and existing designs have been shown to operate within 0.9 dB of the
Shannon limit on the nominal operating point. In this paper, we give the algorithmic description and FPGA
implementation details that led to the development of a 50 Mbps hardware decoder.

Keywords: Laser Communication, Error Correction Code, Turbo Codes, MAP decoding, FPGA implementa-
tion.

1. INTRODUCTION

The Mars Laser Communications Demonstration (MLCD) is planned to be the first demonstration of optical
communications from a satellite in Deep Space to a Ground Receive Terminal on Earth. Nominal downlink
(from spacecraft to Earth) data rates of over 1 Mbps are desired. However, with certain operating conditions,
communication at 50 Mbps can be demonstrated.

NASA’s legacy ECC design for RF communication is the concatenation of an inner convolutional code and
an outer Reed-Solomon (RS) code [1]. Decoding is performed in one pass and hard bit-decisions are made.
The decoding cost is high. The discovery of Turbo codes [2] and their suboptimal but effective low-complexity
iterative decoding approach has generated much excitement in the coding community. The MLCD ECC design is
the serial concatenation of an inner modulation code and an outer convolutional code. Modulation is a mapping
of bits to symbols transmitted on the channel. This mapping may be considered a code and demodulation as
decoding of the code. Conventionally, the modulation and ECC are decoded independently, with the demodulator
sending it’s results to the ECC decoder. However, we may consider the combination of the modulation and the
ECC as a single large code, which maps user information bits directly to the symbols transmitted on the channel.
We could gain several dB in performance by decoding the ECC and modulation jointly as a single code relative
to decoding them independently. An exact ML decoding of the joint modulation-ECC code would, in most cases
of practical interest, be prohibitively complex.

However, we may approximate true ML decoding while limiting the decoder complexity by iteratively decoding
the modulation and the ECC. This is in fact the “Turbo” principle and more details can be found in [3].

2. CHANNEL DESCRIPTION

This work models the optical communication systems as seen in Figure 1. The information bits

U = (Uy,Us,- - ,Ug) are independent identically distributed (i.i.d.) binary random variables assumed to take
on the values 0 and 1 with equal probability. The vector U is encoded to C = (C1,C4,--- ,Cy,), a vector of n
M-ary Pulse Position Modulation (PPM) symbols. Each M-PPM symbol is a number in {0,1--- ,M — 1} and
represents a block of logy M bits. There is one signal slot and M — 1 nonsignal slots for each M-PPM symbol.
On the Poisson channel, a nonsignal slot has average photon count n; and a signal slot has average count ns+ny
so that the likelihood ratio (LR) of slot ¢ is calculated by

emmstm) (ng 4 np)™ Jk!

e—”bnlgi/ki!

ki
n
= s (] 4 2 . 1
e < + nb) (1)

Portion of this paper is the subject of a patent application NTR 4123 by the California Institute of Technology.

LR(k;) =




Background Light

v c Y

—_— Encoder Laser >
bits Modulator

PPM Light .
Symbols Pulses Signal and
Background
Light
( Z Y
PPM Phot
€ Decoder — D — oon
bits emodulator Detector
PPM Slot
Symbols Counts

Figure 1. An optical communication system.

outer code inner code
u X a w c y
- cc —={lI—= L ~ PPM -
user data .
/ interleaver \ channel
R =1/2, (5,7) convolutional code APPM, M = 64, 2 states, 128 edges

Figure 2. The SCPPM encoder. In our system, we adopt the (5,7) convolutional code as the outer code. The PPM
order M can be of 32, 64, or 128.

From the slot likelihood ratios, we can calculate the probability that symbol ¢ was transmitted as

LR (k;)/ Zj\il LR (k;) and the probability that the i*" bit is a one as >, ; 1 1 LR (k1) / Zﬁl LR (kj). The
log likelihood ratio (LLR) of bit i is then log (3_.1: s 15 1 LR (i) / Y 1bie 4 is o LR (ki)). The capacity of an optical
channel employing PPM and APD is presented in both [4] and [5].

3. ENCODER ARCHITECTURE
Sections 3 through 5 are materials taken out of [6], we include the contents here for completeness.

The Serial Concatenated Pulse Position Modulation (SCPPM) encoder is shown in Figure 2. A block of
information symbols u = (uy,us,--- ,uk) is encoded by an outer convolutional code to yield a coded sequence
x = (x1,X2, -+ ,Xx). Each is ux a binary vector of length p, and each x; a binary vector of length ¢,. The
code rate is %. The i-th components of these vectors are denoted uy ;, Ty ;-

The sequence x is permuted, bit-wise, to produce the sequence a. Both x and a have length ¢,/K. This
permutation is commonly referred to as an interleaving of the sequence. The sequence a is encoded by an inner
code consisting of an accumulator and PPM mapping to produce the coded sequence c. The trellis that describes
the inner code consists of 2 states and M /2 parallel branches between connecting states.

Moision and Hamkins [6] compared the SCPPM design to a coded PPM scheme that uses Reed-Solomon
(RS) code as the outer code. Their results showed that SCPPM with iterative decoding performs better. The
increase in the decoding complexity of SCPPM is also manageable. In fact, for the nominal operating point,
SCPPM has a 3 dB signal energy gain over RS-PPM of the same code rate. They further demonstrated that the
(5,7) rate 1/2 convolutional code is an effective outer code selection that led to a performance that is only 0.9
dB away from the Shannon capacity at a Bit Error Rate (BER) of 1075,

The interleaver used is characterized by a 2nd order polynomial f (z) = ax + bz?. The bit in position z is
mapped via the interleaver to position f (x) mod N. Here it is required that b is divisible by the prime factors



Anti-Gray construction Corresponding Label a w | Natural | Gray | Anti-Gray
000 0 000 | 000 0 0 0
111 1 001 | 111 7 7 )
100 2 010 | 110 6 3 6
(a) 011 3 (b) 011 | 001 1 4 3
110 4 100 | 100 4 1 2
001 5 101 | 011 3 6 7
010 6 110 | 010 2 2 4
101 7 111 | 101 ) ) 1

Figure 3. (a) The M-ary anti-Gray mapping is constructed by taking the first M /2 entries of the M-ary Gray mapping
(marked by normal font) and inserting the inverse (marked by bold) pattern in-between each entries. (b) Bit-to-Symbol
APPM Mapping (from a to Anti-Gray). Initial accumulator state is 0.

of N and that a is not [7]. For MLCD we have N = 15120 = 2*.3%.5.7. Candidate interleavers are of the form
f (z) = ax +210ma?, where m is a positive integer and a does not have 2,3, 5 or 7 as a factor. Among this class
we have observed good performance with the polynomial f (z) = 11z + 210x2.

Barron and Robinson [8] have derived a recursive implementation of a permutation polynomial interleaver
mapping that requires only additions. Let [-] be the mod N operator. Expand f (z 4+ 1) as

flz+1) = [a(x+1)+b(x+1)2
= [f@)+g@)], (2)
where g (z) = [a + b + 2bz]. Expanding g (z) similarly yields g (x + 1) = [g (z) + 2b].

4. BITS TO PPM SYMBOL MAPPING AND PARTIAL STATISTICS

Due to inter-slot-interference (ISI) and timing jitter, a fraction of each pulse energy may appear in adjacent
slots. PPM symbols with pulses in adjacent slots will be more likely to be confused with one another in ISI.
To mitigate the effects of ISI, the input bit streams a mapped by adjacent slots should have a large Hamming
distance. To accomplish this, the anti-Gray mapping is used, where bit streams represented by pulses in adjacent
slots are Hamming distance logoaM or log, M — 1 apart. The anti-Gray mapping can be constructed from the
Gray mapping by, for example taking the Gray mapping entries that has a prefix 0 and inserting the inverse
pattern between each entry. The anti-Gray construction and bit mapping for M = 8 are shown in Figure 3.
A gain of 0.3 dB in signal energy has been observed of the anti-Gray mapping relative to the Gray or natural
mapping [9].

To realize the gains of iterative decoding algorithms would nominally require a likelihood be computed and
stored for every slot of each PPM symbol in a codeword. However, high data rates, large values of M, and large
interleavers can make likelihood storage and processing prohibitively expensive.

To reduce the complexity of iterative decoding, we may discard the majority of the channel likelihoods [6],
operating the decoder using only the remainder. This may be accomplished by transmitting only a subset
consisting of the largest likelihoods during each symbol duration—the likelihoods corresponding to the slots with
the largest number of observed symbols. The observation of the remaining slots is set to the mean of a noise
slot. In low background noise, a small subset may be chosen with negligible loss.

5. DECODER ARCHITECTURE
5.1. Overview of Architecture

The SCPPM decoder diagram is given in Figure 4. The decoder operates iteratively to refine the overall decision
through repeated decoding trials. The symbol I indicates input to the constituent decoders and O indicates
output. The LLR’s passed between the soft-in-soft-out (SISO) decoders are extrinsic information obtained by



p(4;0) 1 P(X;T) p(U;0)
m(e; 1) {11~ > —
— Inner Outer
SISO SISO
From ¢ I |
el B(A: 1) B(X:0)

T

p(U; 1) =0
Figure 4. SCPPM decoder

subtracting the LLR’s provided to their respective inputs. Iterating on only the extrinsic information reduces
undesirable feedback that could bias the decisions. The Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [10] is used
to update the likelihoods. The procedure involves traversing the trellis that represents each of the constituent
codes in a forward and backward fashion and therefore, calculating the state and transition metrics that would
lead to maximum a-posteriori (MAP) bit decisions.

5.2. The Log-Domain SISO Decoding

Let V be the set of states and £ be the set of directed labeled edges in a trellis. Each edge e € £ has an initial state
i(e), a terminal state ¢ (e), an input label a (e) and an output label ¢ (e). The details of the SISO algorithm,
which uses the BCJR approach as its underlying principle, are presented in [6], [10], and [11]. To facilitate
hardware realization, the SISO algorithm, is implemented in the log-domain, which translates multiplications
into additions, and may be less sensitive to round-off errors in fixed-point arithmetic. The algorithm may be
converted in a straight-forward manner by defining [6], [11]

_ Pk, 1(& = 0; )

Gi(s) = logay (s) Pralil) = o8 (a=1.0)

Br(s) = logB (s) Pri(4:0) = log pr,ila =0;0)

i (s) = logm(s) | Piila = 1;0)
M (e) = logh (e) 7, (a;I) = logpi(a; )+ constant
7, (c;I) = logpr(c;I)+ constant

As input to the SISO algorithm, we receive the bit LLRs Py ;(A; I) from the outer SISO decoder. We desire
to compute output bit LLRs pr ;(A; O). Note that for a € {0,1}

1 1
log pi(a; I) = 5(—1)‘1@,1(14;1) t3 log(pk,i (0; I)pr,i(L; 1))- (3)

The second term is a constant relative to a and can be factored out. Hence, we may compute edge input symbol
LRs as

log, M
me(asl) = Y 5 (=1 Pri(4; 1) + constant (4)
i=1
Transforming the a and 3 iterations yields
Yi(e) = m(a; I) + mi(c; 1) (5)
ar(s) =log Y ar-1(i(e))me)
e:it(e)=seV
=log Y expl(ar-1(i(e)) +7x(e)) (6)
e:it(e)=seV
Br(s)=log > exp (Bra(t(e)) +Tnta(e)) (7)

e:i(e)=s€V



5.3. The max Operation

Implementation of the BCJR algorithm in the log domain requires taking the log of sums of exponentials. This
function is defined as the max operation [12]:

max (z,y) 2 log(e® +eY) (8)
= max (z,y) + log (1 + e"z_y‘) .
It is also noted that
max (z,y,2z) = log(e® +e¥ + ¢?) (9)
= max (mﬁx (x,y) ,y) .
By pre-computing log(1 + e~!*~¥) and storing the results in a table, we have a low complexity implementation
of max in hardware. More details are presented in Section 6.2.

5.4. Simplified Computation with Parallel Edges

The APPM trellis has 2-states and 2M edges per stage as seen in Figure 5. The forward and backward recursions

on this trellis require taking the max of % edges. Suppose each 2-input max operation incurs a delay of one
clock cycle. A direct implementation of the forward-backward algorithm would require a delay of log, (M/2)

cycles just for the max ’s. We show here how the computation may be pipelined, reducing the M /2-input max

operation to a 2-input max operation that may be computed in one clock cycle. We consider the 3 recursion,
all others follow in the same manner [13].

In the product domain, it is straightforward to see an application of the distributive law (multiplication
distribution over addition) saves computations on a trellis with parallel edges:

Br(s) = Y Brar(t(e)ymsa(e)

eri(e)=s
= Y Bl + > Br+1(8 ) vh+1(e)
eri(e)=s,t(e)=s eri(e)=s,t(e)=s"#s

Brea(s) D (@) |+ Benals) Y (o)

eri(e)=s,t(e)=s eri(e)=s,t(e)=s’

=Brr1(5) V1 (5, 8) + Brra () k41 (s, 8) (10)

where ’y,'gJrl (s, ), a sum over parallel edges, is referred to as the Super Gamma for the state pair (s, s) at stage
k + 1, the same calculation can be made for the state pair (s, s’).

We have an analogous simplification in the log domain via the distributive law (addition distributive over
max ) which can be seen by taking logarithms of both sides of (10)

Br(s) =log (exp (Br+1(8) + Tps1(5:8)) +exp (Beg1(s') + Vhgr (5,5))
:mBX 56{873/}{616-‘1-1(5) +:Yllc+1(5,§)} (11)
where
:Vllc(sa 3/) = log Z e’?kﬂ(e)
eri(e)=s,t(e)=s’

= MaX e:j(e)=s,t(e)=s' {:yk-l-l(e)} (12)
Since the ¥s are not a function of a recursively computed quantity, they may be pre-computed via a pipeline

as illustrated in Figure 6. Mapping s to bit probabilities require taking the max of M inputs and this latency
can be reduced similarly using the pipeline implementation.



% branches Yo —p»
5 2
" max _L>
max [ M
I—b 10g27
Y2 — N
max > .
73— PP max
[ ] [ X N ]
[ ]
o
SO
’Y% *2_. i} _|—> max
TM_y max
>
Figure 5. A single trellis stage with % parallel edges
1 . . . *
between connecting states. Figure 6. Pipelined max to compute the Super 7’s.

5.5. SCPPM Decoding Algorithm Flow

We describe the flow of our log-domain decoding algorithm. The inner code is an accumulate-PPM with M = 64
shown in Figure 7. The outer code is the rate 1/2, 4-state (5,7) convolutional code shown in Figure 8. The
interleaver has length 15120-bits.

1. (INNER SISO) The channel symbol log-likelihoods 7 (c; I) are delivered from the receiver to the decoder
via the Receiver Interface Block. In our current design, only the top 8 symbol statistics are used. This
reduces the amount of data transfer required from the receiver and the block memory (BRAM) needed
for storage. When the ~ calculation is ready, the de-multiplexer (de-mux) in Figure 7 directs the partial
symbols statics from the Channel Memory Block and sets the remaining symbol statics to the mean of the
noise slot (indicated by filler data). On initialization, the bit LLRs py ;(A; I), indicated by Py, (A) in Figure
7, are set to zero. On successive iterations, bit LLRs py ;(A; I) are obtained from the outer code via the
interleaver. The Vector Sums Block computes edge input symbol LLRs by

log, M 1

m(@a D) = Y 5 (D Pr (A1)

i=1
fora€ {0,1,...,63} (meaning the corresponding 6-bit vectors a) and k =1, ...,2520.
2. The 7-block takes as input the Vector Sums and LLRs from the de-multiplexer (de-mux) to compute
Yi(e) = mi(ale); I) + mx(c(e); 1)
foree & and k =1,...,2520. There are 128 edges in &.
3. The (-block uses the «’s for each edge to compute
T4 (5, 8") = MAX c.i(e)ms,t(e)=s {Tr(€)}

for each pair of initial and terminal states (s, s’) € {(s0,k—1,50,k); (S0,k—1, S1,k), (S1,k—1, S0.k)s (S1,k—1,51,k) }
and each k = 1,...,2520. These are 32-input max operations, and may be computed using the Super-¥
pipelined algorithm. The (-block then initializes the log 3’s to Basz0(s) = 0 for all s, and recursively
computes (and stores in BRAM)

Br(s) = max (Bri1(50,k+1) + Thsr (5 50,k+1)s Ber1(51h41) + Vhr (5, 51.041))

for s € {sok, 51,5} and k =1,...,2520. Note, these are 2-input max operations.



10.

The a\A-block initializes

_ _ 0, S = 80,0
ao(s) n { -0, S$=S10

follows the same procedure as the 8-block to calculate the Super %’s, and recursively computes

ag(s) = max (@r—1(50,k-1) + V& (S0,k—1+8)s Wh—1(51,k—1) + Vpu(81,6—1, )

for s € {sok, 514} and k =1,...,2520. The a’s are used immediately to form the current X’s and the next
a’s; therefore, only @’s of the current stage are stored. The \’s are calculated as

Ak(€) = ar-1(i(e)) + Tr(e) + Br(t(e))

foree & and k =1,...,2520. In hardware, —oo is stored as the most negative fix-point value, see (14).

. The py, (A)-block takes the \’s and computes

Pii(4:0) = mhx g {Ax(e)} — mix g {Ar(e)} — pii(A: )

fork=1,...,2520,7=0,...,5. These are 64-input max operations and are calculated using the pipelined
algorithm.

. The pi,i(a; O)’s are stored in the de-interleaver in sequential order and read out in (de)permuted order.

(OUTER SISO) The bit LLRs pg ;(X;I) from the inner code are read via the de-interleaver. The Vector
Sum Block in Figure 8 then computes edge output symbol log-likelihoods (LRs) by

21
me(x; 1) = Z 5(—1)x’i]§k7i(X; I)

i=1

for x =0,1,2,3 and k =1,...,7560. x lists the 4 outputs possible each stage and k is the stage counter.

. The LRs are passed to the ~-block

Vi(e) = my(x(e); 1)
foree & and k =1,...,7560. There are 8 edges in €. Note: m(u(e); I) = 0 for all iterations, hence does
not appear in the addition.

. The (-block initializes

Frsso(s) = 0, 8 = $0,7560
—00, 8= 857560, =1,2,3

and recursively computes

Br(s) = max ciie)=s{ Brt1(t(e)) + Tnt1(e)}
for s € {sok, $1,k, S2.k, S35} and k = 1,...,7560. These are 2-input max operations.

The o\ A block initializes

_ o 0, SZSO)O
ao(s)_{ —00, s=8;0,j=1,2,3

and recursively computes

@k(s) = InELX e:t(e):s{@k—l(i(e)) + :Yk(e)}
for s € {s0,ks 81,k S2,k, S35} and k = 1,...,7560. These are 2-input max operations. These a’s are then
used to form B )

Ak(e) = ar—1(i(e)) + Yx(e) + Br(t(e))
fore € £ and k =1,...,7560. Again —oo is stored in hardware as the most negative fix-point value, see
(14)



PK(A) BLOCK
SISO INNER CODE BLOCK DIAGRAMI Compute PHAO)1

(one stage ata time)s

shift, rd,
(control signals from state machine)l
I\

PiUg H
/ oy £
_eemaetoc APHAAEDA B0 g i
Compute Betass | ES
(one stage at a fime)] Compute Alphas and) E
I — e H

e o @

oot st o S d e

g
(tomp apha sorages g | PAOR:

\

VECTOR SUMS BLOCKI

GAMMA BLOCK

Compute Vector Sumst [ST— =
ompute Gammas ipe
(one stage at a time)y (one stage at a fime) 1/ N el 18 Mg | |+ PRAON:
M B 2520x2x8 N S
ZPuAR TTi(A 2l Jhem 4BRAVD — 5 | PuaOR
- e | |Thasm 11 . i :
i Liketnood Paios Zowny| (5} Y e : 5 | Praon:
(from Interieaver)) PUAY . : H £ :
one stage at a imet : ] : : ape 6 supe garnss eoen 17 b g ¢ Norm]
68 = 48 bits wides ) . : 7 e : ol | g | praon
20PUA: TTidAls H e) e H lip0
. Functionsl input -
Hratos ypite — : Masa s 3 | PAO:
pen :
porsiager iy ] : stan :
H Nidejazmyg
: Y T I Ao~ A B~ N
2 [Pugenzn worg | |
e it width = 31 fe—bit wioh =3
constant iler [ beta wr_doneg L state machines
Channel Symbolss — or M St 2LUTe
. ; required)
96 x 2520 = 15 BRAMS) %S _— Functions! e
Chamel symbolso . : { W
and Indicest —— wr_etr) -~ L a72LUTs
(from receiven): Heceiver 7 T oquirocd
‘Write Controld B TTCr+ Ind.0 \/ | for Max Start
(trom receiveri| | Functionso
B x (06196 bits vicel _rdy and _done signalsy Gammas are ro-computed for)
(Irom Beta.and PK(A) Blocks)s Lambda/Alpha calculations.
Jcharton 5 chans hcess (Contrlled via state machine)s
symbols) symbol bit wicthy
per stagel bit width now codewords [
Rk PK(AO)_valid
> Gontrol signais to Channal symbo, Beta. HAO v
start and run state machine when a new codeword has! Inner Coded - ‘Alpha/Lambda and PK(A) blocks.d (de_intiv_wiy
boen received and PK(A) daa i available from thed State Machinet . (address counter increment, clear, etc}
interleaver (intvr_rdy). State machine will continue to0 -
ftrate unii the sop signal asserts. Blocks >
from Stoppings stof
Rule Blockl .
from intoroavery  __Inerleaver.reyt intr_rc
(to interleaver)t
int_ci
(to ntericavery
stop_cin
(to sopping rule blocks

Figure 7. Block diagram of inner SCPPM decoder.

11. The N’s are input to the Py (U;O) \ Py (X;O) block to calculate output LLRs

Pi(U:0) = miae cor {Ak(e)} — minx cor {Ai(e))
Py (X:0) = miax egx {An(e)) — mhx e {Ae(e)} — iy (X 1)
for k=1,...,7560,i =0, and j = 0, 1.

12. The pi ;(X;0)’s are then written to the interleaver in a permuted order, the pg;(U;O)’s are sliced to
form the bit-decisions. The bits are checked using the stopping rule. If satisfied, the decoding algorithm
terminates; otherwise, the procedure starts again from Step 1.

The stopping rule [6] consists of a check on whether the output bits form a valid convolutional codeword and
that the bits pass a 16-bit Cyclic-Redundancy-Check (CRC). If both of these conditions are met, the decoding
iteration is stopped and the codeword is output as the decision.

6. HIGHLIGHTS OF DECODER IMPLEMENTATION
6.1. Metric Quantization

In software, the decoder metrics such as the states @’s, 3’s, the edges 4’s, A’s, and the likelihoods are of floating
point values. However, in hardware, these metrics are represented by fix-point integers in two’s complement
form.

The input quantization parameters are available bit width w and decimal precision p. The decoder variables
(or metrics) are represented as integers, that is,

quantized = (int) round (float - base?) , (13)



SISO OUTER CODE BLOCK DIAGRAM1 Pk(UX) BLOCKI

valid, _cl Compute PKUX;0)0
(from state mach.)i (one stage at a time)
2 -
Pk(x) per stager N
’
BETA BLOCKS
E— ALPHAILAMBDA BLOCKI
Compute Bet
(one stage ata time Compute Alphas and) ProxOp
| Lambdasi i
n (one stage at a time)s to Interleavers
Pi(KO
boa Blls) _ .
(rom state machiney Betas e
VECTOR SUMIGANNA BLOCK: - v 1 e
"""" ‘Compute Vector Sums ( and Gammas)) | Bu: Nide) Tinpur
(one sage o a oy Tew U - e
i Tem Nadele L
Y Thoo £ - [ PIUO) |— {— - docodod bits)
Zpuxg Thoxs g Jao L o BRAMY
oo e | PR(XT ot | Ly El Thdxe . Do = Aoy Ll
rom inner code via de-iterleaver) = >
one stage at a tim Thax ~ o) N el
tage at atimel PK(x) per stagen A e Ve >
. . o Dstersy, Nidels Ll
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ~ e | 7, PrUX
1 Reg Pipelines sTAR) e Aol L e
> Ao L
beta_wr_doneq
tosms
iy
)
H
i
T
)
7
v
Gammas aro re-computed for
—vdy and _done signalel . Lambda/Alpha calculations.1
ffom Botaand PIUX ke (ol va st machne I
State machine runs only i the de-interieaver has a ful
P
codeword worth of PK(X) data available (de_intervr_rd)0 Outer Codel intivr_wr)
Since the inner code biock ilsthe de-iterieaver withy State Machines | ™ (to interieavery
Pi(X) cata, the inner code controls tarting and stoppingl Blodkt L .
of outer code processing . control signais o various blocks.)
M (aciress countor ncroment, clear, etc):
H
—

deintive_rdy

(from de-interleaver)s de_intivr_ra)

(1o de-interleaver)!

(to de-interieaver)!

Figure 8. Block diagram of outer SCPPM decoder.

M=64, T =32, R=1/2, n =0.2, |[1]=16380 WER: M=64, T =32, R=1/2, n_=0.2, |[1|=16380
10° ‘ < ; 10° & T ‘ ‘
107 4 107; ]
10727 less than 0.2 dB 3 1072* J
2 D —— 2
ks ©
. i3
o = o =
5107 4 S 107 ]
o —e— WER (float) =
S —<— WER (18,3) s roat
1074 —— WER (18,4) i 1074 (103) |
—=— WER (18,5) (113
—A— WER (18,6) © 123
10°F WER (18,7) | 1071 ’ (13.9) |
—*— WER (18,8) =
1076 L L L L L L 1076 L L L L L L L L
2304 -303 -30.2 -30.1 -30  -299 -298 -297 2304 -30.3 -302 -30.1 -30 -29.9 -29.8 -29.7 -29.6 -29.5
n/(MT), dB n/(MT ), dB

Figure 9. (a) Decimal precision and (b) Dynamic range Word Error Rate (WER) for a typical operating point.

where base = 2 but could be any number. The quantized variable are also clipped at maximum and minimum
allowable integer values, that is,

quantized € [-2*7P71 + 1,297t — 1] (14)

Uniform quantization and clipping is applied in the same way to all decoder variables. This includes the Log-
Likelihood Ratios (LLR)’s provided by the channel.

The quantization results are plotted versus WER in Figure 9. The parameters are: M the PPM order, T
the slot width in nanoseconds, n; the background noise in photons per slot, and ns the signal in photons per



e L o[t ]2 ] ] m-1]

Tv@ To@ [v@® [o@ [ [vlm-D]
(B\-| 6 JoJ[1]2[3]4]5[6]7[8]9]10]11[12[13[14]15[16]17 [ 18] 19]20 ] 21 |
lo@l6]s]s5]afa]s[a[s[sf2]2f2 211 [1]1[1[1[1]1]1]

Table 1. (A) The max star Look-Up-Table (LUT) and (B) the LUT with p = 3.

pulse. The number pair in the legend indicates the total number of bits used and the number of bits used for
decimal precision. For example, (18,3) means 18 total bits used, 15-bit for dynamic range and 3-bit for decimal
precision. These curves are generated with an S-random interleaver of length 16380. The effects of quantization
on decoding performance using the length 15120 polynomial interleaver will be the same. Note the occurrence
of an error floor when there is an insufficient number of bits used to represent the dynamic range.

The signal energy gap can be reduced by clipping (or saturating) only the @’s, 3’s, and channel LLRs. The
other decoder variables are allowed to grow throughout the data path. Another benefit of limited clipping is the
ease of debugging. Every clipping point adds a source of potential discrepancy between software and hardware
values (if a mistake exists in hardware implementation). Therefore, limiting the clipping points also facilitate
hardware debugging because possible locations of mismatches are reduced. The cost is in the increased bus width
(and logic) required to represent all other variables in the hardware.

Performance results for an 8-bit quantization, 3 bits for decimal precision, and 5 bits for dynamic range, are
plotted in Figure 10.
6.2. The max Look-Up-Table

The log function is costly to realize in hardware. The max operation discussed in Section 5.3 is therefore,
implemented as a Look-Up-Table (LUT). Since all variables are to be represented by fixed-point integers, for any
real number x, we assign its quantized value to be

24 = min (max (round (z - 27) , —2* 7P~ 4+ 1) 2v7P~ 1 —1) (15)

Let the adjustment term in (8) be defined as
A =1In (1 + e"z_y‘) ~ In (1 +e Iq;”yq'> . (16)

Montorsi and Benedetto [14] suggested a way of generating the fixed-point max LUT with m entries, where m
is the smallest positive integer that satisfies

In (14 e7m/2") < 27 (FD) (17)

rearranging the terms we have e
m = [—217 ‘In (62 e 1)} (18)

Each entry in the fixed-point max LUT is indexed by the difference in the two fix point arguments § = |z, — y,|
and has a value calculated as v (5) = round (ln (1 + efé/zp) _ 2p) . (19)

The fixed-point max LUT would look like Table 1(A). Calculating max* (z,) in fixed-point representation is
therefore done by

max (Tg,Yq) = max (z4,Yq) + v (|2g — ygl) - (20)
Using the Example in [14], let p = 3, from (18) m is computed to be 22. The max star LUT is then populated as
seen in Table 1(B). If § = |z, — y,| = 7, then the max operation would return max (z4,y,) + 3. If § = 0, then
max would return max (z,, y,) +6. If § = 21, then max would return max (z,, y,) + 1. Any fixed-point number
x4 can be converted back to floating point value by x = §—§ Another fast max hardware implementation can be

found in [15]. The effects of using max LUTs on performance is also included in the (8,3) quantization curve of
Figure 10. The partial-statistics result is also presented in the Figure.



Limited Saturation WER: M=64, TS=32, R=1/2, nb=0.2, [r1=15120

10 0
107 E
107 1
Q
©
o
S . 3 |
A 10
2
2
107 E
—&— (8,3) Top 8 Stats
1050 | (8,3) Full Statistics |
—oe— Floating Point & Full Stats
—#— S—-random: 16386 CRC16
-6 .

=304 -30.3 -302 -301 -30 -299 -29.8 -29.7 -29.6 -295
n/(MT)

Figure 10. Performance of partial statistics and quantization of a typical operating point.

| Full Decoder | used/total | utilization | Inner Decoder | Outer Decoder | Other Blocks |
BRAM 101/168 60 % 19 % of total resource | 9 % of total | 32 % of total
Flip Flops | 17311/93184 18 % 16 % of total resource | 1 % of total 1 % of total
Slices 30174/46592 64 % 52 % of total resource | 6 % of total 6 % of total

Table 2. SCPPM decoder on the Xilinx Virtex II-8000 FPGA.

6.3. Other Optimizations

Other optimizations of the SCPPM hardware implementation includes a fast clipping circuit and efficient inter-
leaver and de-interleaver design. The fast clipping circuit requires no comparators and this reduces propagation
delays. The interleaver and de-interleaver are partitioned into submodules that would allow parallel access and
this enables reads and writes of multiple LLRs in one clock cycle.

7. DECODER PERFORMANCE

The SCPPM decoder for M = 64 is currently implemented on the Xilinx Virtex II-8000 FPGA, speed grade 4
(XC2V8000-4) which sits on a commercial off the shelf (COTS) Nallatech BenDATA WS board. The resource
utilization is given in Table 2. Other hardware overheads are incurred by the interleavers, interface circuitry, and
interface memory. The max Look-Up Tables (LUTs) are implemented as ROMs using Xilinx internal distributed
RAM. This was made possible by the small number of entries in the LUT. The channel symbol memory, §-storage
memory, and interleaver LUT’s are all implemented using Xilinx internal, dual-ported BRAM. The equivalent
gate count for our design as reported by the Xilinx place and route tool is 6.5 million. On the grade 4 part, a
maximum clock speed of 23 MHz can be obtained which translates into a throughput of 1.23 Mbps based on an
average of 7 decoding iterations. We can increase the data rate by using more advanced parts. On a grade 5, a
clock speed of 26 MHz and throughput of 1.39 Mbps can be met and on a Virtex II-Pro FPGA, a clock speed of
28 MHz and throughput of 1.5 Mbps can be achieved.

Potential improvements exist in using a window-based BCJR, efficient scheduling algorithms, and next gen-
eration Virtex IV FPGAs. Calculations show that the enhanced design can in principle run at 24 Mbps per slice
and this will allow an aggregate 50 Mbps SCPPM decoder implementation that requires only 3 FPGAs.



8. SUMMARY

We demonstrated an FPGA implementation of a Serial Concatenated Pulse Position Modulation (SCPPM)
decoder for Deep Space Laser Communication. With optimizations, our decoder can achieve a throughput of 50
Mbps using 3 FPGAs and perform within 0.9 dB from the Shannon capacity at a WER of 1074,

10.

11.

12.

13.

14.

15.

REFERENCES
CCSDS, “Telemetry channel coding.” Consultative Committee for Space Data Systems Standard 101.0-B-6,

Oct. 2002.

. C. Berrou and A. Glavieux, “Near optimum error-correcting coding and decoding: Turbo Codes,” IEEE

Trans. Comm., vol. 44, pp. 1261-1271, Oct. 1996.

. S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “A soft-input soft-output maximum a posteriori

(MAP) module to decode parallel and serial concatenated codes,” The Telecom. and Data Acquisition Progr.
Rep., vol. 42, pp. 1-20, Nov. 1996, JPL.

J. Hamkins, “The Capacity of APD-detected PPM,” JPL Telecommunications and Mission Operations
Progress Report, vol. 42-138, Aug. 1999.

J. Hamkins and J. Ceniceros, “The Capacity of Avalanche Photodiode-Detected Pulse Position Modulation,”
in Proceedings of SPIE, vol. 3932, (San Jose, CA), pp. 90-101, 2000.

. B. Moision and J. Hamkins, “Low complexity serially concatenated coding for the deep space optical channel,”

to appear in JPL Interplanetary Network Progress Report, Feb. 2005.
J. Sun and O. Y. Takeshita, “Interleavers for Turbo Codes Using Permutation Polynomials Over Integer
Rings,” IEEE Trans. Info. Theory. vol. 51, pp. 101-119, Jan 2005.

. R. J. Barron and B. Robinson, “Recursive polynomial interleaver algorithm.” MLCD project Memo, Sept.

2004.

. B. Moision, M. Srinivasan, and C. Lee, “Sequence detection for the optical channel in the presence of ISI.”

JPL Inter-Office Memo, June 2004.

L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol
error rate,” IEEE Trans. Inform. Theory, vol. 20, pp. 284-287, March 1974.

W. E. Ryan, “A turbo code tutorial.” Available on-line at http://www.ece.arizona.edu/ryan/turbo2c.ps.gz,
1997.

A. J. Viterbi, “An intuitive justification and a simplified implementation of the MAP decoder for convolu-
tional codes,” IEEE J. Select. Areas Comm., vol. 16, pp. 260-264, Feb. 1998.

M. Barsoum and B. Moision, “Method and apparatus for fast digital turbo decoding for trellises with parallel
edges.” JPL Tech. Rep., July 2004.

G. Montorsi and S. Benedetto, “Design of fixed point iterative decoders for concatenated codes with inter-
leavers,” IEEE J. Select. Areas Comm., vol. 19, pp. 871-882, May 2001.

T. Miyauchi, et al. “High-performance programmable SISO decoder VLSI implementation for decoding turbo
codes,” IEEE Global Telecomm. conf., vol. 1, 25-29 Nov. 2001.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


